Contents

Preface

1 Introduction

1.1
1.2
1.3
1.4

Book Layout

The ACL2 System

Important Conventions and Information
Intended Audience

I Preliminaries

2 Overview

2.1
2.2
2.3
2.4
2.5
2.6
2.7

Reasoning

Philosophic Writing
System Models

Truth and Proofs

The Reasoning Engine
Effort Involved
Requirements on the User

II Programming

3 The Language

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Basic Data Types

Expressions

Primitive Functions

The Read-Eval-Print Loop

Useful ACL2 Programming Commands
Common Recursions

Multiple Values

Guards and Type Correctness
Introduction to Macros

3.10 Declarations

xiii

U N -

10
12
15
16
17
19

21

23
25
31
39
42
42
44
50
51
52
55

Computer-Aided Reasoning

: An Approach

4 Programming Exercises

4.1
4.2
4.3
4.4
4.5
4.6

Non-Recursive Definitions

Some Recursive Definitions

Tail Recursion

Multiple Values and Sorting

Mutual Recursion

Arrays and Single-Threaded Objects

5 Macros

5.1
5.2
5.3
5.4

Advice on Using Macros
Details on Ampersand Markers
Backquote

An Example

IIT Reasoning

6 The Logic

6.1 Quantifier-Free First-Order Logic
6.2 The Axioms of ACL2
6.3 The Ordinals
6.4 The Definitional Principle
6.5 The Induction Principle
6.6 Additional Logical Constructs

7 Proof Examples
7.1 Simple Example Theorems
7.2 Example Theorems with Induction
7.3 Example Theorems About Trees
7.4 Comments About the Proof Process
7.5 Exercises

IV Gaming

8 The Mechanical Theorem Prover
8.1 A Sample Session
8.2 Organization of the Theorem Prover
8.3 Simplification Revisited
8.4 Comments

9 How to Use the Theorem Prover
9.1 The Method
9.2 Inspecting Failed Proofs
9.3 Another Example
9.4 Finer-Grained Interaction: The “Proof-Checker”

57
57
58
61
62
63
64

65
65
66
69
71

75

7
80
83
85
89
93
99

103
103
105
107
112
114

117

119
119
121
138
153

155
155
160
170
174

Table of Contents

xi

10 Theorem Prover Examples 183
10.1 Factorial 183
10.2 Associative and Commutative Functions 187
10.3 Insertion Sort 191
10.4 Tree Manipulation 194
10.5 Binary Adder and Multiplier 199
10.6 Compiler for Stack Machine 203

11 Theorem Prover Exercises 211
11.1 Starters 211
11.2 Sorting 212
11.3 Compressed Lists 214
11.4 Summations 215
11.5 Tautology Checking 216
11.6 Encapsulation 218
11.7 Permutation Revisited 219
11.8 The Extractor Problem 221
11.9 Finite Set Theory 221
Appendices 223
A Using the ACL2 System 223
A.1 Introduction 223
A.2 The Read-Eval-Print Loop 224
A.3 Managing ACL2 Sessions 227
A.4 TUsing the Documentation 233

B Additional Features 239
B.1 Proof/Session Management 240
B.2 Working with the Rewriter 242
B.3 Rule Classes 247
B.4 The ACL2 State and 10 248
B.5 Efficient Execution 250
B.6 Other Topics 253
B.7 Troubleshooting Guide 254
Bibliography 257
Index 261

Preface

This story grew in the telling. We set out to edit the proceedings of a work-
shop on the ACL2 theorem prover—adding a little introductory material
to tie the research papers together—and ended up not with one but with
two books. The subject of both books is computer-aided reasoning, from
the ACL2 perspective. The first book, this one, is about how to do it; the
second book is about what can be done.

The creation of ACL2, by Kaufmann and Moore, was the first step in
the process of writing this book. It was a step that took many years and
we acknowledge here the people who made it possible.

Foremost is Bob Boyer, whose creative insights, clarity of thought, and
hard work helped us create the earliest versions of ACL2 from its predeces-
sor system, the Boyer-Moore theorem prover, Nqthm. Bob’s contributions
are so numerous and pervasive that attempting to list them does him an
injustice.

For the first eight years of ACL2’s existence it was nurtured in the
creative and relaxed environment provided by Computational Logic, Inc.
(CLI). The company closed its doors in 1997, but Kaufmann and Moore
owe a debt of gratitude to their former colleagues at CLI. In particular, we
could not have had the opportunity there for sustained focus on our research
were it not for the enlightened management and tireless fund-raising of Don
Good, the founding president of CLI, and Warren Hunt, the vice president
for hardware research.

ACL2 was blessed by having among its earliest users many expert users
of its predecessor, Nqthm. They expected a certain level of reliability and
performance and helped us achieve it. In addition, many of the earliest
users helped create collections of useful theorems, helped port the system
to various implementations of Common Lisp, or showed how to model new
problems with it. These users include Ken Albin, Larry Akers, Bill Bevier,
Bishop Brock, Alessandro Cimatti, Rich Cohen, John Cowles, Art Flatau,
Ruben Gamboa, Warren Hunt, Bill Legato, Dave Opitz, Laurence Pierre,
David Russinoff, Jun Sawada, Larry Smith, Mike Smith, Matthew Wilding,
and Bill Young.

We wish to make special note of Bishop Brock’s impact on ACL2.
Among other contributions, he implemented a prototype for congruence-
based rewriting, developed many of the public books of lemmas that enable

xiv Computer-Aided Reasoning: An Approach

others to use the system, and repeatedly challenged us to improve ACL2. In
a demonstration of his courage and faith in us, he pushed for CLI to agree
to the Motorola CAP contract—which required formalizing a commercial
DSP in the untested ACL2—and then he moved to Scottsdale, Arizona, to
do the work with the Motorola design team. His demonstration of ACL2’s
utility was an inspiration.

Art Flatau, Noah Friedman, Laura Lawless, and Bill Young helped
create the online documentation. David Greve, David Hardin, Robert
Krug, William McCune, and Rob Sumners have suggested several impor-
tant improvements, as have a number of users thanked elsewhere. Fausto
Giunchiglia has been an enthusiastic critic and devoted supporter. Finally,
Kaufmann and Moore would like to thank Panagiotis (Pete) Manolios for
his careful scrutiny of parts of the system and his many helpful suggestions
as an ACL2 user. With users like these, it would be hard not to have a
useful and reliable system.

We thank the organizations that were willing to try out ACL2 on early
projects, including Motorola Government Systems and Technology Group,
in Scottsdale, Arizona, and the Computation Products Group of Advanced
Micro Devices, Inc., in Austin, Texas. Calvin Harrison and Tom Lynch were
early technical supporters who challenged us to make good the promise of
formal methods and helped us meet the challenges.

Financial and moral support during the first eight years of ACL2’s cre-
ation was provided by the U.S. Department of Defense, including DARPA
and the Office of Naval Research, and Computational Logic, Inc. We are es-
pecially grateful to George Cotter, Norm Glick, Terry Ireland, Bill Legato,
Robert Morris, Bill Scherlis, and Ralph Wachter. Subsequently, ACL2’s de-
velopment has been supported in part by the University of Texas at Austin,
the Austin Renovation Center of EDS, Inc., Advanced Micro Devices, Inc.,
and Rockwell Collins, Inc. We especially thank Joe Hill and Dave Reed.
The support provided by all these people transcends just paying the bills.

We could not have created ACL2 without the efforts of those in the
Lisp community who helped define Common Lisp, the many people who
used Nqthm, and the students who took Boyer and Moore’s Recursion and
Induction classes. We are grateful to Bill Schelter for GCL, which has
provided a reliable, free Common Lisp platform for ACL2. Finally, we owe
a continuing debt of gratitude to ACL2’s user community.

Turning from the ACL2 system to this book, we owe our greatest debt
to the participants in the 1999 workshop where the idea of these books was
born. Ken Albin, Warren Hunt, and Matthew Wilding were among the
first to push for a workshop. We thank those participants who wrote mate-
rial for the companion book, including Vernon Austel, Piergiorgio Bertoli,
Dominique Borrione, John Cowles, Art Flatau, Ruben Gamboa, Philippe
Georgelin, Wolfgang Goerigk, David Greve, David Hardin, Warren Hunt,
Damir Jamsek, William McCune, Vanderlei Rodrigues, David Russinoff,
Jun Sawada, Olga Shumsky, Paolo Traverso, and Matthew Wilding.

Preface XV

In addition to all the contributors and many of the users named above,
we thank Rajeev Joshi, Yi Mao, Jennifer Maas, George Porter, and David
Streckmann for proof reading drafts of various parts of the book.

We thank the series editor, Mike Hinchey, and Lance Wobus at Kluwer,
who patiently tolerated and adjusted to the increasing scope of this enter-
prise.

For many months now, much of our “free time” has been spent writ-
ing and editing these books. Without the cooperation and understanding
support of our wives we simply would not have done it. So we thank them
most of all.

Matt Kaufmann
Austin, Texas Panagiotis Manolios
February 2000 J Strother Moore

Introduction

This book is a textbook introduction to applied formal reasoning. We
show how to use a formal logic to define concepts and to state and prove
theorems. Moreover, we show how to carry out these tasks in cooperation
with a particular computed-aided reasoning system.

This book is meant for students and professionals in hardware or soft-
ware engineering, formal methods, or symbolic reasoning. It is also aimed
at those practitioners who wish to learn how to apply mechanized for-
mal methods. The book is linked to additional material on the Web (as
described below), including the computer assisted reasoning engine used
here. The book contains about 140 exercises for readers wishing to master
the techniques. Solutions are on the Web, along with additional exer-
cises. A companion book, Computer-Aided Reasoning: ACL2 Case Studies
[22], continues this tutorial approach with case studies of more complex
problems, often distilled from industrial applications. Each case study is
accompanied, on the Web, by its full solution and the solutions to all of its
exercises.

In this introduction we discuss the structure of this book, the material
on the Web, the role of the exercises, and the intended audience in more
detail.

While most work in logic is about logic, we use logic to reason about
other systems—mostly computing systems. The name that has been given
to this application of logic is formal methods. Formality can be confining
and tedious. Every idea must be expressed as a formula. On the other hand,
what is the alternative? Who checks that your definitions are meaningful?
Are you free to introduce “obvious” axioms whenever you wish? Who keeps
you honest? In traditional mathematics, the answer is: peer review. But
in our applications that is often impractical.

Fortunately, formality offers a unique advantage over informal methods:
it is possible to check mechanically that one’s “proofs” are valid. Unfor-
tunately, formal proofs tend to be extremely long. Consider, for example,
attempting to prove 264 + 319 = 18446744074871813083 in a system like
Peano arithmetic! Thus, it is easy to advocate a formal system but then
revert to traditional informal mathematics while claiming to be formal.

We put forth a formal system and use it. We stay honest by using a
mechanized tool: ACL2. With it we can check that our “formulas” are for-

2 Computer-Aided Reasoning: An Approach

mulas, that our “definitions” define functions, and that our “theorems” are
theorems. ACL2 does not check or create formal proofs. Rather, it checks
that proof outlines (often just statements of theorems) can in principle be
turned into formal proofs. In this way, we can use ACL2 to reason about
large, industrial-scale systems.

We chose ACL2 because its authors are Kaufmann and Moore!, but
ACL2, per se, is not essential to this enterprise. There are other mecha-
nized logics one can use, e.g., Nqthm [7], HOL [16], Otter [29], and PVS
[13]. But we believe that using some mechanized tool is critical for using
formal methods effectively on industrial applications. Without automated
assistance from a robust tool such as ACL2, many potential users of formal
methods are driven towards informality.

Formal methods are useful only if they scale to problems more complex
than you can manage with informal methods. Logic and mathematics scale.
But do the mechanical tools? Is ACL2 useful or is it just a pedagogical toy?

Boyer, Moore, and Kaufmann designed ACL2 in response to the prob-
lems Nqthm users faced in applying that system to large-scale proof projects
[23]. Those projects included the proof of Gddel’s incompleteness theorem
[36], the verification of the gate-level description of the FM9001 micropro-
cessor [21], the KIT operating system [1], the CLI stack [2] (which consists
of some verified applications written in a high-level language, a verified com-
piler for that language, a verified assembler/loader targeting the FM9001),
and the Berkeley C string library (as compiled by gcc for the Motorola
MC68020) [9]. For a more complete summary of Nqthm’s applications, see
[7]. Such projects set the standards against which we measure ACL2.

ACL2 has been successfully applied in projects of commercial interest,
including microprocessor modeling, hardware verification, microcode verifi-
cation, and software verification. Such projects are discussed extensively in
the companion book [22]. If you doubt the practicality of computer-aided
reasoning, we urge you to read the companion book and judge for yourself.

1.1 Book Layout

This book is divided into four parts.

¢ Part I is an overview of what is involved in using formalism to model
computing systems and to reason about those models with mecha-
nized assistance.

¢ Part IT teaches you the ACL2 formalism: a practical functional pro-
gramming language closely related to Common Lisp. You will learn
how to write “programs” in this language. We put the word in quo-
tation marks because in this setting all the programs are side-effect

1Bob Boyer made substantial early contributions.

Introduction 3

free: they are functions. Important ideas here are the techniques of
list and tree processing and the use of recursion. Of course, the same
programming language can also be used to make statements about
the values of functions, e.g., “the output of this function is an or-
dered list” or “when this Boolean function returns true on z and y it
returns true on y and z.”

¢ Part III presents a framework in which you can prove statements such
as those above. It begins by presenting ACL2 as a mathematical logic.
Clear meaning is given to the notion of a theorem: a formula that can
be derived from the axioms using the primitive rules of inference.
But the emphasis here is not on constructing low-level proofs; it is
on becoming familiar with relatively large inference steps such as in-
duction, case analysis, and simplification by repeated substitution of
equals for equals.

¢ Part IV explains how to use a mechanization of these large inference
steps. The presentation includes a user-level model of how the ACL2
theorem prover “works.” But of more importance is the view of the
system as a single very large derived rule of inference that can be
used to leap from a collection of theorems to a new theorem. We
explain “The Method” by which many successful users interact with
the system to find proofs of hard theorems.

This book has two appendices. The first covers some basics of using
the ACL2 system. The second describes a number of important features of
ACL2, most of which are not covered elsewhere in this book.

The Companion Book

The companion book [22] shows how the techniques described in this book
can be applied to more complex problems. In many cases, the problems
in that book are distillations of industrial applications, e.g., the formal-
ization of a hardware design language, the verification of a floating point
multiplier, and the analysis of a compiler. Every case study in that book
is accompanied on the Web by the complete ACL2 script of its solution.?
Furthermore, most of those case studies contain exercises, the solutions to
which are posted on the Web. Thus, after mastering the basics described
here, you can try your hand at some problems of more realistic scale while
still being able to obtain complete solutions.

2The solutions for Ruben Gamboa’s chapter are for his extension of ACL2 that sup-
ports the real numbers.

4 Computer-Aided Reasoning: An Approach

1.2 The ACL2 System

ACL2 is an efficient functional programming language. ACL2 functions and
system models can be compiled, by any compliant Common Lisp compiler.
Models can be made to execute efficiently. Executability is not necessarily
important in pedagogical projects, but it can be important in practical
applications. There, the formal models do double duty as specifications and
as simulation engines. The ACL2 system itself is written almost entirely
in ACL2. Its size (6 megabytes of source code), reliability, and utility
demonstrate the practicality of the language. Other such demonstrations
are discussed in the companion book [22], where ACL2 is used to model
hardware designs, microprocessors, algorithms, and other artifacts that are
not only analyzed symbolically but tested by execution.

The ACL2 system is available for free on the Web (under the terms
of the Gnu General Public License). The ACL2 home page is http://-
WWW.cs.utexas.edu/users/moore/acl2. There you will find the source
code of the system, downloadable images for several platforms, installation
instructions, two guided tours, a quick reference card, tutorials, an online
User’s Manual, useful email addresses (including how to join the mailing
list or ask the community for help), scientific papers about applications,
and much more. The ACL2 home page also includes links to Web pages for
this book and its companion book [22].

The ACL2 online documentation is almost 3 megabytes of hypertext
and is available in several formats. The HTML version can be inspected
from the ACL2 home page with your browser. Other formats are explained
in the “Documentation” section of the installation instructions accessible
from the ACL2 home page.

1.3 Important Conventions and Information

In this book, you will often see underlined strings in typewriter font in such
phrases as “see defthm.” These are references to the online documentation.
To pursue them, go to the ACL2 home page, click on “The User’s Manual”
link, and then click on the “Index of all documented topics.” You will see
a list from A to Z. Click on the appropriate letter and scan the topics for
the one referenced (in this case, defthm) and click on it.

There are exercises throughout the book. Some of these are meant to
be done with pencil and paper. Most are meant to be done with the ACL2
system. Solutions to all these exercises are available online. Go to the
ACL2 home page, click on the link to this book and follow the directions
there.

You will note that on the Web page for this book there is a link named
“Errata.” As the name suggests, there you will find corrections to the
printed version of the book. But more importantly, you may find differences

Introduction 5

between the version of ACL2 described here (Version 2.5) and whatever
version is current when you go to the home page. The ideas discussed here
are fundamental. But we do display such syntactic entities as command
names, session logs, etc. These may change. Therefore, look at the online
Errata when you first begin to use ACL2 in conjunction with this book.

If, after reading Part I, you want to learn how to use formal methods
to address problems of practical interest, we urge you to obtain and install
ACL2 on your computer, read the online Errata and the first appendix here,
and then read the rest of the book, doing the exercises as you go. There is
no better way to learn these techniques than to apply them!

1.4 Intended Audience

We believe it is appropriate to use this book in graduate and upper-division
undergraduate courses on Software Engineering or Formal Methods. It
could be used in conjunction with other books in courses on Hardware
Design, Discrete Mathematics, or Theory (especially courses stressing for-
malism, rigor, or mechanized support). It is also appropriate for courses on
Artificial Intelligence or Automated Reasoning.

If you are teaching from this book you may want exercises whose solu-
tions are not posted. These are provided through the Web page for this
book mentioned above.

We assume that you are familiar with computer programming. We also
assume you are familiar with traditional mathematical notation: for ex-
ample, “f(z,y)” denotes the application of the function f to (the values
denoted by) z and y, and “|z|” denotes either the absolute value of z or
its cardinality, depending on the context. Finally, we assume you have had
some exposure to mathematical proof, especially proofs employing mathe-
matical induction.

Familiarity with Lisp or functional programming would be ideal but is
not necessary. If you have had a course in mathematical logic, you may
find some of the material a little easier because you know the terminology:
Boolean logic, variable symbol, term, formula, instantiation, substitution
of equals for equals, well-founded orderings, induction, and so on. But we
do not think a course in logic is a necessary prerequisite either to read the
book or to use ACL2. The basic skills on which we build in this book are
how to program without side-effects, how to use recursion, how to simplify
expressions, how to decide whether to use case analysis or induction in
an argument, and how to frame a simple inductive argument. We believe
most readers have an intuitive grasp of these basic ideas from exposure to
programming, informal reasoning about programs, and high-school alge-
bra. The book makes these ideas more precise while elaborating them and
providing lots of chances to practice their application.

Part 1

Preliminaries

Overview

This book is about formal reasoning, with particular emphasis on reasoning
about computing systems. The dream is that we should be able to write
down mathematically precise conjectures about special-purpose hardware
designs, microprocessors, microcode programs, compilers, algorithms, etc.,
and then to prove them with a mechanized reasoning system. This dream
is realizable. This book is about how to use a tool that is being used today
to prove such conjectures. But more generally, the book is about how to
formalize systems, how to express their properties, and how to decompose
the proofs of those properties into manageable steps.

2.1 Reasoning

The dream of machines that reason has been around a long time. Leibniz
expressed it this way.

If we had some exact language ... or at least a kind of truly
philosophic writing, in which the ideas were reduced to a kind
of alphabet of human thought, then all that follows rationally
from what is given could be found by a kind of calculus, just
as arithmetical or geometrical problems are solved. — Leibniz
(1646-1716)

By the end of the nineteenth century Boole, Frege, Peano, and others
had clearly established the foundations of what we now call symbolic logic.
Leibniz’s dream of a calculus of human thought was apparently coming true.
Bits of the mathematical world, e.g., propositional calculus and elementary
arithmetic, were described formally by axioms written as formulas in a
fixed syntax. Rules were proposed for generating new formulas from old
formulas—rules with the property that the new formulas are true if the old
formulas are.

In the hands of such giants as Russell, Whitehead, Skolem, Herbrand,
and Hilbert it looked as though symbolic logic could place all of mathemat-
ics on a firm foundation. Then, in 1931, G6del showed the limitations of
formal logic: given any sufficiently powerful formal logic there are truths
that cannot be proved in the logic.

10 Computer-Aided Reasoning: An Approach

Godel’s theorem might be thought of as sealing the fate of Leibniz’s
dream. But does its inability to deduce all truths really justify the aban-
donment of formality? Not at all. If formality allows us to deduce some
truths about new ideas, it is a useful tool. There is a far more practical
obstacle to the construction of a calculus of human thought: the nature of
the physical world and its role in what we think about.

Few human artifacts or endeavors, beyond mathematics itself, can be
so accurately described by axioms that we would profess to believe any
consequence of those axioms no matter how deep. Too many aspects of the
physical world are vague, random, or governed by processes best described
quantitatively with continuous mathematics like differential equations. For-
mal logic is good for describing abstract symbolic systems—worlds inhab-
ited by discrete objects manipulated by clearly specified rules determining
the behavior of the system. For most of the twentieth century the majority
of work in formal logic was the study of formal logic itself.

Much of that changed with the invention of the digital computer. Cir-
cuits, processors, programming languages, programs, networks, protocols,
formats, ... , all are abstract symbolic systems. Such systems are fruitfully
described and studied with symbolic logic.

2.2 Philosophic Writing

What kind of “philosophic writing,” to use Leibniz’s term, is appropri-
ate for describing computing systems? Our choice is, in essence, a fairly
conventional functional programming language. This book is about that
language, how to use it to describe computing systems, how to reason in
the language, and how to use a certain computer program to help you.

The name of the language, and of the reasoning engine for it, is “ACL2.”
It stands for “A Computational Logic for Applicative Common Lisp.” The
ACL2 language is a variant of Common Lisp. But instead of just provid-
ing an execution engine for the language, we describe the language as a
mathematical logic, with axioms and rules of inference. And we provide a
reasoning engine. Thus, in addition to being able to execute your programs,
you can use the reasoning engine to prove things about them.

For example, here is a Lisp program to reverse a list.! It is not important
that you understand this definition now. But we will use it just to talk
about Lisp and logic.

(defun reverse (x)
(if (consp x)
(append (reverse (cdr x)) (list (car x)))
’nil))

LACL2 provides a function named reverse but it is not defined the way reverse is
defined here.

Overview 11

This defun command defines a function named reverse, with one formal
parameter, named x. The body of the definition is an expression, which
is evaluated to determine the value of the function. In this case, the body
is an if-expression. The if has three arguments, a test, a true branch,
and a false branch, each of which is an expression. In this case, the test is
(consp x), the true branch is an append expression, and the false branch
is the constant expression *nil. As you can see, Lisp expressions are either
variables, constants, or function applications. To apply a function f to the
values of some expressions, e;, we write (f e; ... e,), instead of the more
traditional f(es, ..., en)-

The function defined above reverses its argument. More precisely, if
applied to a linear list it returns a linear list with the elements in the
opposite order. For example, to apply the function to the list (5 6 7) we
could evaluate (reverse (5 6 7)). (5 6 7), by the way, is a list with
three elements. The first is the number 5, the second is the number 6, and
the third is the number 7. The little “single quote” mark before it in the
reverse expression is the way we write the literal constant whose value is
the list (5 6 7).

If you calculate the value of (reverse ’(5 6 7)) using the definition
of reverse above the result is (7 6 5). To compute the reverse of (5 6
7), reverse recursively reverses (6 7), obtaining (7 6), and then con-
catenates it, with the function append, to the list (5), producing (7 6
5).

Here is a conjecture about our reverse function.

(equal (reverse (reverse x)) x)

Informally, this conjecture says that the reverse of the reverse of x is x.
More formally, the conjecture says that, for any value of the variable x,
(reverse (reverse x)) and x evaluate to equal things.

You could test this expression in any Lisp (where the relevant functions
are defined) and you would find that the value of the expression is often t.

But you can test the expression only on a finite number of cases. Will
the expression always evaluate to t? One way to try to establish that is to
prove it, i.e., give a careful argument based on the definition of reverse
and properties of other functions. We are not prepared to give such an
argument here—we have not told you the relevant properties of all the
symbols we use. But an attempt to construct a proof will lead you to
realize that the conjecture is not always true!

However, a closely related formula can be proved. The related formula
says that the reverse of the reverse of x is x, provided x is a list.2 You might
object and say, “Of course we meant that x was a list! Why else would we
speak of reversing it?” But an aspect of formality is that one must say

2Here by “list” we actually mean the concept formalized by the predicate true-listp.

12 Computer-Aided Reasoning: An Approach

what one means and leave no hidden assumptions.® One consequence of
proving a formula is that we know that its value, under any assignment of
objects to its variables, will always be true.

Not only can the new formula be proved, but the ACL2 reasoning engine,
or theorem prover, can prove it automatically.

It is good that the theorem prover can prove the “reverse reverse”
theorem automatically because this theorem is absurdly simple compared to
conjectures that are likely to be of interest to you. It is a long way from the
definition of reverse to the definition of a microprocessor or programming
language.

The bad news is that the reverse reverse theorem is pretty compli-
cated from the theorem prover’s perspective. In fact, this theorem is a
perfect example of the mileage we humans get out of informal reasoning.
Calling this concept “reverse” loads it with intuitive meaning that is not
explicit in the definitional equation. The obviousness of the claim that re-
versing a list twice produces the original list probably owes more to the
name “reverse” and experience with the physical world than it does to the
definitional equation of reverse.

Suppose we introduced the concept with

(defun fn123 (x)
(fn1 (fn2 x)
(fn122 (fn123 (fn3 x)) (m8 (fn4d x)))
’nil)),

where fnl, fn2, £n3, etc., are all described by their own equations. How
impressive is it to discover or prove that “the £n123 of the fn123 of x is x,
when x is a fn987”

Whether we give our functions sensible names or not, their properties
are derived from the axioms we write down about them, not the names we
give them. The same is true of our circuits, components, programs, etc.
Just because we call a component a “divider” does not mean it computes the
quotient of one number by another! We tend to give our creations sensible
names and we use those names to help us reason informally. But because
those names mean more to us than to any mechanized reasoning engine, it
is often necessary to tell the engine “obvious” properties. Sometimes when
the engine fails to prove these “obvious” properties, we come to realize they
are actually false!

2.3 System Models

To prove something it must first be expressed as a statement in the formal
syntax. This means you cannot prove that a circuit, a microprocessor, or

3Syntactic typing sometimes makes it more convenient to express such assumptions.
But ACL2 does not have syntactic typing.

Overview 13

any other physical artifact is correct. You can only prove that some model
of it has a certain property. It is up to you to use the logic to create a
model of the artifact in question and then to write down conjectures that
express your understanding of correctness—conjectures that you believe, or
at least hope, to be true. One of the main thrusts of this book is to teach
you how to use the ACL2 logic to model digital artifacts. We sketch several
models in this chapter.

Once you have defined a model of the artifact, you must express, in the
formal syntax, the conjecture you wish to prove. Even this can be hard.
Theorems proved informally are often never expressed as formulas! For
example, “theorems” that otherwise might look like formulas often contain
ellipses (...). Ellipses are usually an IQ test: can you guess what the author
has in mind? Such informal notation must be made precise, which often
requires defining additional concepts. Another common pitfall in converting
from an informal statement to a formula you can prove is identifying all
the hidden or implicit assumptions.

Sometimes the informal statement uses familiar mathematical concepts
that are not yet defined in the logic you are using. The public distribution of
ACL2 includes many online “books” that contain definitions and theorems
about integer and rational arithmetic, finite sets, tables, and vectors. But
we have only scratched the surface in formalizing the many operations and
relations on these concepts. Often you will find yourself defining familiar
concepts just to state your goal.

Sometimes you may be unable to define the concepts of interest. The
ACL2 logic is in some ways quite restrictive, lacking for example infinite sets
and higher order functions. However, more often than you might think—
especially if you have heretofore used higher order logic or set theory—this
problem can be overcome without undue violence to the intuitions you are
trying to capture. Perhaps some formalizable concept can be substituted
without weakening the meaning of the statement. But if not, you may need
to choose a different mechanically supported formalism such as HOL [16]
or PVS [34, 13].

The activity of casting your problem into the formal syntax of some
logic is called formalization. One of the things you will learn in this book
is how to use ACL2 to model systems and formalize their properties.

Consider the following ACL2 formula.

(implies (and (floating-point-numberp p 15 64)
(floating-point-numberp d 15 64)
(not (equal 4 0))
(rounding-modep mode))
(equal (divide p d mode)
(round (/ p d) mode)))

We do not give the definitions of the concepts here, but, intuitively, the
formula may be read as follows. If p and d are floating point numbers

14 Computer-Aided Reasoning: An Approach

with 15 bits of exponent and 64 bits of significand, d is not 0, and mode
is a rounding mode, then the output of the function divide on p, d, and
mode is equal to the infinitely precise quotient of p divided by d, rounded
according to mode.

The notions of implies, and, not, and equal are built into ACL2 and
are fairly standard formalizations of implication, conjunction, logical nega-
tion, and equality. The function symbol ¢/’ denotes the arithmetic operation
of division of one rational number by another. It too is built into ACL2 and
is axiomatized to satisfy the familiar properties of division in the rational
field.

The other function symbols used in this formula were defined expressly
for the purpose of stating this theorem. The question of whether they ac-
curately capture the alleged intuitive notions is of great interest and can
be difficult to settle. A careful reading of the IEEE floating point stan-
dard and its comparison with the definitions of floating-point-numberp,
rounding-modep, and round gives some confidence that these functions
capture the intended concepts.

The definition of the function divide was constructed, by hand, by
studying the microcode implementing division on the AMD-K5 micropro-
cessor of Advanced Micro Devices, Inc. (AMD*). The ACL2 function di-
vide computes its final answer using a certain sequence of fixed format
floating point additions and multiplications (and a few other operations).
By talking to the designers of the microcode and of the AMD-K?5 floating-
point unit, we convinced ourselves and them that the definition of divide
accurately captured the algorithm used by their microcode [33].

Using ACL2 we proved that the formula above, with all the definitions
mentioned, is a theorem.

We therefore think of the theorem as establishing the correctness of the
floating point division algorithm on the AMD-K5 microprocessor. But, of
course, that characterization of the theorem is an informal one.

It is possible to state a theorem about the microcode itself—a certain
fixed sequence of numbers representing instructions interpreted by the mi-
crocode engine. To state that theorem in ACL2 we would have to model the
microcode engine as an ACL2 function that interprets microcode instruc-
tions and changes some state components accordingly. Such “microcode
engine models” have been defined in ACL2 for other microprocessors, e.g.,
the Motorola CAP digital signal processor [10], and “code proofs” have
been done with ACL2. But that approach was not taken in the AMD-
K5 division work, even though it arguably would have provided a more
convincing model to study.

The reason is instructive. At the time the theorem above was formulated
and proved, AMD was more concerned about the division algorithm than its
expression in microcode. Furthermore, time was short because the AMD-

4AMD, the AMD logo and combinations thereof, AMD-K5, AMD-K7, and AMD
Athlon are trademarks of Advanced Micro Devices, Inc.

Overview 15

K5 fabrication date was looming. The moral is: economic realities have a
significant impact on formal modeling. Models must address the issues of
concern and allow the analysis to be carried out in a timely fashion.

At the time of this writing, the AMD-K5 is two generations old. AMD
has since released the AMD-K77M (or AMD Athlon”™) microprocessor.
What of ACL2’s role in its development? ACL2 was used by David Russi-
noff to verify the AMD Athlon processor implementations of floating-point
addition, subtraction, multiplication, division, and square root [35]. The
implementations were done in hardware, not microcode, so no microcode
engine was formalized. But the AMD hardware was described in a Verilog-
like hardware description language referred to simply as “the RTL lan-
guage.” In the ACL2 work on the AMD Athlon processor, the RTL source
was mechanically translated into ACL2 (using a translator written by Art
Flatau). The correctness of the translation was not proved, because no for-
mal semantics for the RTL was available. But the translation was tested:
over 80 million floating-point test vectors were run through the ACL2 mod-
els and the results were compared to those computed by AMD’s RTL sim-
ulator. The answers were identical. This highlights the value of ACL2’s
executability. It also highlights the inadequacy of testing: when correct-
ness proofs were undertaken, bugs were found in the ACL2 models (and,
more importantly, in the original RTL). These bugs were not exposed by
the test suite. The bugs were fixed by changing the RTL, new models were
mechanically produced, and those models were mechanically verified using
ACL2. Russinoff and Flatau discuss their work on this in the companion
book [22].

The point of this discussion is to drive home the fact that models of ar-
tifacts of commercial interest are not constructed in an ivory tower. They
are constructed in the midst of a rapidly evolving design and implementa-
tion project. Such formal models may look ad hoc or incomplete. Instead
of iterating on a given project and producing a tour de force model that
answers every objection, a new project is undertaken where the issues are
often completely different.

2.4 Truth and Proofs

Why prove formulas? The reason is that proof is a way to establish truth.
A theorem is either an axiom or a formula produced by applying some rule
of inference to other theorems. A proof is a finite structure showing the
derivation of a theorem from the axioms.

But (most) ACL2 formulas can be executed. If you select concrete values
for the variables and then evaluate a formula, some concrete value will be
computed. (We here imagine an unbounded amount of memory.) Theorems

16 Computer-Aided Reasoning: An Approach

always evaluate to true.® The basic argument for this fundamental property
of theorems is that (a) the axioms always evaluate to true and (b) the rules
of inference preserve this property. Since a theorem is derived by applying a
finite number of rules of inference to axioms, theorems must always evaluate
to true.

But there are an infinite number of possible assignments to the vari-
ables of any formula containing a variable. So something wonderful has
happened: We can determine that a formula will evaluate to true on the
infinite number of possible cases by constructing a finite proof of it! That
is why we prove formulas.

To use formal proofs to check your reasoning you must somehow trans-
late your informal argument into a formal one. Informal proofs often involve
important labor-saving metatheorems or derived rules of inference. Typi-
cal phrases suggesting the use of such rules are “without loss of generality
we restrict our attention to,” “by symmetry it suffices to prove,” and “the
other cases are analogous.”

Suppose then that you have an informal proof of some formal statement.
Imagine that you begin to present the proof to a colleague. Some of the
steps in your proof are sufficiently small that your colleague follows them.
But other steps are challenging and he or she interrupts and asks how you
got from one formula to the next. When this happens you expand your ex-
planation, perhaps discovering details that you had previously overlooked.
A formal proof would be created if your colleague simply asked “how?” on
every step requiring more than the most basic logical transformation.

2.5 The Reasoning Engine

The ACL2 theorem prover was designed for the kind of interaction sketched
above. The theorem prover attempts to fill in every gap in your alleged
proof of a formula. When successful, the computation done by the theorem
prover is intended to guarantee that a formal proof of the formula exists,
although you never actually see this formal proof. (Nevertheless, we often
refer to ACL2’s computation as its “proof” or “proof attempt.”) When a
gap is too big for the theorem prover to follow, you must break that step
into smaller pieces.

As depicted in Figure 2.1, the theorem prover takes input from both
you and a data base, called the logical world or simply world®. One view
of the world is that it contains axioms, definitions, and previously proved
theorems. But a more effective view of the world is that it embodies a
theorem proving strategy, developed by you and codified into rules that
direct certain aspects of the theorem prover’s behavior. When trying to

5To be more precise, instances of theorems evaluate to non-nil.
8Recall our convention of underlining topics discussed in ACL2’s online documenta-
tion. See page 4.

Overview 17

definitions,
conjectures,
and advice

——— & [Theorem | ————(Logical
-

Prover

proofs and
proof attempts

theorems

Figure 2.1: Data Flow in the Theorem Prover

prove a theorem, the theorem prover applies that strategy and prints its
proof attempt. You can interrupt and abort or let the attempt continue.
The theorem prover may eventually stop, in which case it will have either
succeeded in proving the formula or failed to prove the formula. When it
succeeds, your theorem is converted into a rule, using advice from you, and
this new rule changes the theorem prover’s future strategy. When it fails,
you must either change the alleged theorem or give additional guidance to
the theorem prover, often by inspecting its proof attempt to see what went
wrong.

Note that the rules that control the theorem prover’s behavior come
from the logical world.

¢ Except by adding axioms, you cannot directly add rules to the logical
world.

¢ It is important to think about how your theorems will be interpreted
as rules, if you want them used automatically.

This design may at first frustrate you: you will feel powerless. But it relieves
you of the burden of getting the rules logically correct! The theorem prover
takes that responsibility.

With some experience you will feel empowered by this design. Why?
Because you will see the theorem prover apply your strategy to prove theo-
rems other than the ones for which you first designed it. However, you will
also feel challenged to codify good strategies.

2.6 Effort Involved

How hard is it to use ACL2 to prove theorems of commercial interest?
Modeling “the product” and capturing one or more important properties
characterizing its “correctness” are the first and often hardest steps. These
steps usually involve talking to the implementors, reading design docu-
ments, and experimenting with “toy models.” You will often find that the
implementors approach the project very differently than you do. They may

18 Computer-Aided Reasoning: An Approach

not have in mind a correctness criterion that can be expressed as a property
you can formalize. Their notion of correctness is often simply the absence
of “bugs.” Bugs, like good art, can evidently be recognized when seen. But
remember: the implementors are probably very good at their jobs, and are
grappling with other problems, like power consumption, timing, produc-
tion costs, time-to-market, etc. Furthermore, it is not by dumb luck that
they have built things that you buy and use and rely on. We discuss the
“sociology” of typical projects in Part I of [22].

As you get more familiar with the product you will find yourself thinking
of it more abstractly. General properties will occur to you. In conversation
with the team members you will learn whether these are intended to hold—
or, more likely, under what conditions and at what level of abstraction
they are intended to hold. Identifying and peeling apart co-mingled layers
of abstraction may well become a big part of your job. Just being able to
provide labels for the abstractions and a vocabulary to discuss the concepts
unambiguously is of great benefit to the team.

Your experimentation with “toy models”—models that intentionally
omit many features—is very important. The idea is to have a model that
is so small you can try one modeling approach today, abandon it as im-
practical on your way home, and have a new approach up and running the
next day. Such models allow you to develop the formalization of the basic
ideas and properties, establish clear communication with the implementors,
experiment with proof methods, and develop strategies for elaborating the
models to interesting levels of complexity while only incrementally affecting
proof complexity. See Moore’s case study in [22]. Indeed, there are several
more elaborate “toys” among the case studies in [22] (e.g., the pipelined ma-
chine of Sawada, the floating point multiplier of Russinoff and Flatau, and
the microprocessor of Greve, Wilding, and Hardin). These “toys” present
the basic problems seen in applications of much more complexity.

In successful projects, you will eventually form a productive working
relationship with the implementors, one based on mutual respect for the
talents of “both sides.” It is likely that you will produce a sequence of
ever more elaborate models and the conjectured properties of these models
and relations between them will become the goal theorems. Your models
will evolve with the product design and theorems proved about one model
will have to be “proved again” after modifying the model. “Proof main-
tenance” is an important aspect of ACL2’s design. The ACL2 data base
contains strategies for finding proofs, not individual proofs. Often, your old
strategies will succeed on closely related new theorems. ACL2’s ability to
execute your evolving models, i.e., use them as simulators, is also valuable.
We describe some typical models and properties in Part I of [22].

You might start the project thinking that you are going to prove a
particular theorem and be done. More likely, the “proof phase” lasts as
long as the project and provides a continuing clarification and confirmation
of some properties. The immediate impact is a better product. The legacy,

Overview 19

however, is a way of thinking, together with a set of concepts made precise
and embodied in a collection of ACL2 books that can be used on the next
project.

2.7 Requirements on the User

To use ACL2 to model a system and prove properties of the model, you must
understand the system being modeled. In addition, you must understand

¢ how to use the ACL2 logic to formalize informally described concepts,
¢ how to do pencil-and-paper proofs of ACL2 formulas, and
¢ how to drive the ACL2 theorem prover.

We discuss these issues in this book. The book contains many exercises to
help you develop these skills.

ACL2 will help construct the proof but its primary role is to prevent
logical mistakes. The creative burden—the mathematical insight into why
the model has the desired property—is your responsibility.

The “typical” ACL2 user

¢ has a bachelor’s degree in computer science or mathematics,
¢ has some experience with formal methods,

¢ has had some exposure to Lisp programming and is comfortable with
Lisp notation (reading some part of this book should suffice),

¢ is familiar with and has unlimited access to a Common Lisp host
processor, operating system, and text editor (we use Gnu Emacs on
Sun workstations and PCs running Unix and Linux),

¢ is willing to do some of the exercises in this book, and
¢ is willing to consult the ACL2 online documentation.

How long does it take for a novice to become an effective ACL2 user?
Let us first answer a different question. How long does it take for a novice
to become an effective C programmer? (Substitute for “C” your favorite
programming language.) It takes weeks or months to learn the language
but months or years to become a good programmer. The long learning
curve is not due to the complexity of the programming language but to the
complexity of the whole enterprise of programming. Shallow issues, like
syntax and basic data structures, are easy to learn and allow you to write
useful programs. Deep skills—like system decomposition, proper design of
the interfaces between modules, and recognizing when to let efficiency im-
pact clarity or vice-versa—take much longer to master. Once deep skills are

20 Computer-Aided Reasoning: An Approach

learned, they carry over almost intact to other languages and other projects.
Learning to be a good programmer need not require using a computer to
run your programs. The deep skills can be learned from disciplined reflec-
tion and analysis. But writing your programs in an implemented language
and running them is rewarding, it often highlights details or even method-
ological errors that might not have been noticed otherwise, and, mainly, it
gives you the opportunity to practice.

We hope that you find the above comments about programming non-
controversial because analogous comments can be made about learning to
use ACL2 (or any other mechanized proof system).

How long does it take for a novice to become an effective ACL2 user?
It takes weeks or months to learn to use the language and theorem prover,
but months or years to become really good at it. The long learning curve
is not due to the complexity of ACL2—the logic or the system—Dbut to the
complexity of the whole enterprise of formal mathematical proof. Shallow
issues, like syntax and how to give hints to the theorem prover, are easy to
learn and allow you carry out interesting proof projects. But deep skills—
like the decomposition of a problem into lemmas, how to define concepts
to make proofs easier, and when to strive for generality and when not to—
take much longer to master. These skills, once learned, carry over to other
proof systems and other projects. You can learn these deep skills without
doing mechanical proofs at all—indeed, you may feel that you have learned
these skills from your mathematical training. Your appraisal of your skills
may be correct. But writing your theorems in a truly formal language and
checking your proofs mechanically is rewarding, it often points out details
and even methodological errors that you might not have noticed otherwise,
and, mainly, it gives you the opportunity to practice.

