Session 18 Automatic Programming

PROVING THEOREMS ABOUT LISP FUNCTIONS

Robert S. Boyer and J Strother Moore

Department

University of Edinburgh,

ABSTRACT

We describe some simple heuristics combining evaluation
and mathematical induction which we have implemented in
a program that automatically proves a wide variety of
theorems about recursive LISP functions. The method
the program uses to generate induction formulas is
described at length. The theorems proved by the pro-
gram include that REVERSE is its own inverse and that
a particular SORT program is correct. Appendix B

contains a list of the theorems proved by the program.
KEY WORDS
LISP, automatic theorem proving, structural induction,
proving programs correct.
INTRODUCTION

We are concerned with proving theorems in a first-
order theory of lists, akin to the elementary theory

of numbers. We use a subset of LISP as our language
because recursive list processing functions are easy to
write in LISP and because theorems can be naturally
stated in LISP; furthermore, LISP has a simple syntax
and is universal in Artificial Intelligence. We
employ a LISP interpreter to 'run' our theorems and a
heuristic which produces induction formulas from infor-
mation about how the interpreter fails. We combine
with the induction heuristic a set of simple rewrite
rules of LISP and a heuristic for generalizing the
theorem being proved.

Our program accepts as input a LJSP expression, e.g.,

(EQUAL (REVERSE (REVERSE A)) A),

possibly involving skolem constants (e.g., A, B and C
throughout this paper) which stand for universally
quantified variables ranging over all lists. The pro-
gram attempts to show that the value of the input expre-
ssion is always equal to T {whenever the skolem const-
ants are replaced by arbitrary lists). Theorems we
have proved automatically include:

(EQUAL (REVERSE (REVERSE A)) A)
(IMPLIES (OR (MEMBER A B) (MEMBER A C))
(MEMBER A (UNION B c)))

and
[ORDERED (SORT A))

where EQUAL is a primitive function (i.e. built into
the theorem prover) but REVERSE, IMPLIES, OR, MEMBER,
UNION, ORDERED, and SORT are defined by the user of the
program. The program uses only its knowledge of the
LISP primitives and the LISP definitions supplied by
the uBer. No further information is required of the
user.

This paper describes many aspects of the program in
brevity. A thorough presentation is forthcoming in
part Il of Moore*'a: thesis.

of Computational

Logic,
Scotland.

OUR LISP SUBSET

We use a subset of pure LISP which has as primitives
NIL, CONS, CAR, CDR, COND, and EQUAL. We do no.t prove
theorems about functions that involve side effects,
RPLACA, QUOTE, or LABEL. We use lists of NIL to rep-
resent natural numbers: 0 is NIL, 1 is (CONS Nil NIL),
and ADP1 is defined as;

(LAMBDA (X) (CONS NIL X)) .

(Our arithmetic is thus a version of Peano successor

arithmetic.)

Our equality privitive is EQUAL rather than EQ. Our
COND primitive takes three arguments (for simplicity
without loss of power). (COND A B C) in our system is
(COND (A B) (T C)) in more traditional LISP systems.

The userof the theorem prover supplies function defini-
tions almost exactly as in LISP, with the function
DEFINE. For example,
DEFINE ((APPEND {LAMBDA (X Y)
(COND X
(CONS (CAR X)
(APPEND (CDR X) Y))
Y)»).

EVAL
Our LISP interpreter, EVAL,

a normal LISP interpreter;
initions and handles primitives

is similar in many ways to
EVAL applies function def-
like COND. EVAL is

recursive; it evaluates arguments before applying and
evaluating function definitions. Our EVAL has special
provisions for handling skolem constants and terms in
which they appear. The following examples illustrate
the behaviour of our EVAL:

EVAL(NIL) - NIL

EVAL { A) = A

EVAL((CONS A B)) = (CONS A B)

EVAL((CAR (CONS A B))) = A

EVAL (CDR (CAR (CONS A B)J)) = (CDR A)
EVAL((COND (CONS A B) C D)) = C
EVAL((APPEND (CONS A B) C)) = (CONS A

(APPEND B C))

The last example is justified because regardless of the
values of A, B and C, the first argument to APPEND is
not NIL, so that the COND in the definition of APPEND

can be evaluated.

EVAL tries to evaluate (APPEND B C) further but fails
because it 'recurses into' the skolem constant B.
(See the definition of APPEND above.)

When evaluating the form (foo ti tn) where foo is a
defined function, we recursively evaluate the arguments
first. Call the value of t;(tj. EVAL binds the
formal variables of foo to their values, tj_, and then
evaluates the definition of foo. If a recursive call
of foo is encountered in this function body the argu-
ments are evaluated aa usual. Then, if one of the
evaluated arguments i8 a CAR or CDR expression, it is

486

added to a list called the BOMBLIST.
definition of foo is not re-applied for this recursive
call. The current evaluation of the function body is
continued in the hopes of adding more terms to the
BOHBLIST. Finally, EVAL returns (foo t, tl) .

In this case the

Thus, in evaluating (APPEND B C) the recursive call
(APPEND (CDR B) C) is encountered in the definition of
APPEND. (CDR B) is added to the BOHBLIST indicating
recursion on B. Finally, (APPEND B C) is returned as
the value of APPEND B C).

EVALUATION AND INDUCTION

Partial evaluation is sufficient to prove a few trivial
theorems, for example:

(EQUAL (APPEND NIL B) B)

EVALs to T since partial evaluation of the APPEND
yields B, even though the structure of B is not known.
However, induction is usually needed to prove even
simple theorems about recursive LISP functions.

It is intuitively clear that evaluation arid induction
are _complements. The paradigm for evaluating a
simple recursive function FOO is: evaluate (FOO (CONS

A B)) in terms of (FOO B) and handle the NIL case
separately. The paradigm for a simple inductive proof
that (FOO X) is T for any argument X is: show that

(FOO ML) is T, and then assuming that (200 P) is T,
show that (FOO (CONS A B)) is T.

some structure and
with NIL and builds
great advantage:
induction conclu-
involving the

In particular, recursion starts with
decomposes it while induction starts
up. This duality cim be used to
Evaluation can be used to reduce the
sion (FOO (CONS A B)) to a statement
induction hypothesis. (FQO B)T
provided that the
(CONS A B) is one cf the structures that FOO decom-
poses in its recursion.
Suppose that we wish to prove by induction that (FOO X)
is T for all X. To show that (FOO NIL) is T, the
obvious thing” to do is call EVAL and let evaluation
solve the problem (for example, EVAI((APPEND NIL B))
is B). We then assume that {FOO B) is T, and try to
show that (FOO (CONS A B)) is T, for a new skolem
constant A. The obvious thing to do now is to call
EVAL again and let the recursion in FOO decompose the
(CONS A B). The result will (hopefully) be some
simple expression E, involving (FOO B); we then use
the hypothesis that (FOO B) is T to show that E is T.

This process is illustrated by the examples in the
next two sections.

Of course, if FOO has more than one argument, one must
choose which one(s) to induct upon. But the link

between evaluation and induction makes the choice
obvious: induct on the structures that FOO recurses
on, that is, on the structures that are being recur-
sively decomposed by FOO, By choosing those struct-
ures we insure that when EVAL is called on the induct-
ion conclusion, (FOO (CONS A B)), FOO will be able to
recurse at least one step and the problem will be
reduced by EVAL to one involving the induction hypo-
thesis, (FOO B).

However, the terms that FOO is trying to recurse on
are just those that generate the 'errors' noted
earlier. To determine what to induct upon we first
EVAL the expression (expecting to fail) and then in-
duct upon some term on the BOHBLIST, that is, some
term which EVAL failed to evaluate.

EVALU N_AND TION.

Suppose we wish to show that:

{1) (BQUAL (APFEND & (APPEND B C))
{APPEND (AFFEND A B) ¢))

alwayas evaluaniea to Ty for sny A, B nnd C,

The obvious way to proeeed is to EVAL the expression
and see¢ if it is T. EVAL i1a unable te make any head-
way in evaluasting {1} ang simply returne (1) as its
snswer. However, in attempting to ewnlunte {1}, EVAL
placed four terms on the BOMBLIST. BRecall that in
the definition of APPEND the first urgument is CDRed
in the recursjon but the second sppument is net
changed. In formuln {1) there are four ealls to
APPEND, Twa recurse upon A, one upen B, and one upon
(APFEND & H).

Resorting to induetion, we choose to induct upon A
{we mighi hove chosen B, bui we choosc 4 by 'popular-
ity',) Pirst we try the 'NIL cuse’ {i.e., (1) with A
replaczd by NIL):

(2] (EQUAL (APPEND KIL (AFPEND B C}}
{APPEND (APPEXD NIL B) £)).

¥hen we EVAL this, partizl evaluntion of the AFFEND's
makes(2) equivalent to:

(=) (EqQUAL (APFEND B C) (APPEND B)

2ince APPEND returnz its second argument if the first
is N1L. Howaver, (3} is juat » partisl result, and
how that the argumente have been EVAled, the EQUAL is
evaluated to T, sinee in our LISP two identical
expregsions returh BQUAL results., So the 'NI1L coge!
hus been shown te be T by evaluation.

Next we must show Fthat:

{4} (RQUAL (APFELD (CONS a1 &) (APFEND B O))
(APPEND {APFEND (COMS A1 &) B) C))
iz alwaye T, if we assume that:

APFEND & (APTEND B C))

(o} (EQUAL
APTEND (APFEND & B) €)).

is T,

- But EVAL trenesforms {4) intor

(6) (EQUAL {coNs A1 (APPEND & (APPEND B C)))
(cons &1 (APPEND (APFEND & B})))

and then (from its knowledge of EQUAL) transforms {6)
intoe:

(7) (EQUAL (APPEND & (APFEND B C))
(APPEND (APPEND A B} C)}.

But {7) is exactly the same as (S) which we are sgoum=
ing (inductively) is always T. Hence, by evaluntion
snd the induction bypothesis we have shown that {4},
the induction conclusion, is always T. 26 the mssoc=-
iativity of APPEND haa been proved. Observe that
EVAL was responsible for converting the induction
conclugion (4} into &n expression invelving the
induction hypotheeis {6}.

Qur program produces precisely thia proof. TIta only
knowledge about APPEND is its LISP definition,

487

USING THE INDUCTION HYPOTHESIS AND GENERALIZATION.

Using the induction hypothesis is not always as easy as
it was above. A good example occurs in our program's
proof of:

(8) (EQUAL (REVERSE (REVERSE A)) A),
where the definition of REVERSE is:

(LAMBDA (x)
(COND X
(APPEND (REVERSE (CDR X))
(CONS (CAB X) NIL))

NIL).
If we induct on A in (8) we find that the NIL case
evaluates to T. We therefore assume (8) as our indu-
ction hypothesis and try to prove:

(9) (EQUAL (REVERSE (REVERSE (CONS A1 A))) (CONS Al A))
This evaluates to:

(10) (EQUAL (REVERSE (APPEND (REVERSE A) (CONS A1 NIL)))
(CONS Al A))

We now wish to use the induction hypothesis, (8).
Since it is an equality our heuristic is to 'cross-

fertilize' (10) with it, by replacing the A in the
right-hand side of (10) by the left-hand side of (8),
giving:

(11) (EQUAL (REVERSE (APPEND (REVERSE A) (CONS A1 NiIL)))
(CONS Al (REVERSE (REVERSE A)))).

We then consider (8) to be 'used' and throw it away.
We must now prove (11) .

At this point we note that (REVERSE A) is a subformula
which appears on both sides of an EQUAL. Furthermore,
from the definition of REVERSE the program can deter-
mine that the output of (REVERSE A) can be any list at
all. On these grounds we choose to generalize the
theorem to be proved by replacing (REVERSE A) in (11)
by a new skolem constant, B, and set out to prove:
(12) (EQUAL (REVERSE (APPEND B (CONS A1 NIL)))
(CONS Al (REVERSE B))).

But (12) is easy to prove. EVAL tells us to induct on
B. The NIL case EVALs to T. Assuming (12) as the
induction hypothesis, we EVAL the 'CONS case':
(EQUAL (REVERSE (APPEND (CONS B1 B)(CONSA1 NIL)))
(13) (CONS Al (REVERSE (CONS B1 B)))) and get
(14) (EQUAL

(APPEND (REVERSE (APPEND B (CONS A1 NIL)))

(CONS B1 NIL))
(CONS A1 (APPEND {REVERSE B) (CONS B1 NIL)))).

We now use our hypothesis, (12), by cross-fertilizing
(14) with it, replacing (REVERSE (APPEND B (CONS A1
NIL))) in the left-hand side of (14) by the right-hand
side of (12), yielding:

(15) (EQUAL
(APPEND (CONS A1 (REVERSE B)) (COHS B1 MIL))
(CONS A1 (APPEND (REVERSE B) (CONS Bl NIL))))

Finally, (15) EVALs to T because the left-hand side
APPEND evaluates to:

(CONS A1 (APPEND (REVERSE B) (CCNS B1 NIL))),

which is the right-hand side, so the EQUAL returns T.
The theorem is therefore proved.

Our theorem prover takes 8 seconds to produce this
proof. If the reader thinks that this theorem is
utterly trivial, he is invited to try to prove the

488

similar theorem:
(EQUAL (REVERSE (APPEND A B))
(APPEND (REVERSE B) (REVERSE A))),
which is also proved by the program.

A DESCRIPTION OF THE PROGRAM.
Besides EVAL there are five basic subroutines in our

system: NORMALIZE, REDUCE, FERTILIZE, GENERALIZE, and
INDUCT. Below are brief descriptions of these
routines.

NORMALIZE applies about ten rewrite rules to LISP
expressions. For example:

(COND (COND A B C) D E) becomes (CCND A (COND B D E)
(COND C D E)), and (COND A A NIL) becomes A.

APPENDIX C lists the rewrite rules.

REDUCE attemptsto propagate the results of the tests in
COND statements down the branches of the COND tree.
Thus,

(COND A (COND A B C) (P A)) becomes
(COND A B (P NIL)).

FERTILIZE is responsible for 'using'
an implication when it is an equality.
the form:

the hypothesis of
A theorem of

x =y- ply)
is rewritten to
p(x) v x/y.

We make fertilizations of the form:

x =my-f(z) = g(y)=> f(z) = g(x) vxly

before any other kind. We call such substitutions
‘cross-fertilizations'; we prefer cross-fertilizations
because they frequently allow the proofs we want.
After fertilizing we never again look at the equality
hypothesis although we retain it for soundness.

GENERALIZE is responsible for generalizing the theorem
to be proved. This is done by replacing some common
subformulas in the theorem by new skolem constants.
To prove something of the form:

p(f(A)) = a(f(A))
we try proving
p(B) = q(B),
and to prove
pIfIA)) -a(f(A))
we try
p(B) - a(B),
where B is a new skolem constant. However, if the
subformula f(A) is of a highly constrained type, for

instance, it is always a number, an additional con-
dition is imposed on the new skolem constant.

If the theorem to be generalized is:

(EQUA1 (ADD (LENGTH A) B) (ADD B (LENGTH A))),

GENERALIZE produces as output:

(COHD (LENGTYPE C) (EQUAL (ADD C B) (ADD B C)) T)
where LENGTYPE is a LISP function written by GENERALIZE
from the LISP definition of LENGTH. In this parti-

cular case, the function written 'by GENERALIZE has

precisely the definition of NUMBERP, namely:
(LAMBDA (X)
(COND X
(COND (CAR X) NIL (NUMBERP (CDR X)))

T)).

To perform the generalization described in the previous

section, GENERALIZE wrote the 'type function' for
REVERSE:
(LAMBDA (X) T),

which was recognized as being no restriction at all
and then ignored. The problem of recognizing the
output of a recursive function is clearly undecidable
and very difficult. To write these type functions,
GENERALIZE uses some heuristics which arc often useful.

INDUCT is the program that embodies our indu'tion
heuristic. We now describe the form in which it
presents the new induction formula to the other
routines and how the induction hypothesis is saved
for use.

If the theorem to be proved by induction is (FOO A)
and EVAL indicates that FOO recursen on the CDR of A,
the output of INDUCT is:

(COND (FOO NIL)
(COND (F0O0 A)
NIL).

(FOO (CONS A1 A)) T)

which becomes the theorem to be proved.
the LISP expression for:

This is ,just

(FOO NIL) & ((FOO A) -> (FOO (CONS A1 A))).

The definitions of AND and IMPLIES are in APPENDIX A.
The precise form of the induction formula output by
INDUCT is dictated by the types of 'errors' encount-
ered by EVAL. For example, if both the CAR and the
CDR of A occur on the BOMBLIST, then the induction
formula is:

(FOO NIL) & (((FOO A1) & (FOO A)) - (FOO (CONS A1 A))).
For simultaneous recursion on two variables (e.g. LTE
in APPENDIX A) or CDRing twice in a function (e.g.,
ORDERED), INDUCT produces appropriate induction
formulas. All of this information is collected from
the BOMBLIST produced by EVAL.

CONTROL STRUCTURE OF THE PROGRAM.

The control structure of our system is very simple.
To prove that some LISP expression, THM, always
evaluates to T, we execute the following loop:

set OLDTHM to THM;

set THM to REDUE(NORMALIZE(EVAL(THM)));

if THM = T, then return;

if THM is not EQUAL to OLDTHM, then goto loop;

if fertilization applies, then set THM to
FERTILIZE(THM)

otherwise, if THM is of the form (COND p q NIL)

then set THM to (COND INDUCT{GENERALIZE(P))

NIL)
otherwise, set THM to INDUCT(GENERALIZE(THM));
goto loop;

loop:

It should be noted that all of the important control
structure is embedded in the LISP expression THM.

For example, when INDUCT needs to prove the conjunction
of the NIL case and the induction step, it is actually
done by replacing the expression THM by a LISF expres-
sion which has value T if and only if that conjunction
is true. If the NIL case evaluates to T, then EVAL
returns the second conjunct, which becomes the theorem
to be proved.

CONCLUSION.

We find it natural to use the routines EVAL, NORMALIZE,
and REDUCE both to rewrite LISP expresssions; and prove
theorems. Our experience confirms, and was motivated
by, a conviction that proofs and computations are
essentially similar. This conviction was inspired by
Bob Kowalski and Pat Hayes, and the beauty of LISP.
Cur program is in the style of theorem proving
programs written by Woody Bledsoe.

We would like to note that our program uses no search
and applies no lemmas. Consequently our theorem
prover frequently reproves simple facte like the
r.r~ociativity of APPEND. The philosophy of our
program is to make the correct guess the first time
and to pursue one goal with power and perseverance.

Our program usesstructural induction, which was intro-
duced into the literature by Burs'all (1969), although
it was used earlier by McCarthy and Painter (1967) in

Common alternative

languages are comput-
and deBakker and Scott,
1963). Both

a compiler correctness proof.
inductive methods for recursive
ational induction (Park, 1969,
1969) and recursion induction (McCarthy,
are essentially induction on the depth of function
calls. Milner (1972) and Milner and Weyhrnueh (1972)
describe a proof checker for Scott's Logic for Compu-
table Functions (Scott, 1970) which uses computational
induction. The most commonly used method is for flow-
diagram languages and was suggerted by Naur (1966) and
Floyd (1967). "n this approach, inductive assertions
are attached to points in a program and are used to
generate 'verification conditions', which are theorems
which roust be proved to establish the correctness of
the program. King (1969), Good (1970), Cooper (1971)
and Gerhart (1972) have implemented systems which use
this method for languag s which include assignments
(possibly to arrays) find jumps or loops, but without
defined procedure calls. The user supplies the
inductive assertions and the systems generate the
verification conditions. King and Cooper have
incorporated automatic theorem provers which attempt
to prove the theorems generated. Topor and Burstall
(1973) use a Floyd-liku method on a language with
procedure calls. They require user supplied inductive
assertions but a symbolic interpreter (like Our EVAL)
generates the verification conditions, Deutsch
(1973) also uses symbolic evaluation. Wegbreit (1973)
and Katz and Manna (1973) present heuristics for

generating inductive assertions automatically. Brotz
and Floyd (1973) have implemented an arithmetic
theorem prover very similar to ours. Their system

generates its own induction formulas and uses the
generalization heuristic we use (without 'type
functions"'). They induct upon the right-most skolem
constant appearing in the statement of the theorem
rather than using EVAL and the BOMBLIST as we do.
Their heuristic will always choose a term recursed
upon (due to restrictions on the forms of recursive
equations allowed) but it will not always choose the
one we choose. Darlington and Burstall (1973)
describe a system which will take functions such as
the ones in our LISP subset and write equivalent
programs which are more efficient. This system will
replace recursion by iteration, rnerge loops, and use
data structures (destructively) when permitted.

APPENDIX A contains the definitions of the LISP funct-
ions we use in the proofs of the theorems in APPENDIX
B. The program automatically proves all of the
theorems in APPENDIX B. The average time it takes to
prove each theorem is 8 seconds on an ICL 4130 using
POP-2. The time is almost completely spent in POP-2
list processing, where the time for a CONS is 400

microseconds, and for CAR and CDR it is 50 microseconds.

Our work is supported by a British Science Research

Council Grant. Our thanks to Professor Bernard
Meltzer.

REFERENCES.
Burstall, R.M., (1969). 'Proving Properties of Pro-

grams by Structural Induction'.
Vol. 12, pp. 41-8.

McCarthy, J. and Painter, J.A., (1967). 'Correctness
of a Compiler for Arithmetic Expressions’. In
Proceedings of a Symposium in Applied Mathematics.
Vol. 19. Mathematical Aspects of Computer Science
pp. 33-41+ (ed. Schwartz, J.T.). Providence, Rhode
Island, American Mathematical Society.

Park, D., (1969). 'Fixpoint Induction and Proofs of
Program Properties'. In Machine Intelligence §
(eds Meltzer, B. and Michie, D), Edinburgh
University Press, pp. 59-78.

deBakker, J.W. and Scott, D., (1969). 'A Theory of
Programs'. Unpublished memo., Vienna.

McCarthy, J., (1963). 'A Basis for a Mathematical
Theory of Computation'. In Computer Programming
and Formal Systems, pp. 33-70. (eds Braffort, P.
and Hirschberg, D,). Amsterdam, North Holland.

Milner, R., (1972). 'Implementation and Application
of Scott's Logic for Computable Functions'. In
Proceedings of an ACM Conference on Proving Assert-
ions about Programs. SIGPLAN Notices, Vol. 7, No, 1
(January 1972), pp. 1-6.

Milner, R., and Weyhrauch, R., (1972). 'Proving
Compiler Correctness in a Mechanized Logic'.

Computer Journal,

In

490

Machine Intelligence 7. pp. 5'-70 (eds Meltzer, B.
and Michie, D.) Edinburgh University Press.

Scott, D., (1970). 'Outline of a Mathematical Theory
of Computation” . Oxford University Computing
Laboratory, Programming Research Croup, Technical
Monograph PRG-2. November 1970.

Naur, P., (1966), 'Proof of Algorithms by General
Snapshots'. BIT, Vol. 6, pp. 310-316.
Floyd, RW., {1967). 'Assigning Meaning to Programs'.

In Proceedings of a Symposium in Applied Mathe-
matics. Vol. 19. Mathematical Aspects of
Computer Science, pp. 19-32. (ed. Schwartz, J.T.).
Providence, Rhode Island, American Mathematical
Society.

King, J., (1969). 'A Program Verifier'. Ph.D.
Thesis, Carnegie-Mellon University, U.S.A.

Good, D., (1970). 'Toward a Man-Machine System for
Proving Program Correctness'. Ph.D. Thesis,
University of Wisconsin, U.S.A.

Cooper, D. (1971). 'Programs for Mechanical Program
Verification'. In Machine Intelligence 6. pp. 43-
59, (eds Meltzer, B. and Michie, D). Edinburgh

University Press.

Gerhart, S., (1972). 'Verification of APL Programs’.
Ph.D. Thesis, Carnegie-Mellon University, U.S.A.
Topor, R., and Burstall, R.M. (1973) - Private

Communication.

Deutsch, P., (1973) Forthcoming Ph.D. Thesis.

Brotz, D. and Floyd, RW. (1973). 'Proving Theorems
by Mathematical Induction'. Stanford Computer
Science Department Report.

Wegbreit, B., (1973)- 'Heuristic Methods for Mechani-
cally Deriving Inductive Assertions'. In Proc-
eedings of IJCAI, 1973 (to appear).

Katz, S.M., and Manna, Z., (1973). 'A Heuristic
Approach to Program Verification'. In Proceedings

of IJCAI 1973 (to appear).
Darlington, J. and Burstall, R.M., (1973}- 'A System
which automatically improves Programs'. In Proc-

eedings of IJCAl 1973 {to appear).

APPENDIX &. FUNCTION DEFINITIONS.

DEFINE((ADD (LAMBDA {X Y)

(COND X (CONS NIL (ADD (CDR X) Y)) (LENGTH Y)))))
[NOTE: CONSING NIL ONTO A NUMBER IS JUST
ADDING 1 TO IT. 'LENGTH' IS USED TO INSURE
THAT THE OUTPUT IS ALWAYS A NUMBER]
DEFINE((ADDTOLIS (LAMBDA (X Y)

(COND Y

(COND (LTE X (CAR Y))

(CONS X V)

(CONS (CAR Y) (ADDTOLIS X (CDR Y))))
(CONS X NIL)))))

DEFINE((AND (LAMBDA (X Y)

(COND X (COND Y T NIL) NIL))))

[NOTEt 'AND' IS DEFINED SO THAT IT IS ALWAYS
BOOLEAN, EVEN IF X AND Y ARE NOT. THE SAME
HOLDS FOR 'OR', 'NOT', AND 'IMPLIES'.]
DEFINE((APPEND (LAMBDA (X Y)

(COND X (CONS (CAR X) (APPEND (CDR X) Y)) Y))))
DEFINE((ASSOC (LAMBDA (X Y)

(COND Y

(COND (CAR Y)
(COND (EQUAL X (CAR (CAR Y)))
(CAR Y)
(ASSOC X (CDR Y)))
(ASSOC X (CDR Y)))
NIL))))
DEFINE((BOOLEAN (LAMBDA (x)
(COND X (EQUAL XT) T))))
DEFINE((CDRN (LAMBDA (X Y)

(COND Y (COND X (CDRN (CDR X) (CDR T)) Y) NIL))))
[NOTE: 'CDRN' RETURNS THE XTH CDR OF Y]
DEFINE((CONSNODE (LAMBDA (X Y)

(CONS NIL (CONS X Y)))))

DEFINE((COPY (LAMBDA (x)

(COND X
(CONS (COPY (CAR X)) (COPY (CDR X)))
NIL))))

DEFINE((COUNT (LAMBDA (x Y)

(CONE Y
(COND (EQUAL X (CAR Y))
(CONS NIL (COUNT X (CDR Y)))
(COUNT X (CDR Y)))
NIL))))

[NOTE: 'COUNT' RETURNS THE NUMBER OF TIMES

X OCCURS AS AN ELEMENT OF Y.]

DEFINE((DOUBLE (LAMBDA (x)

(COND X
(CONS NIL (CONS NIL (DOUBLE (CDR X))))
NIL))))
DEFINE((ELEMENT (LAMBDA (X Y)
(COND Y
(COND X (ELEMENT (CDR X) (CDR Y)) (CAR Y))
NIL))))
DEFINE(EQUALP (LAMBDA (X Y)
(COND X
(COND Y
(COND (EQUALP (CAR X) (CAR Y))
(EQUALP (CDR X) (CDR Y))
NIL)
NIL)
(COND Y NIL T)))))

DEFINE((EVEN1 (LAMBDA (X)

(COND X (NOT (EVEN1 (CDR X))) T))))

DEFINE((EVEN2 (LAMBDA (x)

(COND X
(COND (CDR X) (EVEN2 (CDR (CDR X))) NIL)
T)))>
DEFINE (FLATTEN (LAMBDA (X)
(COND (NODE X)
(APPEND (FLATTEN (CAR (CDR x)))
(FLATTEN (CDR (CDR X))))
(CONS X NIL)))))

[NOTE: 'FLATTEN' RETURNS A LIST OF TIPS IN

A BINARY TREE OF 'NODES'. SEE 'CONSNODE'

FOR THE DEFINITION OF HOW TO BUILD A NODE,]

DEFINE((GT (LAMBDA (X)

(COND X (COND Y (GT (CDR X) (CDR Y)) T) NIL))))

DEFINE((HALF (LAMBDA (X)

(COND
X
(COND (CDR X) (CONS NIL (HALF (CDR (CDR X)))) NIL)
NIL))))
DEFINE((IMPLIES (LAMBDA (X Y)
(COND X (COND Y T NIL) T))))
DEFINE((INTERSEC (LAMBDA (X Y)
(COND X
(COND (MEMBER (CAR X) Y)
(CONS (CAR X) (INTERSEC (CDR X) Y))
(INTERSEC (CDR X) Y))
NIL))))
DEFINE((LAST (LAMBDA (X)
(COND X
(COND (CDR X) (LAST (CDR X)) (CAR X))
NIL))))

DEFINE((LENGTH (LAMBDA (X)

(COND X (CONS NIL (LENGTH (CDR X))) NIL))))

DEFIHE((LIT (LAMBDA (X Y 2)

(COND X (APPLY Z (CAR X) (LIT (CDR X) Y Z)) Y))))

[INOTE: 'LIT" IS A GENERAL PURPOSE FUNCTION,

FOR EXAMPLE, (APPEND X T) = (LIT X Y CONS).

OUR PROGRAM CANNOT HANDLE FUNCTIONS AS ARGS,

BUT SOME FACTS ABOUT 'LIT' CAN BE VERIFIED

WITHOUT KNOWING WHAT 'APPLY' DOES.]

DEFINE((LTE (LAMBDA (X 1)

(COND X (COND Y (LTE (CDR X) (CDR Y)) NIL) T))))

DEFINE((MAPLIST (LAMBDA (X Y)

(COND X
(CONS (APPLY Y (CAR X)) (MAPLIST (CDR X) Y))
NIL))))

DEFIHE((MEKBER (LAMBDA (x Y)
(COND Y

(COND (EQUAL X (CAR Y)) T (MEMBER X (CDR Y)))
NIL))))
DEFIRE((MONOT1 (LAMBDA (X)
(COND X
(COND (CDR X)
(COND (EQUAL (CAR X) (CAR (CDR X)))
(MONOT1 (CDR X)) NIL)

T
™))
DEFINE(MONOT2 (LAMBDA (X Y)
(COND
Y

(COND (EQUAL X (CAR Y)) (MONOT2 X (CDR Y)) NIL)
™))
DEFINE((MONOT2P (LAMBDA (X)
(COND X (MONOT2 (CAR X) (CDR X)) T))))
[NOTE: A LIST IS 'MONOTONOUS' IF ALL THE
ELEMENTS ARE THE SAME. 'MONOTI' AND 'MONOT2P'
ARE TWO DIFFERENT WAYS TO DETECT THIS.]
DEFINE((MULT (LAMBDA (X Y)
(COND X (ADD Y (MULT (CDR X) Y)) NIL))))
DEFINE((NODE (LAMBDA (X)
(COND X
(COND (CAR X) NIL (COND (CDR X) T NIL))
NIL))))
DEFINE(NOT (LAMBDA (X)
(COND X NIL T))))
DEFINE(NUMBERP (LAMBDA (X)
(COND X (COND (CAR X) NIL (NUMBERP (CDR X))) T))))
DEFINE((OCCUR (LAMBDA (X Y)
(COND
(EQUAL X Y)
T
(COND Y
(COND (OCCUR X (CAR Y)) T (OCCUR X (CDR Y)))
NIL)))))
DEFINE((OR (LAMBDA (X Y)
(COND X T (COND Y T NIL)))))
DEFINE((ORDERED (LAMBDA (x)
(COND X
(COND (CDR X)
(COND (LTE (CAR X) (CAR (CDR X)))
(ORDERED (CDR x))

NIL)
m
™))

DEFINE((PAIRLIST (LAMBDA (X Y)
(COND

X

(COND

Y

(CONS (CONS (CAR X) (CAR Y))
(PAIRLIST (CDR X) (CDR Y)))
(CONS (CONS (CAR X) NIL) (PAIRLIST (CDR X) NIL)))
NIL))))
DEFINE((REVERSE (LAMBDA (x)
(COND X
(APPEND (REVERSE (CDR X)) (CONS (CAR X) NIL))
NIL))))
DEFINE((SORT (LAMBDA (x)
(COND X (ADDTOLIS (CAR X) (SORT (CDR X))) NIL))))
DEFINE((SUBSET (LAMBDA (X Y)
(COND
X
(COND (MEMBER (CAR X) Y) (SUBSET (CDR X) Y) NiL)
™))
DEFINE((SUBST (LAMBDA (X Y 2)
(COND
(EQUAL Y 2)
X

(COND
z
(CONS (SUBST X Y (CAR Z)) (SUBST X Y (CDR 2)))
NIL)))))
DEFINE(SWAPTREE (LAMBDA (X)
(COND (NODE X)
(CONSNODE (SWAPTREE (CDR (CDR X)))

(SWAPTREE (CAR (CDR X))))
x))))
DEFINE((TIPCOUNT
(COND (NODE X)
(ADD (TIPCOUNT (CAR (CDR X)))
(TIPCOUNT (CDR {CDR x))))
1))
DEFINE((UNION
(COND x
(COND (MEMBER (CAM X) Y)
UNION (CDR X) Y)
(CONS (CAR X) (UNION (CDR X) Y)))

(LAMBDA (X)

(LAMBDA (X T)

APPENDIX B. THEOREMS PROVED AUTOMATICALLY.

APPEND, LENGTH AND REVERSE THEOREMS

(EQUAL (APPEND A (APPEND B C))
(APPEND (APPEND A B) C))

(IMPLIES (EQUAL (APPEND A B) (APPEND A C))
(EQUAL EC))

(EQUAL (LENGTH (APPEND A B)) (LENGTH (APPEND B A)))

(EQUAL (REVERSE (APPEND A B))

(APPEND (REVERSE B) (REVERSE A)))
(EQUAL (LENGTH (REVERSE D)) (LENGTH D))
(EQUAL (REVERSE (REVERSE A)) A)

(IMPLIES A (EQUAL (LAST (REVERSE A)) (CAR A)))

MEMBER, UNION, ETC THEOREMS

(IMPLIES (MEMBER A B) (MEMBER A (APPEND B C)))

(IMPLIES (MEMBER A B) (MEMBER A (APPEND C B)))

(IMPLIES (AND (NOT (EQUAL A (CAR B)))

(MEMBER A (CDR B)))

(MEMBER A B))

(IMPLIES (OR (MEMBER A B) (MEMBER A C))

(MEMBER A (APPEND B C)))
(IMPLIES (AND (MEMBER A B) (MEMBER AC))
(MEMBER A (INTERSEC B C)))
(IMPLIES (OR (MEMBER A B) (MEMBER A C))
(MEMBER A (UNION B c)))
(IMPLIES (SUBSET A B)

(EQUAL (UNION A B) B))

(IMPLIES (SUBSET A B) (EQUAL (INTERSEC A B) A))

(EQUAL (MEMBER A B)

(NOT (EQUAL {ASSOC A (PAIRLIST B C)) NIL)))

HAPLIST THEOREMS

(EQUAL (MAPLIST (APPEND A B) C)
(APPEND (MAPLIST A C) (MAPLIST B C)))
(EQUAL (LENGTH (MAPLIST A B)) (LENGTH A))

(EQUAL (REVERSE (MAPLIST A B))
(MAPLIST (REVERSE A) B))

492

MISCELLANEOUS THEOREMS

(EQUAL (LIT (APPEND A B) CD) (LIT A (LIT B C D) D))
(IMPLIES (AND (BOOLEAN A) (BOOLEAN B))
(EQUAL (AND (IMPLIES A E) (IMPLIES B A))

(EQUAL A B)))

(EQUAL (ELEMENT B A)

(ELEMENT (APPEND C B) (APPEND C A)))

(IMPLIES (ELEMENT B A) (MEMBER (ELEMENT B A) A))

(EQUAL (CDRN C (APPEND A B))

(APPEND (CDRN C A) (CDRN (CDRN A C) B)))

(EQUAL (CDRN (APPEND B C) A) (CDRN C (CDRN B A)))

(EQUAL (EQUAL A B) (EQUAL B A))

(IMPLIES (AND (EQUAL A B)
(IMPLIES
(AND (BOOLEAN A) (AND(BOOLEAN B) (BOOLEAN C)))
{EQUAL (EQUAL (EQUAL A B) C)
(EQUAL A (EQUAL B C))))

(EQUAL B c)) (EQUAL A C))

ARITHMETIC THEOREMS

(EQUAL (ADD A B) (ADD B A))

(EQUAL (ADD A (ABD B C)) (ADD (ADD A B) C))

(EQUAL (MULT A B) (MULT B A))

(EQUAL (MULT A (ADD B C))
(ADD (MULT A B) (MULT A C)))
(EQUAL

(MULT A (MULT B C)) (MULT (MULT A B) C))

(EVENt (DOUBLE A))

(IMPLIES (NUMBER? A) (EQUAL (HALF (DOUBLE A)) A))
(IMPLIES (AND (NUMBERP A) (EVENI A))
(EQUAL (DOUBLE (HALF A)) A))

(EQUAL (DOUBLE A) (MULT 2 A))

(EQUAL (DOUBLE A) (MULT A 2))

(EQUAL (EVEK1 A) (EVEN2 A))

GT, LTE, ORDERED AND SORT THEOREMS
(QT (LENGTH (CONS A B)) (LENGTH B))

(IMPLIES (AND (GT A B) (GT B C)) (GT A C))

(IMPLIES (GT A B) (NOT (GT B A)))
(LTE A (APPEND B A))
(OR (LTE A B) (LTE B A))

(OR (GT A B)

(OR (GT B A) (EQUAL (LENGTH A) (LENGTH Bj)))
(EQUAL (MONOT2P A) (MONOT1 A))
(ORDERED (SORT A))

(IMPLIES (AND (MONOT1 A)
(EQUAL (CAR A)

(MEMBER B A))
B))

(LTE (CDRN A B) B)

(EQUAL (MEMBER A (SORT B)) (MEMBER A B))
(EQUAL (LENGTH A) (LENGTH (SORT A)))

(EQUAL (COUNT A B) (COUHT A (SORT B)))
(IMPLIES (ORDERED A) (EQUAL A (SORT A)))
(IMPLIES (ORDERED (APPEND A B)) (ORDERED A))
(IMPLIES (ORDERED (APPEND A B)) (ORDERED B))
(EQUAL (EQUAL (SORT A) A) (ORDERED A))

(LTE (HALF A) A)

THEOREMS ABOUT TREES
(EQUAL (COPY A) A)

(EQUAL (EQUAL P A B) (EQUAL A B))

(EQUAL (SUBST A A B) B)

(IMPLIES (MEMBER A B) (OCCUR A B))

(IMPLIES (NOT (OCCUR A B)) (EQUAL (SUBST C A B) B))
(EQUAL (EQUALP A B) (EQUALP B A))

(IMTLIES (AND (EQUALP A B) (EQUALP B C))
(EQUALP A C))

(EQUAL (SWAPTREE (SWAPTREE A)) A)
(EQUAL (FLATTEN (SWAPTREE A)) (REVERSE (FLATTEN A)))

(EQUAL (LENGTH (FLATTEN A)) (TIPCOUKT A))

APPENDIX C. REWRITE RULES APPLIED BY NORMALIZE.

In the rules below, lower oase letters represent
arbitrary forms. Forms matching those on the loft-
hand side of the arrows are replaced by the appro-
priate instances of the forms on the right. |IDENT is
a routine which takes two terms as arguments and
returns 'equal' if they are syntactically identical
(such as (CONS A B) and (CONS A B), or (CONS NIL NIL)
and 1), 'unequal' if they are obviously unequal (such
as (CONS A B) and NIL, or (CONS A B) and A), or
'unknown'. BOOLEAN is a routine which returns true
or false depending upon whether its argument is
boolean by inspecting its definition with an inductive
assumption that any recursive calls are to be

considered boolean. NORMALIZE rewrites the arguments
to the term it is given before rewriting the top-level
expression. Finally, any rule involving EQUAL has a

symmetric version not presented in which the arguments
to the EQUAL have been interchanged.

EQUAL x y) =>T, if IDENT(x,y) = 'equal’

EQUAL x y) => NIL, if IDENT(x.y) = 'unequal’

EQUAL x T) => x, if BOOLEAN(x)

EQUAL (EQUAL x y) z) => (COND (EQUAL x y)
(EQUAL z T)
(COND 2 NIL T))

—_—— e~ o~

(COND (CONS U V) x y) =>x
(COND NIL x y) =cy
(COND x T NIL) 7> x, if BOOLEAN(x)
COND x y y) =>,
(COND x x NIL) => x
(f X4...(COHD y u v)...x) => (COND vy
f x ...u...x)

493

