
ACL2 Induction Heuristics

J Strother Moore

Computer Science Department

University of Texas at Austin

Austin, Texas 78712 - 1757 USA

moore@cs.utexas.edu

December 23, 2020

1 Introduction

This article describes how ACL2 mechanizes mathematical induction.
The techniques, which involve three well-known mathematical ideas and

a handful of heuristics, were first demonstrated in Boyer and Moore’s Ed-
inburgh Pure Lisp Theorem Prover (PLTP) of 1973, which was the first
prover to attempt to automate induction in a general setting [10, 1]. Log-
ically, the method depends on well-founded relations over some domain, a
principle of definition admitting recursively defined functions justified by de-
creasing measures ensuring termination, and a principle of induction that is
the precise dual of the principle of definition. The heuristics create plausible
inductions for a conjecture and help choose among them. The generality of
the mathematical formalizations and of the heuristics were then elaborated,
first in Boyer and Moore’s Thm and Nqthm provers [2, 3, 4] prover of the
late 1970s and the 1980s and then in Kaufmann and Moore’s ACL2 [7, 9]
which was started by Boyer and Moore in 1989 but has been under contin-
uous development by Kaufmann and Moore since 1992. ACL2 is in regular
industrial use today [15].

This article narrowly focuses on ACL2 but is not intended specifically
for the ACL2 audience. For a much deeper and broader discussion of the
history of the mechanization of explicit and implicit1 induction and various

1Implicit induction includes proof by consistency, implicit induction ordering where
induction is over term structure rather than values, and lazy induction or descente infinie

in which the system recogizes legal induction hypotheses when they arise rather than
formulating them initially.

1



techniques in use by various mechanized provers see the article by Moore
and Wirth [12].

The original Boyer–Moore techniques are described in detail and with
examples on pages 163–208 of the 1979 book, A Computational Logic [2].
These early techniques are completely recognizable today in their modern
incarnation in ACL2, but an historical account of the evolution from PLTP
through Thm and Nqthm to ACL2 may be informative to some readers [11].
Two books about ACL2 [7, 6] describe how to use the system and some case
studies of applications; these books contain many examples of inductions and
also challenge the reader with exercises. We also refer to ACL2’s extensive
online user’s manual which can be browsed under the The User’s Manuals
link on the ACL2 home page [9].

The reader interested in the nitty-gritty is urged to look at the ACL2
source code [9] which is available online without cost. The 6MB of documen-
tation available there is aimed at users and does not cover how induction
works, only how to override the automatic choices. The source code is
written in the functional programming language that also serves as ACL2’s
logic, a side-effect-free subset Common Lisp [14]. The subset is formalized
as a logic on pages 77–102 of Computer-Aided Reasoning: An Approach [7].
Henceforth in this article we refer to the previously mentioned book as sim-
ply as An Approach. Furthermore, the source code is heavily commented;
for example of the 3,498 lines in the file induct.lisp, 1,356 are comments
explaining the code. Our brief sketches below of the basic components of our
induction machinery typically include a note naming a function in the ACL2
source code. All the functions mentioned are defined the file induct.lisp,
online at https://github.com/acl2/acl2/blob/master/induct.lisp.

2 Preliminaries

We take for granted certain well-known concepts that must be formalized
within the mathematical theory in use. ACL2’s logical setting is inten-
tionally at the weaker end of mathematical expressibility spectrum among
mechanized computational logics: if it can be done in ACL2 it can almost
certainly be done in other major systems. ACL2’s logic is untyped first-
order predicate calculus with induction and no explicit quantifiers. That
basic setting pushes the user to define recursive functions to state theorems,
which in turn underlies the system’s inductive capabilities.

2



2.1 Well-Founded Relations

Let ≺ be a well-founded relation over some domain D. By well-founded we
mean there is no infinitely descending sequence of elements x1, x2, x3, · · · ∈ D

such that · · · ≺ x3 ≺ x2 ≺ x1. For example, the familiar less-than operator,
<, is well-founded over N, the set of natural numbers.2

2.2 Principle of Definition

The purpose of a principle of definition is to allow the user to extend the
logical theory by the addition of an axiom defining a new function symbol
while preserving the consistency of the theory. A new axiom of the form
f(x) = b is suggestive of a definition of f , at least if f is a new function
symbol, i.e., one mentioned in no other axiom. But if the axiom f(x) =
1 + f(x) is added to a theory that includes the usual axiomatization of
arithmetic then one can prove anything: it is a theorem that no number
is equal to its own successor. The least one can expect of a definitional
principle is that the only “new” theorems one can prove after defining f are
formulas that somehow (perhaps ancestrally through a function used in the
definition) involve f . Any formula not ancestrally dependent on f that is
provable after defining f is provable in the theory before f was introduced.
Logicians call such extensions conservative.

Roughly speaking, the ACL2 definitional principle deals with proposed
definitions f(v1, . . . , vn) = b. We call the vi the formals of (the definition of
f) and b the body. We call f(a1, . . . , an) a call of f and the ai are the actuals.
If γ is a call of f , then we let σγ be the variable substitution replacing the
formals by their respective actuals. Finally, if δ is a term or formula and σ
is a substitution replacing vi by ai, then δ/σ is the term or formula obtained
by applying σ to δ, i.e., uniformly replacing free occurrences of the vi in δ
by the corresponding ai.

Without loss of generality we insist that b is a nest of if-then-else ex-
pressions, each expression having a test, a true-branch, and a false-branch.
We can explore this as a tree and collect the tests (positive or negative) we
pass as we take various branches. We stop the descent down a branch (and
continue exploring other branches) when we encounter either an if-then-else
containing a call of f somewhere in its test or when we encounter a term

2PLTP used < and N for ≺ and D. Thm used lexicographic orderings over n-tuples of
naturals. Nqthm and ACL2 use the less-than relation over the ordinals below ǫ0 = ωω

ω
...

,
where ω is the smallest infinite ordinal. See pp. 85–88 of An Approach however the
representation of the ordinals has changed since the book was published. See the topic
“ordinals” in the online ACL2 user’s manual.

3



other than an if-then-else. We call those stopping points the tips of b.3 Let
T be the set of all tips of the proposed definitional equation. Every tip,
t ∈ T, is characterized by the conjunction of the positive and negative tests
ruling it, Πt, and the set St of variable substitutions {σγ1 , . . . , σγm} for the
recursive calls, {γ1, . . . , γm} of f occurring in the tip.4 The set of pairs
{〈Πt,St〉|t ∈ T} containing the tests leading to and substitutions derived
from each tip is called the machine for f .

The definitional principle imposes both syntactic requirements and proof
obligations on a proposed definitional equation. The syntactic requirements
are: f is a new function symbol, the formals are distinct variable symbols,
and the body is a term whose free variables are among the formals.

The proof obligation is as follows. There must exist a term, µ, called the
measure, such that the following is a theorem

(µ ∈ D) ∧

(

∧

t∈T

(

Πt →

(

∧

σ∈St

(µ/σ ≺ µ)

)))

That is, for a definition to be admitted as a new axiom we must first be
able to prove that there is a measure of the arguments that decreases in a
well-founded sense in every recursive call.5 This guarantees termination and
along with the syntactic restrictions guarantees the existence of a function
satisfying the definitional equation.

Only after checking the syntactic restrictions and using the prover to
prove the above measure theorem does ACL2 add the new axiom

f(v1, . . . , vn) = b.

ACL2 also stores the machine for future use by the induction mechanism.
This definitional principle is conservative.6 See pp. 89–92 of An Approach

and for more details “Structured Theory Development for a Mechanized
Logic,” by Kaufmann and Moore [8].

Finally, note that if a subsequent conjecture mentions a call, γ, of f
then equality is maintained by replacing γ by b/σγ . We call this expanding
the call. Because f may involve recursive calls, heuristics must control
expansion.

3The ACL2 exploration of b is a little more sophisticated in how it recognizes tips. See
the discussion of “rulers” in the user’s manual.

4We sometimes treat Πt as a term and sometimes as the set of its conjuncts.
5ACL2 requires the user to supply µ with the proposed definition if a simple heuristic

fails to guess an appropriate measure.
6This is not to say that ACL2’s prover could discover the alternative proofs guaranteed

by conservativity.

4



2.3 Principle of Induction

An induction principle can be formulated that is precisely the dual of the
principle of definition. It is just a weaker version of the principle of well-
founded induction, weaker because we only assume a finite number of smaller
instances of the conjecture instead of all smaller instances. See pp. 93–98
of An Approach. Rather than state the principle here we just explain how
a recursive definition as admitted above suggests an induction. Suppose f ,
with formals v1, . . . , vn was admitted with measure µ and body b.

The theorem proved at admission establishes that µ always returns an
element of D. Furthermore, for each tip t ∈ T, the measure decreases in a
well-founded sense in every recursive call in t, provided the ruling conjunc-
tion Πt is true.

This leads to the following possible induction scheme to prove ϕ, which,
for the sake of simplicity here, we assume includes the formals of f among
its free variables.

∧

t∈T

((

Πt ∧
∧

σ∈St

ϕ/σ

)

→ ϕ

)

.

Note that for any tip t with no recursive calls, the conjunct for t reduces
to Πt → ϕ, i.e., we must prove ϕ assuming only the tests leading to that
tip. These are all base cases of the induction scheme.

For any tip t containing recursive calls, the conjunct for t requires us to
prove that the tests leading to that tip imply ϕ but we also get to assume
ϕ/σγ for every recursive call γ in the tip. These are the induction steps, the
ϕ/σγ are the induction hypotheses and ϕ is the induction conclusion.

Consider a simple recursive definition that recurs down to 0 by subtract-
ing 1 from a natural number formal, n. Let the measure µ be the identity
function on n and the well-founded relation be less-than on the naturals.7

To prove ϕ(n) (for all n ∈ N) the suggested induction principle is

(n = 0 → ϕ(n)) ∧ (n 6= 0 ∧ ϕ(n− 1) → ϕ(n))

as opposed to the more common but equivalent

ϕ(0) ∧ (ϕ(n) → ϕ(n+ 1)).

7Technically, since the measure must always produce a result in the domain of the well-
founded relation, the appropriate measure here is nfix which is the identity on naturals
and 0 everywhere else. In a suitably typed system that would not be necessary. We ignore
such issues in this article.

5



2.4 General Proof Strategy

A common proof strategy, and the one generally followed by ACL2, is to
first try to simplify the goal, ϕ. Simplification focuses on normalizing terms,
both by using rewrite rules derived from previously proved theorems and by
applying various decision procedures.

But if simplification fails to prove ϕ, perhaps induction is warranted. In
that case, the first step is to select an induction scheme, apply the scheme to
ϕ to get a new set of goals, and recursively try to prove each via simplification
and the other techniques.

But weak conjectures are often impossible to prove by induction because
no available induction hypothesis can be brought to bear on the conclusion.
A classic example is provided by a function f(n,m) that recurs by decre-
menting n and incrementing m, returning m when n = 0. One then might
wish to prove f(n, 0) = n. But that will not yield to induction. Instead,
one should prove f(n,m) = n +m and then prove the “main” theorem by
instantiation and algebraic simplification. PLTP and the other provers in
the family all attempt to generalize before settling on induction, but gener-
alization often requires more creativity than our provers have. To deal with
this problem Thm, Nqthm, and ACL2 allow the user to state lemmas, which
are often proved by induction, and which then may be used in the proofs of
other theorems.

The control flow of ACL2 is: simplify (which including decision pro-
cedures and previously verified proof tools), eliminate “destructor” func-
tion symbols by introducing “constructors”, use and eliminate equalities (a
generalization step) stemming from previous inductions, generalize certain
common subexpressions, and eliminate irrelevant hypotheses. All of these
techniques are informed by previously proved lemmas. If these techniques
do not prove the conjecture, then ACL2 tries induction, generates the new
subgoals, and recurs to prove them all. This scheme is called the waterfall.
See pp. 121–124 of An Approach for more details.8

Observe that if ϕ contains a call of f , f(v1, . . . , vn) (for simplicity, again,
where the actuals of the call are the formals of f) and we choose to induct
according to the scheme suggested by f , then when the simplifier expands
that call of f in the conclusion of a base case the result is a term not involving

8Although it works in a simpler logical setting, the prover described in the 1979 book
Boyer–Moore book A Computational Logic [2] used variants of these same techniques
and Chapters V–XIII of that book describe them in detail with a running example. To
see the original incarnation of the techniques, which did not include elimination of either
destructors or of irrelevance, see Moore’s 1973 dissertation [10] or the much shorter Boyer–
Moore article of 1975 [1].

6



f . When the call is expanded in an induction step we will find an induction
hypothesis about each recursive call introduced.

So one should try to select an induction suggested by terms in ϕ that
when expanded produce smaller instances of themselves without instanti-
ating variables in terms that are not expanded. The last qualification is
motivated by the following observation: Since each induction hypothesis
differs from the induction conclusion only by the application of a substitu-
tion, any term in the conclusion that does not involve a variable changed by
the substitution will reoccur identically in the hypothesis.

We do not guarantee this induction strategy will succeed, but it is a
powerful heuristic observation.

In summary: Do not try induction until other methods have failed. And
when you do try induction, try to select a scheme as above.

3 Collecting Suggested Inductions

If induction is to be tried, we first explore ϕ and look for calls of recursive
functions. So consider a term γ calling f . The restriction mentioned above
(that the actuals of the call of f be the formals of f) can be relaxed.

We say ai in a call of f , (fa1 . . . an), is in a changeable position if the
corresponding formal, vi is used in the measure admitting f and some sub-
stitution of f ’s machine replaces vi by something different from vi. We say
ai is in an unchangeable position if vi is measured and every substitution in
the machine replaces vi by vi.

A call γ of f suggests an induction if (i) every actual of γ in a changeable
position is a distict variable, and (ii) no free variable of any actual in an
unchangeable position occurs among the variables identified in (i). The set
of variables in changeable positions of γ are called the changeables of γ and
the set of variables occurring in terms in unchangeable positions of γ are
called the unchangeables of γ.

If f suggests an induction the machine for f is instantiated so that it
uses the variables of γ (instead of the formals of f). Any substitution pairs
changing unchangeables or attempting to substitute for non-variables are
deleted. The result is a new machine derived from γ. For example, suppose
f(v1, v2, v3) in recursion counts the natural v1 up by 1 until it exceeds the
natural v2 and changes v3 to v1∗v3 (so that the natural difference between v2
and v1 decreases in recursion). The first and second formals are measured;
the third is not. Now consider the term γ = f(x, y+z, z) which might occur
in ϕ. It suggests an induction in which x is replaced by x+ 1, and y and z

7



are held fixed. The substitution pair that would replace z by x∗z is deleted
because it violates the restriction that the second argument be unchanged
by the substitution. The measure theorems proved during the admission of
f suffice to prove that this induction is sound, so no induction-time work
needs to be done to approve this scheme.

The induction candidate suggested by γ is the machine just described
but augmented with some metadata including the list of controllers (all
variables in γ involved in the measure, e.g., x, y, and z in the example
above), the changeable and unchangeable variables, the original justification
of the function suggesting this induction, the set of terms suggesting this
induction (initially just {γ} and henceforth called the suggesters), and a
score meant to indicate how closely the machine matches the recursion in f
(initially the number of measured formals of f divided by the arity of f).

For the nitty-gritty see the function induct. It calls the other func-
tions mentioned below. For enforcing the restrictions on which actuals are
variables see sound-induction-principle-mask. For gathering the candi-
dates, see get-induction-cands-from-cl-set.

Once all the candidates have been gathered, we apply a series of filters
and transformers to create (what is hoped to be) an appropriate induction
scheme.

4 Flushing

We say candidate c1 is subsumed by candidate c2 if the changeable variables
of c1 are a subset of those of c2, the unchangeable variables of c1 are a
subset of those of c2, and every entry of c1’s machine can “fit” in an entry
in c2’s machine. Roughly speaking this means that for every 〈Πt1 ,St1〉 in c1
there is a pair 〈Πt2 ,St2〉 in c2 such that Πt1 ⊆ Πt2 and for every substitution
σ1 ∈ St1 there is a σ2 ∈ St2 such that σ1 ⊆ σ2. However, we require that
each substitution from c2 be used to absorb at most one substitution from
c1.

If c1 is so subsumed, we flush it down c2, discarding c1 after changing the
metadata in c2 by adding c1’s score to that of c2, unioning the suggesters
of c1 into those for c2 and analogously unioning the other fields. For the
nitty-gritty see flush-candidates.

8



5 Merging

We say c1 is mergeable with c2 if there is a non-empty intersection between
their changeable variables, there are empty intersections between the change-
able variables of c1 and the unchangeable variables of c2 and vice versa, and
it is possible to merge the machine of c1 into that of c2. Intuitively, we try
to extend each substitution of c2 with a substitution of c1 that agrees with it
on changed variables. We do not change the tests ruling the substitutions in
c2. We pay special attention to the agreement of changes to c2’s measured
variables so the justification of the extended c2 is the same as that of the
original. Merging adds scores and unions the other fields into c2.

The idea is that if, under some tests, c2 replaces x by δx and y by δy,
and under syntactically compatible tests c1 replaces x by δx and z by δz,
then the two candidates agree on x and do not conflict on y and z. In the
extended c2, x, y, and z are replaced, respectively, by δx, δy and δz. For
example, if f(v1, v2) is defined to decrement each argument simultaneously
in recursion and ϕ contains both f(x, y) and f(y, z) (giving rise to two
mergeable candidates), then the merged candidate inducts on x, y, and z
simultaneously. If we induct only as suggested by, say, f(x, y) then the
instance of f(y, z) in the induction hypothesis will not match the f(y, z) in
the induction conclusion whether we expand f(y, z) or not. For the nitty-
gritty see merge-tests-and-alists-lsts.

6 Vetoing

The purpose of the next step is to eliminate candidates that are flawed. The
basic idea is that a candidate is flawed if there is competition from other
candidates about how to treat one or more of its variables. For example, if
f(x, y) recursively decrements x while not changing y, then if both f(x, y)
and f(y, z) occur in ϕ then we try to avoid the induction suggested by
f(y, z) because its induction hypothesis would then contain f(x, y−1) which
would not match the f(x, y) in the induction conclusion. On the other hand,
the induction suggested by f(x, y), which does not change y, leaves f(y, z)
unchanged in both the induction hypothesis and the induction conclusion.

We use two heuristics. First we throw out any candidate whose change-
able variables have a non-empty intersection with either the changeable or
unchangeable variables of another. If that throws out all candidates we
revert the set of candidates and throw out only those whose changeable
variables have a non-empty intersection with the unchangeables of another

9



candidate. If that also throws out all candidates, we revert again and skip
this heuristic. For the nitty-gritty see compute-vetoes.

7 Voting

Should there still be multiple candidates, we vote in two rounds. First we se-
lect the candidates with the maximal “complexity,” where complexity is just
the number of suggesters that fail to satisfy a restricted syntactic recognizer
for primitive-recursion. (Recall that flushing and merging both accumulate
the suggesters, so that by the time voting occurs each surviving candidate
may have several suggesters.) Successful inductions, followed by simplifica-
tion, etc., tends to eliminate suggesters from the subsequent subgoals. We
prefer to eliminate the most complicated functions as soon as that appears
possible; otherwise the opportunity may lost.

Should there be multiple candidates after choosing the most complex
ones, we select those with the maximal score. The final tiebreaker is to just
choose the first candidate in the list of survivors. For the nitty-gritty see
maximal-elements.

8 Communicating to the Simplifier

After selecting an induction and applying it to the goal in question to get
a set of base cases and induction steps, those goals are sent back over the
waterfall. But induction communicates the suggesters to the simplifier. By
default, the simplifier preferentially expands those terms.9 In addition, the
basic heuristics for controlling the expansion of recursive functions is sen-
sitive to the question “do the terms introduced by a (tentative) expansion
already occur in the goal?” If so, the expansion is allowed. Since induc-
tion hypotheses will include the recursive calls introduced by the suggesters,
and since the simplifier attempts to normalize terms, this basic heuristic
tends eventually to expand the suggesters even if their subterms have been
rewritten (which could prevent the simplifier from recognizing them in the
communication from the induction mechanism).

9As with many ACL2 heuristics, the user can override these preferences with hints.

10



9 Caveats

These heuristics do not always choose an induction that proves the theorem,
even when such an induction exists. For that reason one must provide a
means for specifying the appropriate induction, which is done with a user-
provided hint in ACL2 that means “induct as suggested by the term γ.”

One source of inappropriate inductions in ACL2 stems from our failure
to implement rippling [5]. For example, suppose f(x) measures x and recurs
to 1 + f(d(x)) and g(y, z) measures y and recurs to g(y − 1, a(z)). Then
ACL2 only sees one induction suggested by terms in g(f(x), z), namely the
one suggested by f(x), in which x is replaced by d(x) in the induction
hypothesis. The g term does not suggest an induction because its first
(changing and measured) argument is not a variable. But rippling-out and
-in could suggest replacing x by d(x) and z by a(z) by noting the effect of
expanding f on the enclosing g term and the consequent changing of z. The
ACL2 user has to explicitly define a function to recur that way and then
provide it as a hint.

10 Performance

In this section we indicate how successful these heuristics are, by analyzing
the proofs in a large suite of theorems.

The test suite contains 467,892 named theorems. The suite consists of
almost all of the ∼7,500 books in ACL2’s Community Books repository,
contributed by many different users. About a dozen books were omitted.
The omitted books contain checks to confirm that the prover output was
as expected and the statistics gathering process changed what is displayed.
However, the vast majority of these named theorems are mechanically gen-
erated with macros implemented by power users who provide tools to do
common things like introduce new data structures or prove common classes
of theorems in a given domain by well-understood proof tactics. Further-
more, many books of theorems are available that make reasoning in certain
domains automatic via lemma-driven simplification.

The end result is that induction is used in the regression only 72,626
times.

When ACL2’s induction heuristics fail, users provide explicit induction
hints. A total of 27,322 induction hints were used, meaning the heuristics
described here chose appropriately at least 62% of the time.10

10Of course, the conjectures in question are not “random.” Users strive to state theorems

11



So now we characterize the contributions of the various heuristics.
In the 45,304 cases where an induction was selected without hints from

the user, a total of 104,197 candidates were suggested. So about 2.29 can-
didates were suggested per conjecture.

Flushing eliminated about 16% of those candidates, and merging elimi-
nated about 33% of the remaining ones, leaving 57,700 candidates.

But 15% of those surviving candidates were vetoed by others, leaving
49,961 candidates to be subjected to voting.

Note that if we use voting among 49,961 candidates to choose 45,304
induction winners, we see that at least 90% of the time there is only one
candidate.

Choosing the most complex candidates winnows the field to 48,648 and
choosing the highest scoring among those cuts it to 45,539. So the final
tiebreaker is used at most 235 times out of 45,304 inductions.

Induction is sometimes used multiple times within a single proof. While
64,357 proofs used just one induction, 2,480 proofs used more than one.
For example, 1,407 proofs used two inductions and 634 proofs used three.
Sometimes ACL2 will prove a theorem with multiple inductions, perhaps
without the user even noticing. For example, 12 proofs used ten inductions,
two used 19, and one proof used 30. The most inductions done in any proof
is 516.

The theorem using 516 inductions arises in the admission of a function
defining the operational semantics of Clocked Control/Data FLow Graphs
and is part of a bigger project to create a certified loop pipelining algorithm
[13]. Initial simplification of the measure theorem splits into many subgoals,
most of which are proved by simplification, but 12 of those subgoals can-
not be proved by ACL2’s simplifier so 12 more inductions are done. Some
of those inductions generate additional subgoals to prove inductively. The
maximum number of inductions along any one branch of that proof tree is
three. The authors probably could have avoided many of these inductions by
proving appropriate lemmas or otherwise giving hints to the prover. How-
ever, the proof takes only 18.40 seconds on a modern (2019) laptop. So why
bother?

the prover can handle by itself. On the other hand, many user-defined macros formalizing
common proof schemes insert induction hints that might suggest the same inductions
ACL2 would choose on its own.

12



11 Summary

Induction cannot be isolated from the rest of the prover. The definitional
principle and the use of recursive functions to express properties are key
to the successful “automation of induction.” But so is the simplifier and
other techniques not discussed here. Indeed, PLTP was entirely designed
around induction and tried to discover all necessary lemmas. The subse-
quent provers acquired other features largely to support more general use. In
particular, those subsequent provers supported the use of previously proved
lemmas so the user could build domain-specific libraries capable of dispatch-
ing most goals with rewriting, linear arithmetic, etc. But the lemmas in
those libraries can often only be proved by induction.

12 Acknowledgments

Robert S. Boyer and I met in 1971 in Edinburgh and began this project.
Roughly a quarter century later, Matt Kaufmann joined the team and even-
tually became, with me, the co-developer of ACL2. So this article reports
joint work by three people over half a century. There are several lessons:
First, the brevity of this chapter belies the true complexity of the underlying
code; that is why I encourage inspection of ACL2’s source code. And sec-
ond, my debt to Bob and Matt cannot be overestimated. I also owe thanks
to too many sponsors to list and to the user communities of our provers who
constantly push the envelope and raise important problems to think about.

References

[1] R. S. Boyer and J S. Moore. Proving theorems about pure lisp functions.
JACM, 22(1):129–144, 1975.

[2] R. S. Boyer and J S. Moore. A Computational Logic. Academic Press,
New York, 1979.

[3] R. S. Boyer and J S. Moore. A Computational Logic Handbook. Aca-
demic Press, New York, 1988.

[4] R. S. Boyer and J S. Moore. A Computational Logic Handbook, Second

Edition. Academic Press, New York, 1997.

[5] Alan Bundy, David Basin, Dieter Hutter, and Andrew Ireland. Rip-

pling: Meta-Level Guidance for Mathematical Reasoning. Cambridge

13



Tracts in Theoretical Computer Science, Cambridge University, UK,
2005.

[6] M. Kaufmann, P. Manolios, and J S. Moore, editors. Computer-Aided

Reasoning: ACL2 Case Studies. Kluwer Academic Press, Boston, MA.,
2000.

[7] M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reason-

ing: An Approach. Kluwer Academic Press, Boston, MA., 2000.

[8] M. Kaufmann and J S. Moore. Structured theory development for
a mechanized logic. Journal of Automated Reasoning, 26(2):161–203,
2001.

[9] M. Kaufmann and J S. Moore. The ACL2 home page. In http:// www.

cs. utexas.edu/ users/moore/acl2/ . Dept. of Computer Sciences,
University of Texas at Austin, 2020.

[10] J S. Moore. Computational logic: Structure sharing and proof of pro-
gram properties. Ph.D. dissertation, University of Edinburgh, 1973.
See http://www.era.lib.ed.ac.uk/handle/1842/2245.

[11] J Strother Moore. Milestones from the pure lisp theorem prover to acl2.
Formal Aspects of Computing, 2019.

[12] J Strother Moore and Claus-Peter Wirth. Automation of mathematical
induction as part of the history of logic. IfCoLog Journal of Logics and

their Applications, 4(5):1505–1634, 2017.

[13] Disha Puri, Sandip Ray, Kecheng Hao, and Fei Xie. Mechanical cer-
tification of loop pipelining transformations: A preview. In Gerwin
Klein and Ruben Gamboa, editors, Interactive Theorem Proving, pages
549–554, Cham, 2014. Springer International Publishing.

[14] G. L. Steele, Jr. Common Lisp The Language, Second Edition. Digital
Press, 30 North Avenue, Burlington, MA. 01803, 1990.

[15] Jr. W. A. Hunt, M. Kaufmann, J S. Moore, and A. Slobodova. In-
dustrial hardware and software verification with ACL2. In Verified

Trustworthy Software Systems, volume 375. The Royal Society, 2017.
(Article Number 20150399).

14


