N TPne 77-Bditor

Bob Boyer
J Moore

Julian Davies
Department of Computational Logic Memo 62
School of Artificial Intelligence
Edinburgh -

February 1973

We suggest you insert this document in your USER'S MANUAL.

Program and document copyright by Boyer, Moore, and Davies. 1973

This document is published also as a
School of Artificial Intelligence,
Category 2 publication, This is a
provisional description for software
materiel made avallable for general
information but is not an official
component of the School Console Manual

and is not maintained by the School

Systems Programmers,

(4

INTRODUCTION
This editor is actually a totally integrated part of the multi-
access system. The primary features of the editor are:

(1) Text is held in an expandable buffer which may
be scanned and modified repeatedly in either
direction.

(2) When "in" the editor, one is actually in a very
special POPVAL which simulates the top-level of
the POP-2 operating system. The only differences
between these two states is that in the editor
errors do not cause SETPOP to occur, and certain
identifiers are interpreted as edit commands.
Arbitrary pieces of POP-2 iext may be typed and
executed.

(3) The edit commands are POP-2 operations which take
string, word, numeric, or functional arguments.
Thus, it is possible to freely mix POP-2 and edit
commands (there is no distinction) to define new
commands or perform repetitive sequences of commands.

(4) Text may be compiled directly from the buffer. This
permits testing and debugging of functiomswithout
recompiling the whole file from disc. Syntax mistakes
are easier to find because the editor "points" to the
last character read by the campiler if it chokes.

(5) It is possible to "undo" the effects of the last n
edit commands which inserted or deleted text in the

buffer. Thus it is easy to recover from mistyped or

INTRODUCTION-2
misguided modifications. The integer n
is set by the user.
(6) Pacilities are provided for easily finding
function definitions and for manipulating them
as units of text. This holds for other pieces
of POP-2 syntax that represent balanced structures:

LAMBDA, IF-THEN-ELSE, open brackets, etc.

EDIT ENVIRONMENT
In order to keep edit commands as short as possible and not conflict
with operators and functions defined by the user, all edit identifiers
are prefixed with the letters "ED". To save the user the trouble of
typing ED in front of each command however, a special mode is provided
which appears to be the top-level of the operating system, but which
automatically prefixes any identifier which corresponds to an edit
command by ED. To enter this mode, type ED.
Once "in" the edit enviromment, life is just as it was outside
except that:
(1) Edit commands are available in their non-prefixed form.
(2) SETPOP is avoided to prevent unwanted exiting from the
edit interpreter. BRRORs cause both the user's and the
auxilary stack to be cleared, and all executing functions
except the editor are aborted.
To exit the edit environment, type CTRL G, or SETPOP();, or
CLEARPOP() ; (not recommended operating procedure) or type GOON

at the top-level.

EDIT ENVIRONMENT-2

The editor may be entered and exited freely without changing
the buffer which contains the text. So that if in the middle of
an edit you wish to return to the real top-level (this is sometimes
desired, even though you can execute arbitrary POP-2 text in edit
mode, e.g., you might wish to leave the edit mode to call a function
which you have defined which has the same name as an unprefixed
edit command) you may type CTRL G to do so, and resume your editing
where you left off by typing ED later. Also, accidental CTRL G's
don't hurt anything, Jjust type ED azain.

Unlike POPEDIT, when in the editor, one is not restricted to
typing edit commands. If you wish to output a file, change tracks,
compile a function (either as a command you are going to be using
repeatedly or to test & new component of your own program), experiment
with acceptable POP-2 syntax before typing it into your file,
inspect the contents of other files (or edit them) or run your program,
you are free to type the appropriate text and have it executed.
However, if you type V; (which outside the editor might just be an
identifier with a numeric value, and would mean,"put the value of "V"
on the stack") the editor types out the current line; if you type
I'FOO'; the text 'FOO' is inserted into the buffer; and if you type
SEB FO0O; the editor searches backwards for the end of the function
definition of FOO (if FOO is a functionm).

The prefixed versions of edit commends are available outside
edit mode. That is, once the editor is compiled, you can use the
operations EDV, EDI, and EDSEB just as you would use V, I, and SEB

in edit mode.

THE BUFFER AND POSITION POINTER

When you wish to edit a file vou type IT filename;, where
filename is the name of the file to be edited. This inserts the
characters into "the buffer", which is conceptually an elastic
character strip (but actually a structure composed of POP-2 records
which refer to disc sectors or user-typed character strips to be
inserted). You may then freely modify the contents of the buffer,
and when you are satisfied with it, write it back to your disc track.

There is a "pointer", printed ac "4", which marks the current
position in the buffer. It is at this point that insertions or
deletions occur. However, you arefree to move the pointer at.wiil
throughout the buffer. Commands that move the pointer include
the search commands (which position the pointer in front or in back
of specified units of text in the buffer) and explicit move commands
(like, F 3; which means, go forward 3 characters, or L(-4); which means
g0 4 lines back). You are also able to discover how many characters
from the top of the buffer you are, so as to "remember" a p031t25n -
and return to it later. (Just call H.) (imfé%:j?MAA 0>éﬂ%§2‘ C

You can print text from anywhere in the buffer (or even go to
other places in the buffer (or even other files) and pick up text
and move it Since you are free to move backwards as well as forwards
you can inspect previously edited portions of the buffer and re-edit
them. Nothing is written out until you give an output command.

Because the buffer actually refers to the sectors on the disc
from which the file caeme, it is important to avoid DTIDY while editing.
To facilitate tidying a track (for instance, to make enough room to
output the buffer to it) the command EDTIDY (just TIDY in edit mode)

is provided. It is described in detail later.

SYNTAX OF EDIT COMMANDS

Since edit commands are POP-2 operators, their syntax is
incredibly free-form. We wish to encourage you to adopt whatever
style is most convenient for you.

Since they are operators it is not necessary to type parentheses
or dots to cause them to be evaluated. However, you can always treat
them as functions if you wish. (That is, typing V(); or .v; is
exactly the same as typing V;.)

The following are all equivalent ways to exchange the next
occurence of the word "FOO" for the string 'BAR':

"FOO" X 'BAR';

"FOO"X'BAR';

"FOO", 'BAR'X;

X("FOO",'BAR') ;

"FOO", 'BAR',X;

"FOO", 'BAR',X();

"FOO", 'BAR'.X;

APPLY ("FOO", 'BAR',NONOP X);

etc.

Just be sure the arguments get on the stack before the command is
executed.

We have discovered that the simplest sane syntax is to type the
commands in the order they are to be evaluated, with no dots or parens,
with all arguments and commands separated by commas. Terminate the
sequence of commands with " ;" or "=)" as usual in POP-2.

To move to the next line, you can thus type:

SYNTAX OF EDIT COMMANDS-2

1L;

L %;

1,L;

L(1);

1.5L;

(to exhibit a few of the combinations)

If you realize you are typing the same sequence of commands
over and over again, define a function which executes them and use
it instead.

For example, assume that you wish to exchange some of the SUBSCR's
in a file to SUBSCRC's, but you don't want to write the fully automatic
edit function for deciding which occurences. So you want a command
that when called will exchange the next 'SUBSCR' for 'SUBSCRC'

and then print the corrected line:

Lo, /.
CTION FOO; ol
’ - ;(#v&,,»;
X("SUBSCR', 'SUBSCRC') ; P w" F g
VA LN S s
v(); S Y
mD IWH&_&Z".D » . ‘(e
; ,fk (\ 8 i~

.

If you type the above definition in edit mode, you wili\yhereafter be
able to type FOO; to cause the exchange and verification}“
Experiment freely with the syntax until you get camfortable.
Use V to verify the changes until you trust the editor and your model
of it. Remember, all you have to do to undo the last (possibly disastrous)

modification (insert or delete) is type UNDO;.

o
oy

v

(;RGUMENT TYPES FOR EDIT COMMANDS

Edit commands take a variety of arguments. The type of
the argument sometimes affects the precise effect of the cammand.
These relationships are described in detail for each command.

Our conventions in this document for specifying the type of an
argument are:

(1) character strings -- item typed in using string

quotes or eonstructed with INITC.

(2) text items -- items which are POP-2 words, integers,

or reals.

(3) integers -- POP-2 integers.

(4) file names -- POP-2 list structures.

(5) character repeaters or consumers -- any POP-2

function which produces or gobbles one character
per call.
(6) function objects -- any POP-2 function or a pair
the front of which contains a word and the back
the word UNDEF, e.g., [FOO . UNDEF] .
The following general guidelines are offered to clarify the distinctions
between certain types.

When used as objects to be searched for or inserted, text items
are treated more sensitively than character strings. For example,
searching for the string 'X1' would succeed in finding the substring
'X1' in the string 'COORX1Y1'. Searching for the word "X1" would
succeed only if the characters found were delimited in such a way to
distinéuish the occurence as a separate POP-Z word, e.g., as in

VARS X1 Y1; or SQRT(X1+3).

ARGUMENT TYPES FOR EDIT COMMANDS-2

Similarly, searching for 123 would find only occurences of
that integer (even if you said search for 2:11110ﬁ1) while searching
for '123' could find X123 or 5123.46.

When searching for function objects one finds units of text
which define functions, operations, or macros (depending on the
IDENTPROPS of the functions print name in FNFROPS). Searching
for the end of a function object finds the matching END of the
appropriate definition. ‘Thus, if you have a function FOO and
want to find its definition, search for FOO (not 'FO0' or "FOO")

and you will find the text 'FUNCTION FOO . . .'.

LOCATION SPECIFIERS
Several edit commands take a pair of arguments, LOC1 and
LOCZ2, called location specifiers. These arguments may be of
various types and delimit a window. in the buffer.
The location of the start of the window is:
(1) If LOC1 is ap integen, then position LOC1 in the buffer.
(2) If LOC1 is a string or POP-2 word, then the beginning
of the next occurence of the string or word in the
buffer (unless the string or word cammot be found
in the forward direction, in which case, the beginning
of the last occurence of LOC1).
(3) If LOC1 is a function object, then the beginning of
the definition of LOC1.
The location of the end of the window is:

(#) If LOC2 is a integer,then position LOC2 in the buffer.

LOCATION SPECIFIERS-2
(2) 1If LOC2 is a string or word, then the end of the
first occurence of the string or word after the
location determined by LOC1.

(3) If LOC2 is a function object, then the end of the

definition. 5ﬂ”~r
4 T
Chf,d v !_ g 4

LA
4 -

matching end corresponding to LOCi[“\\éVC} £
2% S
¢ K

The edit commands which take location specifiers are:

(4) .If LOC2 is ME or EDME, then the location of the

D¢, C, GRAB, MKS, O, and VC.

For example, to compile the function FOO in the buffer,
type C(FOO,ME);(or C(F00,F00);). To type out the definition
of F00, type VC(FOO,ME);. To GRAB the definition (delete it
.from the buffer in preparation for moving it somewhere), type
GRAB(FOO,ME); (As explained in SYNTAX OF EDIT COMMANDS, the
examples above exhibit an arbitrary choice of POP-2 syntax to

call the functions involved on the two arguments.)

DESCRIPTIONS OF EDIT COMMANDS

The edit commands are described in detail below. Commands are
grouped into classes, and claszes are ordered alphabetically.

The section SUMMARY OF EDIT COMMANDS, at the end of this document,
lists all commands and their classes.

Each command is described in three parts. The first line gives
the (unprefixed) identifier for the command followed by the essence
of the command. The next line exhibits the number and type of the
arguments permitted. When there are options, all are listed.
Following this is a detailed description of the command.

To give the arguments we exhibit a call of the command (using
parentheses and commas for clarity oﬁly). We use the following
words to denote arguments of fixed types:

N, M -- integers

FILENAME -- an EASYFILE file name (POP-2 list structure)

CHARREP -- a character repeater

LOC1, LOC2 -- location specificrs

SEARCH-ARG -- a character striv, word, integer, real number,

or function object
INSERT-ARG -- a character strip, word, integer, real number,
character repeater, or GRABbed object
Thus, we exhibit:

X(SEARCH-ARG, INSERT-ARG)
to mean that the command X tekes two argumerts, the first of which is of
one of the types listed under SEARCH-ARG, and the seéond of the types
under INSERT-ARG. You may of course call X with any syntax you prefer,
e.g., '"ABC' X 12.3;.

N.Be We print zero as f§ in this document.

COMPILE-1
c Compile
C(@) or C(FILENAME) or C(LOC1, LOC2)

€ compiles POP-2 text from the buffer. C(f) compiles the function,
operation, or macro definition the pointer is in. If the pointer
is not in a definition, then the largest balanced piece of text
containing the pointer is compiled. C(FILENAME) saves the current
buffer, inserts file FILENAME, and cozpiles it. C(LOC1, LOC2)
compiles the characters in the window.

If compilation is successful, the pointer is not moved. If a file
was compiled successfully, the old buffer is restored along with
the o0ld position in it.

If the compilation was not successful, the pointer is immediately
behind the last character read by the compiler. If a file was
being compiled the old buffer (and NAME) is lost; the current
buffer contains the file being compiled; NAME contains FILENAME.
The position of the pointer is extremely helpful. In particular,
when you are debugging a function definition for syntax errors,
you will generally find the pointer only a few characters past the
location of the bug that the compiler choked on.

€ compiles outside the editor (although you do not leave edit mode).
That is, non-prefixed edit commands in the text are not interpreted
as edit commands during the compilation.

€ makes debugging very fast. Typically one compiles a file the first
time with C. When the compilation chokes, use V, or -2 VL 2; to see
where the syntax error is. You are still in the editor, so fixing
the error is easy. Then type C(F00,ZZ) where FOO is the function
containing the bug. Compilation will continue. When the whole file
compiles, you might SAVE it (to keep a reasonably good copy on disc),
o> but keep it in the buffer for further editing. Then run the functions
(1ﬂ _to find bugs. When youpa bugiin function FO0, enter the editor if
,/’//(' you left it, type S F0O; to get to the definition, and maybe FOO VC ME,
to type it out. After fixing it, type C 0; to recompile the edited
function. When you are satisfied with the file, type FILE; to write
it to your disc track. With the function definitions at your finger-
tips and the ability to find and manipulate POP-2 text and words
(1ike all occunmences of a misspelled word, or function calls of a
certain function) you will find it easier:to both find and correct
bugs. In addition, you will not d&irc.d modifying a function definition
simply to help debug it because you need never write the redefinition
back to your disc to compile it.

COMPILE-2
EDITFRCM compile EDIT commands FROM charrep

EDITFROM(CHARREP)

EDITFROM is a function, not an operator. It compiles the characters
delivered by the repeater in edit mode. Thus, non-prefixed edit
commands are prefixed by ED. To compile a file of your own standard
edit commands, execute EDITFROM{DIN(FILENAME)); When you type ED

to enter the editor, you really just execute EDITFROM{CHARIN);.

If you wish to include edit commands in a file to be compiled with

the standard DCOMP, or COMPILE, then you should prefix the commands
with ED yourself.

EDSETPOP EDit SETPOP

EDSETPOP()

EDSETPOP is a function, not an operator. It behaves just like SETPOP
does, except that the editor is not exited. It aborts all executing
functions, clears both stacks, and returns control to the top-level
(of the editor). You can use it to get into the editor from outside
if you want = to. More commonly, it is used within user defined

edit functions to abort if the function failed and subsequent commands
are to be ignored.

DC

DL

DSB

DELETE~1
Delete characters
D(N)

If Nis negative, the -N characters to the left of the pointer are
deleteds If N is positive, the N characters to the right of the
pointer are deleted. N =‘b is a nonop. The pointer is left
unchanged. All delete commands reset NAME to UNDEF if the buffer
is cleared by the command.

Delete Characters in window
DC(LOC1, LOC2)

The characters in the window are deleted. The pointer is left
immediately after the deleted text.

Delete Lines
DL(N)

If N is positive all the text from the current position up to and

including the Nth newline character in the forward direction is

deleteds If N is not positive all the text strictly between the

current position and- the.(N-1)th mewline:icharacter in the backward direction
is deleted.

Delete through Search-arg
DS(SEARCH~-ARG) or DS(SEARCH-ARG,N)

If not present, N is assumed to be 1. All of the text between the
current pointer and the end of the Nth occurence of SEARCH-ARG in the
forward direction is deleted. If successful, the painter is left

at the point where the deletion stopped. If SEARCH-ARG is not found
N times, "SFL" is printed and no deletion occurs; the pointer is left
unchanged and EDSETPOP is called.

Delete through Search-arg Backwards
same as for DS
Same as DS except that the text between the current pointer and the

beginning of the Nth occumence of SEARCH-ARG in the backward direction
is deleted.

)

Cam

DAZ

DELETE-2
Delete from A to Z
DAZ()

The entire buffer is cleared. NAME is reset to UNDEF (see IT and
FILE commands).

XT

XBT

EXCHANGE-1

eXchange

X(SEARCH-ARG, INSERT-ARG) or X(SEARCH-ARG, N, INSERT-ARG)

If N is not present it is assumed to be 1. The Nth occuntnce of
SEARCH-ARG in the forward direction is replaced by INSERT-ARG. If
the search is successful, the pointer is left immediately behind the

inserted text. If SEARCH-ARG is not fbound N times, "SFL" is printed,
EDSETPOP is called, and the pointer is not moved.

eXchange and Test
same as for X

Same as X except that TRUE is returned if the exchange is made and
FALSE if it is not (due to failure to find SEARCH-ARG).

eXchange Backwards

same as for X

Same as X except that the Nth occurence of SEARCH-ARG in the
backward direction is replaced by INSERT-ARG.

eXchange Backwards and Test
same as for X

Same as XB except that a truth value is returned.

~

GRAB

cc

GRAB-1
GRAB and delete
GRAB(LOC1, LOC2)

The idea of GRAB is to delete a chunk of the buffer with the intention
of reinserting it elsewhere. The chunk deleted is that portion contained
in the window specified. An object representing that portion is then
left on the stack. This object can be inserted (with I) once (and only
once). The pointer is left immediately behind the deleted text.

GRAB does not cause a significant amount of consing to be done
(it merely returns a pointer to the chain of records representing
the deleted text in the buffer). Iy is thus an efficient way to move
large blocks of text. The following commands GRAB the text defining
the function FOO in the buffer and move it to the top of the file:

GRAB(FOO,ME) > X1, A, I X1;

GRAB can also be used to clear the buffer but save the structure,
thus allowing another file or grabbed object to be inserted and edited.
The orginal buffer can later be reinserted. Thus, GRAB can be used
to save several buffers at once and edit them in turn, possibly inserting
some into others. (Note: I is a nonop if its argument is a grabbed
object that has already been reinserted.)

GRABbed objects are cleaned up when TIDY is called, even though
they are not in the buffer. The list EDGRABLIST contains all objects
grabbed but not yet reinserted. You may set this list to NIL to let
the garbage collector reclaim the space of unwanted grabbed objects.

MaKe Strip

MKS(LOC4, LOC2)

Constructs a character strip containing the characters in the window.
The constructed strip is left on the stack. The pointer is left

unchanged and the text in the window is not deleted. MKS is used to
save a piece of text to be searchedfararreinserted several times.

Current Character
ce()

Returns the integer representation of the character to the right of
the current position. The pointer is left unchanged.

Next Item
NI()

Returns the item starting with the character to the right of the
current position. The pointer is lef't unchanged.

IT

IC

INSERT-1
insert file to be edITed and filed
IT(FILENAME)

If the buffer is not empty, the message 'BUFFER NOT EMPTY' is printed
and EDSETPOP is called. (You should either write the buffer ocut or

do a DAZ to kill it.) If the buffer is empty the file FILENAME is
inserted in the buffer and the pointer is left at the top. The name
FILENAME is stored in NAME for future reference. This is the standard
way to begin an edit. When you are finished with the edit, you can
file it using the command FILE. Ualike POPEDIT, nothing is written to
your disc track until you execute the FILE command (or use either 0 or
SAVE, which are also output commands).

Insert
I(INSERT-ARG)

The pointer is left immediately to the right of the insertion. The
text inserted depends on the value of INSERT-ARG and its datatype:

(1) If INSERT-ARG is a character string, the characters in the
string are inserted.

(2) If INSERT-ARG is a quoted word, the characters representing
the word are inserted. Blanks are inserted at either end
when required to make the insertion parse as a word.

(3) If INSERT-ARG is a number, the characters in the decimal
representation of it are inserted. Blanks are inserted at
either end if required to make the insertion parse as a number.

(&) If INSERT-ARG is a list, it is assumed to be a filename. The
user§ disc tracks are searched and if a file of that name occurs,
the entire fiile is inserted. If such a file is not found,
"IFL" is printed and EDSETPOP is called.

(5) If INSERT-ARG is a function, it is assumed to be a character
repeater. The character repeater is consumed and the
resulting characters are inserted. (R is I®CHARIN®).

(6) If INSERT-ARG is a structure of the type returned by GRAB
which has not previously been inserted, it is linked into
the buffer. This has the effect of inserting the text
represented by that structure. INSERT-ARG is removed from
EDGRABLIST.

Insert Character
IC(N)

The character represented by N is inserted into the text at the
eurrent position. The pointer is left immediately behind ite. Notice
that you can mung yourself with 19IC;. IC is efficient and can be
used as a character consumer to print output into the buffer

(i.ee NONOP IC -> CUCHAROUT causes output to be inserted).

INSERT-2

Read from the console

R()

The system accepts input from the teletype and inserts it into the
buffer at the current position. CONTROL T terminates the reading
and normal edit mode is restored. The pointer is left immediately
behind the inserted text. R is used for inserting large blocks of
text since only about 900 characters can be typed between string
quotess Characters are inserted as they are read, hence CONTROL G
terminates but does not abort the R UNDO will undo not one but
all of the characters inserted during the R.

MACROS -1

In order to make it easier to repeat a sequence of commands, the
following macros are provided in edit mode (only).

test and repeat

Definition:
MACRO <¢;
MACRESULTS (L ;LAMBDA; LOOPIF J);
END ;

count, test and repeat

Definition:
MACRO <;
MACRESULTS((;LAMBDA EDN; EDN+1-»EDN; LOOPIF (EDN-1-)EDN; EDN;) THEN]);
END ;

close repeat
Definition:
MACRO);

MACRESULTS(C ;CLOSE END.APPLY; J);
END;

Examples of use:

< "FOO" XT 'BAR' THEN V »
will replace all occurences of "FOO" by the string 'BAR' from the
current position forward. Each modified line is then printed. The
pointer is left after the last modification.

3 (» DLEBO({F00 }) »>

will print file [FO0] to the lineprinter 3 times.

aT

JL

MOVE=-1
jump to the top

A()

The pointer is reset to the left of the first character in the buffer.

top Test
AT()

TRUE is returned if the current position is the top of the buffer, .
FALSE otherwise.

jump to the bottom

z()

The pointer is reset to the right of the last character in the buffer.

bottom Test
zZ7()
TRUE is returned if the current position is the bottom of the buffer,

FALSE otherwise. (If the buffer is empty the current position is
the top of the buffer and the bottom of the buffer.)

Jump
J(N)
The pointer is positioned to the right of the Nth character in the .

buffer. Thus J(f) is the same as A(). To find out the number of
characters to the left of the pointer use H.

Jump Lines
JL(N)

The pointer is positioned at the beginning of the Nth line in the buffer.

MOVE-2
Forward
F(N)

The pointer is moved forward over N characters. (If N is negative, the
pointer is moved backwards; N = § is a nonop.)

Backward
B(N)

The pointer is moved backward over N characters. (If N is negative,
the pointer is moved forwards; N = 0 is a nomop.) This command is
useful since unary minus often parses unintuitively in POP-2,

move Lines
L(N)

If N is positive, the pointer is moved forward over N newlines. If
N is not positive, the pointer is moved just to the right of the
(¥-1)th newline character in the backward direction. (Thus L(f)
repositions the pointer to the beginning of the current line.)

Here

H()

Returns the number of characters to the left of the current pointer.
Thus: H,S'F00',3D,J; stores the current position on the stack, moves
forward to FOO, deletes it, and jumps back to the original positione

(M, sa Frot, 35,3 lase~r werk.

very large integer
zz()

The value of ZZ is a very large integer (as might be returned by going
to the bottom of the buffer and typing H()). All edit commands which
take integers as character or line positions have the property that a
position greater than the number of characters in the buffer is
equivalent to the position of the bottom. Thus J Z2Z; is equivalent to
Z; 2Z is handy. Wait and see.

MOVE-3
Match

H()

If the item immediately to the right of the pointer is "FUNCTION",
"OPERATION", "MACRO", "LAMBDA", "VARS", "COMMENT", "IF", "LOOPTF",
"FORALL", "(", "®&", "[", OR "[%' the pointer is moved to the

right of the matching closing item (unless it is immediately followed
by a ";", in which case the pointer is left immediately after the ";").
If the first item to the right of the pointer is not one of the above,
the pointer is moved to the end of the first iteme M is thus used

to find the end of a function or lambda expression, the matching close
or exit for an if, etc. "MFL" is printed and EDSETPOP is called if
the matching closing item is not found. Functioms that have location
arguments use M to determine the second location ift LOC2 is ME.

NeBe When we say "forward" in reference to the motion of the
position pointer, we mean "to the right and down", i.e. the
direction in which one reads English. When we say "in front of"

in reference to the loeation of the position pointer, we mean
"at the left end of".

FILE

SAVE

OUTPUT-1
write edited FILE to disc under filename NAME
FILE()

This is the standard way to finish an edit. The contents of the

buffer is written to the current track under the filename NAME
(initialized by the command IT). If NAME is UNDEF a message to this
effect is printed and nothing is done. If there is not enough room

on the track, permission to do an EDTIDY is requested. See the command
0 belowe After output the buffer is cleared and NAME is reset to
UNDEF .

SAVE partial edit
SAVE()

The contents of the buffer are written to the current track under the
filename in NAME. Then the new file is inserted and the pointer is set
to the position it was at before the SAVE command. This command is used
to write a partially edited file to disc to protect it from system
crashes and then continue editinge.

Output
O(FILENAME) or O(FILENAME, LOC1, LOC2)

If the optional location arguments are not given they are assumed to be
p and ZZ. The window in the buffer is written to the current track
under the filename given as the (first) argument.

If the argument is not a filename, "OFL" is printed, no output
occurs, and EDSETPOP is called. If the window (or buffer) is empty,
the message 'BUFFER EMPTY' is output, no output occurs, and EDSETPOP
is called. (To create an empty file, use DREAD.)

If there is not enaugh room on the track for the window, the
message 'TIDY Y/N:' is output to .the consolé: ..Ifiyou type Y followed
by carriage return, an EDTIDY is executed. If you type anything else
followed by a carriage return, nothing is output and EDSETPOP is called.
If the EDTIDY yields enough room on the track, the window is output.
Otherwise, the message 'TIDY Y/N:' is output, etc.

If you wish to output part of the buffer through an arbitrary
character consumer, then use the command VC. VC outputs characters
through CUCHAROUT:‘)

1

\\\«\/CL. =L 9. VL

ST

SBT

SEARCH-1
Search
S(SEARCH-ARG) or S(SEARCH-ARG,N)

If not present, N is assumed to be 1. If SEARCH-ARG is an integer
the second argument must be supplied. S searches in the forward
direction for the beginning of the text denoted by SEARCH-ARG. The
relationship between the argument type and the text found is as
follows: :

(1) If SEARCH-ARG is a character string, the Nth occumence
of the string is found.

(2) If SEARCH-ARG is a text item, the Nth occumence of the item
is found (i.e. occurences as substrings of other items are
not counted).

(3) If SEARCH-ARG is a function object, the Nth occurence of
the item "FUNCTION" immediately followed by the name of the
function object is found. (i.e. if FOO is a function which
was defined using "FUNCTION" or_has not yet been given a
value (and is thus [FOO . UNDEF]), the text 'FUNCTION FOO'
is found. This works even if F0O has been SPEC'D but does
not work if FOO has been defined using assignment. If
SEARCH;ARG is an operator or macro, the appropriate text is
found.

If successful, the pointer is left at the begimning of the matched text.
If not, the pointer is left unchanged and "SFL" is printed, and subsequent

edit commands on the same line are ignored; EDSETPOP is called.

Search and Test
same as for S
Same as S except that TRUE is left on the stack if the search

succeeds and FALSE is left on the stack otherwise. "SFL" is not
printed$ EDSETPOP is not called.

Search Backwards
same as for S

Same as S except that the search proceeds in the backward direction
from the current positiom.

Search Backwards and Test
same as for S

Same as for SB except that TRUE is left on the stack if the search
succeéds and FALSE is left otherwise (as for ST).

SE

SET

SEB

SEBT

SS

SEARCH-2
Search for End
same as for S
Same as for S except that the pointer is left immediately after the

mgtched text if the search succeeds. If SEARCH-ARG is a functien
object, the pointer is left immediately after the matching "END".

Search for End and Test
same as for 8§

Same as for SE except truth values are returned.

Search for End Backwards
same as for S

Same as for SE except that the search proceeds in the backward direction.

Search for End Backwards and Test
same as for S

Same as for SEB except that truth values are left on the stack.

Search Search—-arg

88(-)

The value of this operator is the last object searched for. Thus
SE'FO0',SEB SS; will first search for 'F00' forwards and then
backwardse The use of SS is to save having to type the object
of a search again when the wrong occumence of it was found.

N.Be The way we search for a number is to "print" the number into
a character strip, to search through the buffer for a string of
characters matching the strip, and having found a candidate
to check that the candidate really parses as the number searched
for. Consequently, searching for the number 9 will not find
2:1001 or 8:11.

TIDY -1
TIDY edit aTIDY

TIDY(): .
TIDY is the edit version of EASYFILE's DTIDY. When using the editor
it must be used instead of DTIDY to insure the integrity of the buffer.
Since the buffer refers to sectors on a disc track when a file is
inserted, it is essential that information in the buffer be updated
if the sectors are shifted down to tidy the track. TIDY does this,
both to the buffer itself, and all ol the GRABbed objects on the
EDGRABLIST list. If TIDY is intermipted (for example, by CTRL G)
your disc track is okay, but the buffer may be ruined. Using DTIDY
is the most effective way to randomly rearrange your file. Typically
you executed TIDY just prior to outputing the buffer when it is necessary
to make room on your track. The command O will request permission to

TIDY if necessary.

UNDO-1

EDUNDOINIT EDit UNDO ring buffer INITialization

UNDO

EDUNDOINIT(N)

EDUNDOINIT is a function, not an operator. It constructs a circular
list (ring buffer) with N elements in it, which is used to hold
sufficient information to undo the last N modifications. When the
editor is compiled, the ring is initialized to size 2. You may

reset it with this function. Note that large values of N mean that
the system will not garbage collect chunks of the buffer for a long
time, causing your store size to increase (since the last N insertions
or deletions must be kept in case you UNDO them).

UNDO the last modification
UNDO()

The last un-UNDOne insertion or deletion is undone. That is, the
text is restored to its configuration just prior to the last still
effective insertion or deletion (provided the modification was not
made by UNDO itself, in which csse the previous modification is
UNDOne). The pointer is always left to the right of the text inserted
or deleted. It is not restored to its position prior to the UNDOne
command. Note that EXCHANGE commands require two UNDO commands to
undo. The normal use of UNDO is to recover from mistakes soon after
they are made (rather than allow a backtracking search through all
possible modifications). For example, if you typed DL 4; when you
meant L L;, then UNDO will restore the deleted lines.

VL

Ve

VMAC

VERIFY-1

Verify current line
v()

Prints out the entire line containing the current pointer. The
pointer is printed as "4". The poimter is not moved.

Verify Lines
VL(M,N)

Prints the N-M lines starting at the beginning of the line M from the
current line and ending at the beginning of the line N from the current
lines Thus, to print the two lines zcbove the current position, the
current line, and the one below it, type VL(-2,2). The pointer is
printed as "4" if encountered. The pointer is not moved.

Verify Characters
vc(Loc1, LOCc2)

Prints the characters in the window. The current position, if
encountered, is printed as "t" and is left unchanged. CUCHAROUT may
be redefined by the user to cause the window to be output to any

character consumer. If CUCHAROUT is not CHAROUT, "4" is not printed
(isn't that neat).

Verify with MACro expansion
VMAC(LOC1, LOC2)

This command is like VC except that as it prints the window it prints
the expansions of any macros. It does not modify the contents of the
buffer. VMAC uses the compile command C. Thus, the first time you

use VMAC, you also bring in C if it is not already in (see the section
on CORE REQUIREMENTS).

CORE REQUIREMENTS

When initially compiled, the editor requires about 9 blocks.

This includes buffer space for files inserted, but not for other
insertions made. The insertion of a character strip costs 6 words
plus the size of the strip. The insertion of a file costs (in words)
three times the number of sectors in the file.

There are some features of the editor described in this document
which are not compiled initially. Instead, they are trapped and compiled
the first time they are used. Thereafter they exist in core. These
features are those that deal with function objects, itemg, text
matching, and compiling from the buffer with C. Thus, it is possible
to avoid these features and not pay for them. (That is, you can
search for strings, insert strings, move arbitrarily, and delete or
exchange strings with the initially compiled package. However, as
soon as you, say, search for an item an additional function is compiled.)
When all the facilities described are compiled, the editor requires
abaut 13 hlocks. (Note: two functions are compiled each time they
are used and then thrown away:EDUNDOINIT, and TIDY.)

To cancel all identifiers associated with the editor, and regain

the space, DCOMP the file [CANCEL EDIT] on track 77.

cC

D

DC
DL
Ds
DSB
DAZ
ED
EDITFROM .
EDUNDOINIT
F
FILE
GRAB
H

I

IC
IT

J

JL

L

M
ME
MKS
NAME
NI

0

R

S

ST
SB
SBT
SE
SET
SEB
SEBT
S8
SAVE
TIDY
UNDO
v
ve
VL
X

XB
XT
XBT
Z

ZT
27

<
<¥*

>P
VMAC

SUMMARY OF EDIT COMMANDS
ESSENCE
jump to the top
top Test
move Backward
Compile
Current Character
Delete characters
Delete characters in window
Delete Lines
Delete through Search-arg
Delete through Search-arg Back.
kill buffer
enter EDitor
compile EDIT commands FROM
EDit UNDO ring INIT
move Forward :
output edited FILE
GRAB and delete
Here
Insert
Insert Character
begin new edIT -
Jump
Jump Lines
move Lines
Match
Matching Bnd
MaKe Strip
NAME of file being edited
Next Item
Output
Read characters from console
Search
Search Test
Search Backward
Search Backward and Test
Search for End
Search for End and Test
Search for End Backward
Search for End Backward and Test
Search Search-arg
SAVE partial edit
edit 4TIDY
UNDO last modification
Verify current line
Verify characters in window
Verify Lines
eXchange
eXchange Backward
eXchange and Test
eXchange Backward and Test
go to bottom
bottom Test
2097151
test and repeat
count, test and repeat
close repeat
Verify with MACro expansion

CLASS
MOVE
MOVE
MOVE
COMPILE
GRAB
DELETE
DELETE
DELETE
DELETE
DELETE
DELETE
EDIT.ENVIRON.
COMPILE
UNDO
MOVE
OUTPUT
GRAB
MOVE
INSERT
INSERT
INSERT
MOVE
MOVE
MOVE
MOVE
LOCATION SPEC.
GRAB
INSERT
GRAB
OUTFUT
INSERT
SEARCH
SEARCH
SEARCH
SEARCH
SEARCH
SEARCH
SEARCH
SEARCH
SEARCH
OUTPUT
TIDY
UNDO
VERIFY
VERIFY
VERIFY
EXCHANGE
EXCHANGE
EXCHANGE
EXCHANGE
MOVE
MOVE
MOVE
MACROS
MACROS
MACROS
VERIFY

cC

D

DC

DL

DS

DSB

DAZ

ED
EDITFROM
EDUNDOINIT
F

FILE
GRAB

H

I

IC

IT

SUMMARY OF EDIT COMMANDS
jump to the top
top Test
move Backward
Compile
Current Character
Delete characters
Delete characters in window
Delete Lines
Delete through Search-arg
Delete through Search-arg Back.
kill buffer
enter EDitor
compile EDIT commands FROM
EDit UNDO ring INIT
move Forward ;
output edited FILE
GRAB and delete
Here
Insert
Insert Character
begin new edIT -
Jump
Jump Lines
move Lines
Match
Matching End
MaKe Strip
NAME of file being edited
Next Item
Output
Read characters from console
Search
Search Test
Search Backward
Search Backward and Test
Search for End
Search for BEnd and Test
Search for End Backward
Search for End Backward and Test
‘Search Search-arg
SAVE partial edit
edit dTIDY
UNDO last modification
Verify current line
Verify characters in window
Verifyy Lines
eXchange
eXchange Backward
eXchange and Test
eXchange Backward and Test
go to bottom
bottom Test
2097151
test and repeat
count, test and repeat
close repeat
Verify with MACro expansion

CLASS
MOVE
MOVE
MOVE
COMPILE
GRAB
DELETE
DELETE
DELETE
DELETE
DELETE
DELETE
EDIT. ENVIRON.
COMPILE
UNDO
MOVE
OUTFUT
GRAB
MOVE
INSERT
INSERT
INSERT
MOVE
MOVE
MOVE
MOVE
LOCATION SPEC.
GRAB
INSERT
GRAB
OUTFUT
INSERT
SEARCH
SEARCH
SEARCH
SEARCH
SEARCH
SEARCH
SEARCH
SEARCH
SEARCH
OUTPUT
TIDY
UNDO
VERTFY
VERIFY
VERIFY
EXCHANGE
EXCHANGE
EXCHANGE
EXCHANGE
MOVE
MOVE
MOVE
MACROS
MACROS
MACROS
VERTFY

EDIT ERROR MESSAGES

BUFFER EMPTY
Attempt to output an empty buffer or window.

BUFFER NOT EMPTY

Attempt to start a new edit (with IT) before the buffer is cleared
of the previous file. Do a DAZ or write it out. Its name is still
in NAME if it was inserted with IT.

IFL
Attempt to insert a file not found on any track in DTRS.

MFL
Closing item (for M) not found in buffer.

NAME = UNDEF
Attempt to FILE or SAVE with NAME = UNDEF. You did not begin the
edit with IT. Use O to output and name the file.

OFL
Attempt to output file under an illegal EASYFTLE file name.

SFL

Search failed. ZEither you looked in the wrong direction, you
searched for too many occurences, or its not in the buffer. This
error often occurs when you are at the bottom and search forward.
It can also occur in DS commands, EXCHANGE commands, and commands
which take location specifiers as arguments. When a search fails
the pointer has not moved. If a DS prints SFL, it failed to find
the target andideletes nothing. The last object searched for is in
SS. Thus, if you searched for a string ih' the wrong direction

you can give the correct command and use the argument SS to save typing
the string again.

TIDY Y/N:

Permission to do a TIDY requested. If you type Y (yes), a TIDY is

done. It will mean you cannot UNDO any previous modifications. If
the message comes up again, it means there is just not enough room

on the track. If you type N (no) the output command is aborted,

no harm done.

1

This means you are at the bottom of the buffer. The most common
mistake is failure to appreciate that after an insert (with I) -
you are at thevénd of the inserted text or file.

ACKNOWLEDGEMENTS
The authors would like to thank D. Bobrow and
A. Sloman for their suggestions and support. Without their help

the editor would not have been as natural and powerful a debugging

tool as it is.

TRACK AND FILE
The editor is on track 77. It may be compiled by typing
DCOMP(L{EDIT) ;- When compilation is complete, a list of changes
and additions (with dates) is output. You may kill this with
CTRL O or CTRL G. You are not in the editor until you type ED.
To get out of the editor, hit CTRL G. You need not recompile it

to enter it again; use ED again.

