
Proving Theorems About LISPFunctionsrobert s. boyer and j strother mooreUniversity of Edinburgh, Edinburgh, Scotland�AbstractProgram veri�cation is the idea that properties of programs can beprecisely stated and proved in the mathematical sense. In this paper,some simple heuristics combining evaluation and mathematical inductionare described, which the authors have implemented in a program thatautomatically proves a wide variety of theorems about recursive LISPfunctions. The method the program uses to generate induction formulasis described at length. The theorems proved by the program include thatREVERSE is its own inverse and that a particular SORT program is correct.A list of theorems proved by the program is given.key words and phrases: LISP, automatic theorem-proving, structuralinduction, program veri�cationcr categories: 3.64, 4.22, 5.211 IntroductionWe are concerned with proving theorems in a �rst-order theory of lists, akin tothe elementary theory of numbers. We use a subset of LISP as our languagebecause recursive list processing functions are easy to write in LISP and becausetheorems can be naturally stated in LISP; furthermore, LISP has a simple syntax�Copyright c1975, Association for Computing Machinery, Inc. General permission torepublish, but not for pro�t, all or part of this material is granted provided that ACM'scopyright notice is given and that reference is made to the publication, to its date of issue,and to the fact that reprinting privileges were granted by permission of the Association forComputing Machinery.This work was done on a grant to Professor BernardMeltzer from the British Science ResearchCouncil.Authors' present addresses: R. S. Boyer, Computer Science Group, Stanford Research Insti-tute, Menlo Park, CA 94025; J Strother Moore, Computer Science Laboratory, Xerox PaloAlto Research Center, Palo Alto, CA 94304.Journal of the Association for Computing Machinery, Vol. 72, No. 1, January 1975, pp.129-144. 1

and is universal in Arti�cial Intelligence. We employ a LISP interpreter to\run" our theorems and a heuristic which produces induction formulas frominformation about how the interpreter fails. We combine with the inductionheuristic a set of simple rewrite rules of LISP and a heuristic for generalizingthe theorem being proved. Our program accepts as input a LISP expression,e.g. (EQUAL (REVERSE (REVERSE A)) A),possibly involving Skolem constants (e.g. A, B, and C throughout this paper)which stand for universally quanti�ed variables ranging over all lists. The pro-gram attempts to show that the value of the input expression is always equalto T (whenever the Skolem constants are replaced by arbitrary lists). Theoremswe have proved automatically include(EQUAL (REVERSE (REVERSE A)) A)(IMPLIES (OR (MEMBER A B) (MEMBER A C))(MEMBER A (UNION B C)))and (ORDERED (SORT A)),where EQUAL is a LISP primitive function (and built into the theorem-prover)but REVERSE, IMPLIES, OR, MEMBER, UNION, ORDERED, and SORT are de�ned inLISP by the user of the program. The program uses only its knowledge ofthe LISP primitives and the LISP de�nitions supplied by the user. No furtherinformation is required of the user. This paper describes many aspects of theprogram in brevity. A thorough presentation can be found in [22].2 Our LISP SubsetWe use a subset of pure LISP [18] which has as primitives NIL, CONS, CAR, CDR,COND, and EQUAL. With these primitive we can de�ne recursive functions such asthose in Appendix A, and we can prove theorems such as those in Appendix Babout these functions. Our current theorem-prover assumes that the functionswith which it is concerned are total recursive functions, i.e. that they terminateand return an output for any input. (Hence our theorem-prover merely proves\partial correctness.") We do not prove theorems about functions that involveside e�ects. Our only atom is NIL. We use lists of NILs to represent naturalnumbers: 0 is NIL, 1 is (CONS NIL NIL), and ADD1 is de�ned as(LAMBDA (X) (CONS NIL X)).Our arithmetic is thus a version of Peano arithmetic.2

NIL is the false truth value. The true truth value in our language is (CONSNIL NIL), which we abbreviate as T.(CAR (CONS A B)) is de�ned to be A, and (CDR (CONS A B)) is B. (For thesake of completeness, we de�ne CAR and CDR of NIL to be NIL, but our theorem-prover never uses this de�nition.)Our equality primitive is EQUAL rather than EQ. Our conditional primitive,COND, takes three arguments. (COND A B C) in our system is (COND (A B) (TC)) in traditional LISP and means if A is not NIL then B else C.The user of the theorem-prover supplies function de�nitions almost exactlyas in LISP; for example,(APPEND (LAMBDA (X Y)(COND X(CONS (CAR X)(APPEND (CDR X)Y))))).APPEND concatenates its two list arguments.Our language is simple but powerful enough to encompass primitive recursivenumber theory. Furthermore, our language could, with suitable conventions,use lists to represent non-NIL atoms, arrays, and strings just as programminglanguages use bit strings to represent these data types.3 EVALOur LISP interpreter, EVAL, is similar in many ways to a normal LISP in-terpreter; EVAL applies function de�nitions and handles primitives like COND.EVAL is recursive; it evaluates arguments before applying and evaluating func-tion de�nitions. Our EVAL has special provisions for handling Skolem constantsand terms in which they appear. The following examples illustrate the behaviorof our EVAL:EVAL(NIL) = NILEVAL(A) = AEVAL((CONS A B)) = (CONS A B)EVAL((CAR (CONS A B))) = AEVAL((CDR (CAR (CONS A B)))) = (CDR A)EVAL((COND (CONS A B) C D)) = CEVAL((APPEND (CONS A B) C)) = (CONS A (APPEND) B C)).The last example is justi�ed because regardless of the values of A, B, and C, the�rst argument to APPEND is not NIL, so that the COND in the de�nition of APPENDcan be evaluated.EVAL tries to evaluate (APPEND B C) further but fails because it \recursesinto" the Skolem constant B. (See the de�nition of APPEND above.)3

When evaluating the form (FOO t1:::tn) where FOO is a de�ned function, werecursively evaluate the arguments �rst. Call the value of ti, t0i. EVAL binds theformal variables of FOO to their values and then evaluates the de�nition of FOO.If a recursive call of FOO is encountered in this function body the argumentsare evaluated as usual. Then, if one of the evaluated arguments is a CAR orCDR expression, it is added to a list called the BOMBLIST. In this case thede�nition of FOO is not reapplied for this recursive call. The current evaluationof the function body is continued in the hopes of adding more terms to theBOMBLIST. Finally, EVAL returns (FOO t01:::t0n).Thus, in evaluating (APPEND B C) the recursive call (APPEND (CDR B) C)is encountered in the de�nition of APPEND. (CDR B) is added to the BOMBLISTindicating recursion on B. Finally, (APPEND B C) is returned as the value of(APPEND B C).4 Evaluation and InductionPartial evaluation is su�cient to prove a few trivial theorems; for example,(EQUAL (APPEND NIL B) B)EVALs to T since partial evaluation of the APPEND yields B, even though thestructure of B is not known. However, induction is usually needed to prove evensimple theorems about recursive LISP functions.It is intuitively clear that evaluation and induction are complements. Theparadigm for evaluating a simple recursive function FOO is: Evaluate (FOO (CONSA B)) in terms of (FOO B) and handle the NIL case separately. The paradigmfor a simple inductive proof that (FOO X) is T for any argument X is: Show that(FOO NIL) is T, and then assuming that (FOO B) is T, show that (FOO (CONSA B)) is T.In particular, recursion starts with some structure and decomposes it whileinduction starts with NIL and builds up. This duality can be used to great ad-vantage: Evaluation can be used to reduce the induction conclusion (FOO (CONSA B)) to a statement involving the induction hypothesis (FOO B) provided thatthe (CONS A B) is one of the structures that FOO decomposes in its recursion.Suppose that we wish to prove by induction that (FOO X) is T for all X.To show that (FOO NIL) is T, the obvious thing to do is call EVAL and letevaluation solve the problem (for example, EVAL((APPEND NIL B)) is B). Wethen assume that (FOO B) is T, and try to show that (FOO (CONS A B)) is T,for a new Skolem constant A. The obvious thing to do now is to call EVALagain and let the recursion in FOO decompose the (CONS A B). The result will(hopefully) be some simple expression E, involving (FOO B); we then use thehypothesis that (FOO B) is T to show that E is T. This process is illustrated bythe examples in the next two sections. 4

Of course, if FOO has more than one argument, one must choose which one(s)to induct upon. But the link between evaluation and induction makes the choiceobvious: Induct on the structures that are being recursively decomposed byFOO. By choosing those structures we insure that when EVAL is called on theinduction conclusion, (FOO (CONS A B)), FOO will be able to recurse at least onestep and the problem will be reduced by EVAL to one involving the inductionhypothesis, (FOO B).However, the terms that FOO is trying to recurse on are just those thatgenerate the \errors" noted earlier. To determine what to induct upon we �rstEVAL the expression (expecting to fail) and then induct upon some term onthe BOMBLIST, that is, some term which EVAL failed to evaluate.5 A Simple Example of Evaluation and Induc-tionSuppose we wish to show that(1) (EQUAL (APPEND A (APPEND B C))(APPEND (APPEND A B) C))always evaluates to T, for any A, B, and C.The obvious way to proceed is to EVAL the expression and see if it is T.EVAL is unable to make any headway in evaluating (1) and simply returns (1)as its answer. However, in attempting to evaluate (1), EVAL placed four termson the BOMBLIST. Recall that in the de�nition of APPEND the �rst argumentis CDRed in the recursion but the second argument is not changed. In formula(1) there are four calls to APPEND. Two recurse upon A, one upon B, and oneupon (APPEND A B).Resorting to induction, we choose to induct upon A (we might have chosenB, but we choose A by \popularity"). First we try the \NIL case" (i.e. (1) withA replaced by NIL):(2) (EQUAL (APPEND NIL (APPEND B C))(APPEND (APPEND NIL B) C)).When we EVAL this, partial evaluation of the APPENDs makes (2) equivalent to(3) (EQUAL (APPEND B C) (APPEND B C)),since APPEND returns its second argument if the �rst is NIL. However, (3) is justa partial result, and now that the arguments have been EVALed, the EQUAL isevaluated to T, since in our LISP two identical expressions return EQUAL results.So the \NIL case" has been shown to be T by evaluation.Next we must show that(4) (EQUAL (APPEND (CONS A1 A) (APPEND B C))(APPEND (APPEND (CONS A1 A) B) C))5

is always T, if we assume that(5) (EQUAL (APPEND A (APPEND B C))(APPEND (APPEND A B) C))is T.But EVAL transforms (4) into(6) (EQUAL (CONS A1 (APPEND A (APPEND B C)))(CONS Al (APPEND (APPEND A B) C)))and then (from its knowledge of EQUAL) transforms (6) into(7) (EQUAL (APPEND A (APPEND B C))(APPEND (APPEND A B) C)).But (7) is exactly the same as (5) which we are assuming (inductively) isalways T. Hence, by evaluation and the induction hypothesis we have shown that(4), the induction conclusion, is always T. So the associativity of APPEND hasbeen proved. Observe that EVAL was responsible for converting the inductionconclusion (4) into an expression involving the induction hypothesis (5).Our program produces precisely this proof. Its only knowledge about APPENDis its LISP de�nition.6 Using the Induction Hypothesis and General-izationUsing the induction hypothesis is not always as easy as it was above. A goodexample occurs in our program's proof of(8) (EQUAL (REVERSE (REVERSE A)) A),where the de�nition of REVERSE is(LAMBDA (X)(COND X(APPEND (REVERSE (CDR X))(CONS (CAR X) NIL))NIL)).If we induct on A in (8) we �nd that the NIL case evaluates to T. We thereforeassume (8) as our induction hypothesis and try to prove(9) (EQUAL (REVERSE (REVERSE (CONS A1 A))) (CONS A1 A)).This evaluates to(10) (EQUAL (REVERSE (APPEND (REVERSE A) (CONS A1 NIL)))(CONS A1 A)). 6

We now wish to use the induction hypothesis, (8). Since it is an equality ourheuristic is to \cross-fertilize" (10) with it, by replacing the A in the right-handside of (10) by the left-hand side of (8), giving(11) (EQUAL (REVERSE (APPEND (REVERSE A) (CONS A1 NIL)))(CONS A1 (REVERSE (REVERSE A)))).We then consider (8) to be \used" and throw it away. We must now prove(11).At this point we note that (REVERSE A) is a subformula which appearson both sides of an EQUAL. Furthermore, from the de�nition of REVERSE, theprogram can determine that the output of (REVERSE A) can be any list at all.On these grounds we choose to generalize the theorem to be proved by replacing(REVERSE A) in (11) by a Skolem constant, B, and set out to prove(12) (EQUAL (REVERSE (APPEND B (CONS A1 NIL)))(CONS A1 (REVERSE B))).But (12) is easy to prove. EVAL tells us to induct on B. The NIL case EVALsto T. Assuming (12) as the induction hypothesis, we EVAL the \CONS case":(13) (EQUAL (REVERSE (APPEND (CONS B1 B) (CONS A1 NIL)))(CONS A1 (REVERSE (CONS B1 B))))and get (14) (EQUAL (APPEND (REVERSE (APPEND B (CONS A1 NIL)))(CONS B1 NIL))(CONS A1 (APPEND (REVERSE B) (CONS B1 NIL)))).We now use our hypothesis, (12), by cross-fertilizing (14) with it, replacing(REVERSE (APPEND B (CONS A1 NIL))) in the left-hand side of (14) by theright-hand side of (12), yielding(15) (EQUAL (APPEND (CONS A1 (REVERSE B)) (CONS B1 NIL))(CONS A1 (APPEND (REVERSE B) (CONS B1 NIL)))).Finally, (15) EVALs to T because the left-hand side APPEND evaluates to(CONS A1 (APPEND (REVERSE B) (CONS B1 NIL))),which is the right-hand side, so the EQUAL returns T. The theorem is thereforeproved.Our theorem-prover takes 8 seconds to produce this proof. If the readerthinks that this theorem is utterly trivial, he is invited to try to prove thesimilar theorem(EQUAL (REVERSE (APPEND A B))(APPEND (REVERSE B) (REVERSE A))),which is also proved by the program. 7

7 A Description of the ProgramBesides EVAL there are �ve basic subroutines in our system: NORMALIZE,REDUCE, FERTILIZE, GENERALIZE, and INDUCT. Below are brief descrip-tions of these routines.NORMALIZE applies about ten rewrite rules to LISP expressions. For ex-ample, (COND (COND A B C) D E) becomes(COND A (COND B D E) (COND C D E)),and (COND A A NIL) becomes A. Appendix C lists the rewrite rules.REDUCE attempts to propagate the results of the tests in COND statementsdown the branches of the COND tree. Thus,(COND A (COND A B C) (P A)) becomes (COND A B (P NIL)).FERTILIZE is responsible for \using" the hypothesis of an implication whenit is an equality. A theorem of the form x = y ! p(y) is rewritten to p(x)_x 6= y.We make fertilizations of the formx = y ! f(z) = g(y) becomes f(z) = g(x) _ x 6= y:before any other kind. We call such substitutions \cross-fertilizations;" we prefercross-fertilizations because they frequently allow the proofs we want. Afterfertilizing we never again look at the equality hypothesis, although we retain itfor soundness.GENERALIZE is responsible for generalizing the theorem to be proved. Thisis done by replacing some common subformulas in the theorem by new Skolemconstants. To prove something of the form p(f(A)) = q(f(A)), we try provingp(B) = q(B); and to prove p(f(A)) ! q(f(A)), we try p(B) ! q(B), whereB is a new Skolem constant. However, if the subformula f(A) is of a highlyconstrained type, for instance, it is always a number, an additional condition isimposed on the new Skolem constant.If the theorem to be generalized is(EQUAL (ADD (LENGTH A) B) (ADD B (LENGTH A))),GENERALIZE produces as output(COND (LENGTYPE C) (EQUAL (ADD C B) (ADD B C)) T),where LENGTYPE is a LISP function written by GENERALIZE from the LISPde�nition of LENGTH. In this particular case, the function written by GENER-ALIZE has precisely the de�nition of NUMBERP, namely,(LAMBDA (X)(COND X(COND (CAR X) NIL (NUMBERP (CDR X)))T)). 8

To perform the generalization described in the previous section, GENER-ALIZE wrote the \type function" for REVERSE,(LAMBDA (X) T),which was recognized as being no restriction at all and then ignored. Theproblem of recognizing the output of a recursive function is clearly undecidableand very di�cult. To write these type functions, GENERALIZE uses someheuristics which are often useful.INDUCT is the program that embodies our induction heuristic. We nowdescribe the form in which it presents the new induction formula to the otherroutines and how the induction hypothesis is saved for use.If the theorem to be proved by induction is (FOO A) and EVAL indicatesthat FOO recurses on the CDR of A, the output of INDUCT is(COND (FOO NIL)(COND (FOO A) (FOO (CONS A1 A)) T)NIL),which becomes the theorem to be proved. This is just the LISP expression for(FOO NIL)^ ((FOO A)! (FOO (CONS A1 A))):The de�nitions of AND and IMPLIES are in Appendix A.The precise form of the induction formula output by INDUCT is dictatedby the types of \errors" encountered by EVAL. For example, if both the CARand the CDR of A occur on the BOMBLIST, then the induction formula is(FOO NIL) ^ (((FOO A1)^ (FOO A))! (FOO (CONS A1 A))):For simultaneous recursion on two variables (e.g. LTE in Appendix A) and morecomplicated recursion (e.g. ORDERED), INDUCT produces appropriate inductionformulas. All of this information is collected from the BOMBLIST produced byEVAL.8 Control Structure of the ProgramThe control structure of our system is very simple. To prove that some LISPexpression, THM, always evaluates to T, we execute the following loop:loop: set OLDTHM to THM;set THM to REDUCE(NORMALIZE(EVAL(THM)));if THM = T, then return;if THM is not equal to OLDTHM, then goto loop;if fertilization applies, then set THM to FERTILIZE(THM)otherwise, if THM is of the form (COND p q NIL)then set THM to (COND INDUCT(GENERALIZE(p)) q NIL)otherwise, set THM to INDUCT(GENERALIZE(THM));goto loop; 9

It should be noted that all of the important control structure is embeddedin the LlSP expression THM. For example, when INDUCT needs to prove theconjunction of the NIL case and the induction step, it is actually done by re-placing the expression THM by a LISP expression which has value T if and onlyif that conjunction is true. If the NIL case evaluates to T, then EVAL returnsthe second conjunct, which becomes the theorem to be proved.9 FailuresThe program will prove an interesting variety of theorems, as illustrated byAppendix B. However, the system is far from being a practical tool for programveri�cation because it fails to prove many interesting theorems.We believe that the current program is incapable of proving theorems moredi�cult | in an intuitive sense | than the correctness of the list sorting func-tion in Appendix A. To prove that the output of SORT is ORDERED requires thegeneration and proof of two lemmas: that ADDTOLIST produces an ordered listwhen its second argument is ordered, and that the function LTE (less than orequal) has the property that (for all X and Y), X is LTE Y, or Y is LTE X. Theprogram generates these two lemmas and proves them by induction. (Note: Inorder to prove the correctness of SORT, one must not only show that its outputis ORDERED but that the output is a permutation of the input. The programproves this as well.)Although the correctness of SORT is interesting, computers are full of pro-grams much more complicated. Thus the statement that the above theorem isessentially at the limit of the current program's power is especially disturbingto those interested in practical applications.Below we discuss two common causes of the theorem-prover's failure to provemany theorems.The �rst cause is simply that the induction mechanism is too simple. Asmathematicians have known for years, it is often not at all obvious what onemust assume in order to prove a theorem inductively. The current programsu�ers frommaking the wrong hypotheses, even when the right ones are obvious.Consider the function(REVERSE1 (LAMBDA (X Y)(COND X(REVERSE1 (CDR X)(CONS (CAR X) Y))Y))).Note that as the function recursively destroys X, it recursively constructs Y.If a theorem involving (REVERSE1 A B) is to be proved by induction on A,the conclusion will involve the term (REVERSE1 (CONS A1 A) B). When thisis symbolically evaluated it yields (REVERSE1 A (CONS A1 B)). Therefore, this10

term should be involved in the hypothesis if the hypothesis is to be useful. How-ever, the current program supplies the term (REVERSE1 A B) in the hypothesis,because it fails to note the way the second argument is being used.A second cause of failure involves generalization and induction. To provethe theorem(IMPLIES (SUBSET A A) (SUBSET A (CONS A1 A)))requires the generalization(IMPLIES (SUBSET A B) (SUBSET A (CONS A1 B))).The program can easily prove the generalization, but it fails to prove the orig-inal theorem. Recognizing the need for the generalization and deciding whichvariables to \separate" is di�cult.We feel that despite the shortcomings of the current program, the approachto program veri�cation discussed here is promising. Just as it is di�cult if notimpossible to integrate symbolically certain formulas without certain `tricks," itis di�cult if not impossible to prove certain theorems without certain \tricks."The program is an implementation of some of these tricks and we believe it ispossible to discover more and implement them in a way that is within the spiritof the current approach, if not within the framework of the current program.10 ConclusionWe �nd it natural to use the routines EVAL, NORMALIZE, and REDUCE bothto rewrite LISP expressions and prove theorems. Our experience con�rms, andwas motivated by, a conviction that proofs and computations are essentiallysimilar. This conviction was inspired by conversations with Bob Kowalski andPat Hayes, and the beauty of LISP. Our program is in the style of theorem-proving programs written by Bledsoe [1, 2].We would like to note that our program uses no search and has no knowledgeof user functions other than their de�nitions. Consequently our theorem-proverfrequently reproves simple facts like the associativity of APPEND.11 Related WorkAn excellent survey of the various methods for verifying programs is presentedin Manna, Ness, and Vuillemin, 1972 [16].Brotz, 1973 [3] has implemented an arithmetic theorem-prover very similarto ours. His system generates its own induction formulas and uses the generaliza-tion heuristic we use (without \type functions"). He inducts upon the rightmostSkolem constant appearing in the statement of the theorem rather than usingEVAL and the BOMBLIST as we do. His heuristic will always choose a term11

recursed upon (due to restrictions on the forms of recursive equations allowed),but it will not always choose the one we choose.Our program uses structural induction, which was introduced into the litera-ture by Burstall, 1969 [4], although it was used earlier by McCarthy and Painter,1967 [19] in a compiler correctness proof. Common alternative inductive meth-ods for recursive languages are computational induction (Park, 1969 [24]) andrecursion induction (McCarthy, 1963 [17]). Both are essentially induction on thedepth of function calls. Milner, 1972 [20] and Milner and Weyhrauch, 1972 [21]describe a proof checker for Scott's Logic for Computable Functions (Scott, 1970[25]) which uses computational induction. The most commonly used method isfor ow diagram languages and was suggested by Naur, 1966 [23] and Floyd,1967 [10]. In this approach, inductive assertions are attached to points in aprogram and are used to generate \veri�cation conditions," which are theoremsthat must be proved to establish the correctness of the program. King 1969[15], Good, 1970 [12], Cooper, 1971 [5], Gerhart, 1972 [11], Deutsch, 1973 [7],Igarashi, London, and Luckham, 1973 [13], Elspas, Levitt, and Waldinger, 1973[9], and Topor and Burstall, 1973 [26] have implemented systems which use thismethod for languages which include assignments (possibly to arrays), jumps orloops, and de�ned procedure calls. These programs require the user to invent in-ductive assertions. Elspas, 1972 [8], Wegbreit, 1973 [27], and Katz and Manna,1973 [14] present heuristics for generating inductive assertions automatically.Darlington and Burstall, 1973 [6] describe a system which will take functionssuch as the ones in our LISP subset and write equivalent programs which aremore e�cient. This system will replace recursion by iteration, merge loops, anduse data structures (destructively) when permitted.Appendix A. Function De�nitionsAppendix A contains the de�nition of the LISP functions we use in the proofsof the theorems in Appendix B. The program automatically proves all of thetheorems in Appendix B. The average time to prove each theorem is 8 seeondson an ICL 4130 using POP-2. The time is almost completely spent in POP-2list processing, where the time for a CONS is 400 microseconds, and for a CARand CDR is 50 microseconds.(ADD (LAMBDA (X Y)(COND (ZEROP X)(LENGTH Y)(ADD1 (ADD (SUB1 X)Y)))))(ADD1 (LAMBDA (X)(CONS NIL X)))(ADDTOLIST (LAMBDA (X Y)(COND Y (COND (LTE X (CAR Y))(CONS X Y)(CONS (CAR Y)12

(ADDTOLIST X (CDR Y))))(CONS X NIL))))(AND (LAMBDA (X Y)(COND X (COND Y T NIL)NIL)))(APPEND (LAMBDA (X Y)(COND X (CONS (CAR X)(APPEND (CDR X)Y))Y)))(ASSOC (LAMBDA (X Y)(COND Y (COND (CAR Y)(COND (EQUAL X (CAR (CAR Y)))(CAR Y)(ASSOC X (CDR Y)))(ASSOC X (CDR Y)))NIL)))(BOOLEAN (LAMBDA (X)(COND X (EQUAL X T)T)))(CDRN (LAMBDA (X Y)(COND Y (COND (ZEROP X)Y(CDRN (SUB1 X)(CDR Y)))NIL)))(CONSNODE (LAMBDA (X Y)(CONS NIL (CONS X Y))))(COPY (LAMBDA (X)(COND X (CONS (COPY (CAR X))(COPY (CDR X)))NIL)))(COUNT (LAMBDA(X Y)(COND Y (COND (EQUAL X (CAR Y))(ADD1 (COUNT X (CDR Y)))(COUNT X (CDR Y)))0)))(DOUBLE (LAMBDA (X)(COND (ZEROP X)0(ADD 2 (DOUBLE (SUB1 X))))))(ELEMENT (LAMBDA (X Y)(COND Y (COND (ZEROP X)(CAR Y)(ELEMENT (SUB1 X)(CDR Y)))13

NIL)))(EQUALP (LAMBDA (X Y)(COND X (COND Y (COND(EQUALP (CAR X)(CAR Y))(EQUALP (CDR X)(CDR Y))NIL)NIL)(COND Y NIL T))))(EVEN1 (LAMBDA (X)(COND (ZEROP X)T(ODD (SUB1 X)))))(EVEN2 (LAMBDA (X)(COND (ZEROP X)T(COND (ZEROP (SUB1 X))NIL(EVEN2 (SUB1(SUB1 X)))))))(FLATTEN (LAMBDA(X)(COND (NODE X)(APPEND (FLATTEN (CAR (CDR X)))(FLATTEN (CDR (CDR X))))(CONS X NIL))))(GT (LAMBDA (X Y)(COND (ZEROP X)NIL(COND (ZEROP Y)T(GT (SUB1 X)(SUB1 Y))))))(HALF (LAMBDA (X)(COND (ZEROP X)0(COND (ZEROP (SUB1 X))0(ADD1 (HALF (SUB1 (SUB1 X))))))))(IMPLIES (LAMBDA (X Y)(COND X (COND Y T NIL)T)))(INTERSECT (LAMBDA (X Y)(COND X (COND (MEMBER (CAR X)Y)(CONS (CAR X)(INTERSECT (CDR X)Y))(INTERSECT (CDR X)14

Y))NIL)))(LAST (LAMBDA (X)(COND X (COND (CDR X)(LAST (CDR X))(CAR X))NIL)))(LENGTH (LAMBDA (X)(COND X (ADD1 (LENGTH (CDR X)))0)))(LIT (LAMBDA (X Y Z)(COND X (APPLY Z (CAR X)(LIT (CDR X)Y Z))Y)))(LTE (LAMBDA (X Y)(COND (ZEROP X)T(COND (ZEROP Y)NIL(LTE (SUB1 X)(SUB1 Y))))))(MAPLIST (LAMBDA (X Y)(COND X (CONS (APPLY Y (CAR X))(MAPLIST (CDR X)Y))NIL)))(MEMBER (LAMBDA (X Y)(COND Y (COND (EQUAL X (CAR Y))T(MEMBER X (CDR Y)))NIL)))(MONOT1 (LAMBDA (X)(COND X (COND (CDR X)(COND (EQUAL (CAR X)(CAR (CDR X)))(MONOT1 (CDR X))NIL)T)T)))(MONOT2 (LAMBDA (X Y)(COND Y (COND (EQUAL X (CAR Y))(MONOT2 X (CDR Y))NIL)T)))(MONOT2P (LAMBDA (X)(COND X (MONOT2 (CAR X)15

(CDR X))T)))(MULT (LAMBDA (X Y)(COND (ZEROP X)0(ADD Y (MULT (SUB1 X)Y)))))(NODE (LAMBDA (X)(COND X (COND (CAR X)NIL(COND (CDR X)T NIL))NIL)))(NOT (LAMBDA (X)(COND X NIL T)))(NUMBERP (LAMBDA (X)(COND X (COND (CAR X)NIL(NUMBERP (CDR X)))T)))(OCCUR (LAMBDA (X Y)(COND (EQUAL X Y)T(COND Y (COND (OCCUR X (CAR Y))T(OCCUR X (CDR Y)))NIL))))(ODD (LAMBDA (X)(COND (ZEROP X)NIL(EVEN1 (SUB1 X)))))(OR (LAMBDA (X Y)(COND X T (COND Y T NIL))))(ORDERED (LAMBDA (X)(COND X (COND (CDR X)(COND (LTE (CAR X)(CAR (CDR X)))(ORDERED (CDR X))NIL)T)T)))(PAIRLIST (LAMBDA (X Y)(COND X (COND Y (CONS (CONS (CAR X)(CAR Y))(PAIRLIST (CDR X)(CDR Y)))(CONS (CONS (CAR X)16

NIL)(PAIRLIST (CDR X)NIL)))NIL)))(REVERSE (LAMBDA (X)(COND X (APPEND (REVERSE (CDR X))(CONS (CAR X)NIL))NIL)))(SORT (LAMBDA (X)(COND X (ADDTOLIST (CAR X)(SORT (CDR X)))NIL)))(SUB1 (LAMBDA (X)(CDR X)))(SUBSET (LAMBDA (X Y)(COND X (COND (MEMBER (CAR X)Y)(SUBSET (CDR X)Y)NIL)T)))(SUBST (LAMBDA (X Y Z)(COND (EQUAL Y Z)X(COND Z (CONS (SUBST X Y (CAR Z))(SUBST X Y (CDR Z)))NIL))))(SWAPTREE (LAMBDA (X)(COND (NODE X)(CONSNODE (SWAPTREE (CDR (CDR X)))(SWAPTREE (CAR (CDR X))))X)))(TIPCOUNT (LAMBDA (X)(COND (NODE X)(ADD (TIPCOUNT (CAR (CDR X)))(TIPCOUNT (CDR (CDR X))))1)))(UNION (LAMBDA (X Y)(COND X (COND (MEMBER (CAR X)Y)(UNION (CDR X)Y)(CONS (CAR X)(UNION (CDR X)Y)))17

Y)))(ZEROP (LAMBDA (X)(EQUAL X 0)))Appendix B. Theorems Proved(EQUAL (APPEND A (APPEND B C)) (APPEND (APPEND A B) C))(IMPLIES (EQUAL (APPEND A B) (APPEND A C)) (EQUAL B C))(EQUAL (LENGTH (APPEND A B)) (LENGTH (APPEND B A)))(EQUAL (REVERSE (APPEND A B)) (APPEND (REVERSE B) (REVERSE A)))(EQUAL (LENGTH (REVERSE D)) (LENGTH D))(EQUAL (REVERSE (REVERSE A)) A)(IMPLIES A (EQUAL (LAST (REVERSE A)) (CAR A)))(IMPLIES (MEMBER A B) (MEMBER A (APPEND B C)))(IMPLIES (MEMBER A B) (MEMBER A (APPEND C B)))(IMPLIES (AND (NOT (EQUAL A (CAR B))) (MEMBER A B)) (MEMBER A (CDR B)))(IMPLIES (OR (MEMBER A B) (MEMBER A C)) (MEMBER A (APPEND B C)))(IMPLIES (AND (MEMBER A B) (MEMBER A C)) (MEMBER A (INTERSECT B C)))(IMPLIES (OR (MEMBER A B) (MEMBER A C)) (MEMBER A (UNION B C)))(IMPLIES (SUBSET A B) (EQUAL (UNION A B) B))(IMPLIES (SUBSET A B) (EQUAL (INTERSECT A B) A))(EQUAL (MEMBER A B) (NOT (EQUAL (ASSOC A (PAIRLIST B C)) NIL)))(EQUAL (MAPLIST (APPEND A B) C) (APPEND (MAPLIST A C) (MAPLIST B C)))(EQUAL (LENGTH (MAPLIST A B)) (LENGTH A))(EQUAL (REVERSE (MAPLIST A B)) (MAPLIST (REVERSE A) B))(EQUAL (LIT (APPEND A B) C D) (LIT A (LIT B C D) D))(IMPLIES (AND (BOOLEAN A) (BOOLEAN B))(EQUAL (AND (IMPLIES A B) (IMPLIES B A)) (EQUAL A B)))(EQUAL (ELEMENT B A) (ELEMENT (APPEND C B) (APPEND C A)))(IMPLIES (ELEMENT B A) (MEMBER (ELEMENT B A) A))(EQUAL (CDRN C (APPEND A B)) (APPEND (CDRN C A) (CDRN (CDRN A C) B)))(EQUAL (CDRN (APPEND B C) A) (CDRN C (CDRN B A)))(EQUAL (EQUAL A B) (EQUAL B A))(IMPLIES (AND (EQUAL A B) (EQUAL B C)) (EQUAL A C))(IMPLIES (AND (BOOLEAN A) (AND (BOOLEAN B) (BOOLEAN C)))(EQUAL (EQUAL (EQUAL A B) C) (EQUAL A (EQUAL B C))))(EQUAL (ADD A B) (ADD B A))(EQUAL (ADD A (ADD B C)) (ADD (ADD A B) C))(EQUAL (MULT A B) (MULT B A))(EQUAL (MULT A (ADD B C)) (ADD (MULT A B) (MULT A C)))(EQUAL (MULT A (MULT B C)) (MULT (MULT A B) C))(EVEN1 (DOUBLE A))(IMPLIES (NUMBERP A) (EQUAL (HALF (DOUBLE A)) A))(IMPLIES (AND (NUMBERP A) (EVEN1 A)) (EQUAL (DOUBLE (HALF A)) A))(EQUAL (DOUBLE A) (MULT 2 A))(EQUAL (DOUBLE A) (MULT A 2))(EQUAL (EVEN1 A) (EVEN2 A)) 18

(GT (LENGTH (CONS A B)) (LENGTH B))(IMPLIES (AND (GT A B) (GT B C)) (GT A C))(IMPLIES (GT A B) (NOT (GT B A)))(LTE A (APPEND B A))(OR (LTE A B) (LTE B A))(OR (GT A B) (OR (GT B A) (EQUAL (LENGTH A) (LENGTH B))))(EQUAL (MONOT2P A) (MONOT1 A))(ORDERED (SORT A))(IMPLIES (AND (MONOT1 A) (MEMBER B A)) (EQUAL (CAR A) B))(LTE (CDRN A B) B)(EQUAL (MEMBER A (SORT B)) (MEMBER A B))(EQUAL (LENGTH A) (LENGTH (SORT A)))(EQUAL (COUNT A B) (COUNT A (SORT B)))(IMPLIES (ORDERED A) (EQUAL A (SORT A)))(IMPLIES (ORDERED (APPEND A B)) (ORDERED A))(IMPLIES (ORDERED (APPEND A B)) (ORDERED B))(EQUAL (EQUAL (SORT A) A) (ORDERED A))(LTE (HALF A) A)(EQUAL (COPY A) A)(EQUAL (EQUALP A B) (EQUAL A B))(EQUAL (SUBST A A B) B)(IMPLIES (MEMBER A B) (OCCUR A B))(IMPLIES (NOT (OCCUR A B)) (EQUAL (SUBST C A B) B))(EQUAL (EQUALP A B) (EQUALP B A))(IMPLIES (AND (EQUALP A B) (EQUALP B C)) (EQUALP A C))(EQUAL (SWAPTREE (SWAPTREE A)) A)(EQUAL (FLATTEN (SWAPTREE A)) (REVERSE (FLATTEN A)))(EQUAL (LENGTH (FLATTEN A)) (TIPCOUNT A))Appendix C. Rewrite Rules Applied by NormalizeIn the rules below, lower-case letters represent arbitrary forms. Forms match-ing those on the left-hand side of thc arrows are replaced by the appropriateinstances of the forms on the right. IDENT is a routine which takes two termsas arguments and returns "equal" if they are syntatically identical (such as(CONS A B) and (CONS A B), or (CONS NIL NIL) and 1), "unequal" if theyare obviously unequal (such as (CONS A B) and NIL, or (CONS A B) and A),or "unknown". BOOLEAN is a routine which returns true or false dependingupon whether its argument is Boolean. BOOLEAN handles recursive functionsby inspecting their de�nitions with an inductive assumption that any recursivecalls are to be considered Boolean. NORMALIZE rewrites the arguments tothe term it is given before rewriting the top-level expression. Finally, any ruleinvolving EQUAL has a symmetric version not presented in which the argumentsto the EQUAL have been interchanged.(EQUAL x y)) T, if IDENT(x, y) = "equal"(EQUAL x y)) NIL, if IDENT(x, y) = "unequal"19

(EQUAL x T)) x, if BOOLEAN(x)(EQUAL (EQUAL x y) z)) (COND (EQUAL x y) (EQUAL z T)(COND z NIL T))(COND (CONS u v) x y)) x(COND NIL x y)) y(COND x T NIL)) x, if BOOLEAN(x)(COND x y y)) y(COND x x NIL)) x(f x::: (COND y u v) :::z)) (COND y (f x:::u:::z)(f x:::v:::z))ACKNOWLEDGMENT. We are grateful to Professor Bernard Meltzer forhis support and supervision.REFERENCES1. Bledsoe, W. W. Splitting and reduction heursitics in automatic theoremproving. Artif. Intel. 2, 1 (1971), 55 77.2. Bledsoe, W. W., Boyer, R. S., and Henneman, W. H. Computerproofs of limit theorems. Artif. Intel. 3 (1972), 27-60.3. Brotz, D. Proving theorems by mathematical induction. Ph.D. Th., Com-put. Sci. Dep., Stanford U., Stanford, Calif., 1973.4. Burstall, R. M. Proving properties of programs by structural induction.Comput. J. 12 (1969), 41-48.5. Cooper, D. Programs for mechanical program veri�cation. In MachineIntelligence 6, B. Meltzer and D. Michie, Eds., Edinburgh U. Press, Ed-inburgh, 1971, pp. 43-59.6. Darlington, J., and Burstall, R. M. A system which automaticallyimproves programs. Proc. Internat. Joint Conf. on Artif. Intell., 1973,pp. 479-485.7. Deutsch, L. P. An interactive program veri�er. Ph.D. Th., Comput. Sci.Dep., U. of California, Berkeley, Calif., 1973.8. Elspas, B. The semiautomatic generation of inductive assertions for pro-gram correctness proofs. Rep. No. 55, Seminar, Des Instituts fur Theorieder Automaten und Schaltnetzwerke, Gesellschaft fur Mathematik undDatenverarbeitung, Bonn, Aug. 21,1972.9. Elspas, B., Levitt, K. N., and Waldinger, R. J. An interactivesystem for the veri�cation of computer programs. Final rep., Project1891, Stanford Res. Inst., Menlo Park, Calif., 1973.10. Floyd, R. W. Assigning meaning to programs. Proceedings of a Sym-posium in Applied Mathematics, Vol. 19: Mathematical Aspects of Com-puter Science, J. T. Schwartz, Ed., Amer. Math. Soc., Providence, R. I.,1967, pp. 19-32. 20

11. Gerhart, S. Veri�cation of APL programs. Ph.D. Th., Carnegie-MellonU., Pittsburgh, Pa., 1972.12. Good, D. Toward a man-machine system for proving program correctness.Ph.D. Th., Dep. of Comput. Sci., U. of Wisconsin, Madison, Wis., 1970.13. Igarashi, S., London, R. L., and Luckham, D. C.Automatic programveri�cation I: A logical basis and its implementation. Rep. 200, StanfordArtif. Intel. Lab., Stanford, Calif., 1973.14. Katz, S. M., and Manna, Z. A heuristic approach to program veri�ca-tion. Proc. Int'l Joint Conf. on Artif. Intell., 1973, pp. 500-512.15. King, J. A program veri�er. Ph.D. Th., Carnegie-Mellon U., Pittsburgh,Pa., 1969.16. Manna, Z., Ness, S., and Vuillemln, J. Inductive methods for provingproperties of programs. Proceedings of an ACM Conference on ProvingAssertions about Programs, SIGPLAN Notices, Vol. 7, No. 1 (Jan. 1972),pp. 27-50.17. McCarthy, J. A basis for a mathematical theory of computation. InComputer Programming and Formal Systems, P. Bra�ort and D. Hirsch-berg, Eds., North-Holland, Amsterdam, 1963, pp. 33-70.18. McCarthy, J., et al. LISP 1.5 Programmer's Manual. M.I.T. Press,Cambridge, Mass., 1962.19. Mccarthy, J., and Painter, J. A. Correctness of a compiler for arith-metic expressions. Proceedings of a Symposium in Applied Mathematics,Vol. 19, Mathematical Aspects of Computer Science, Schwartz, J. T., Ed.,Amer. Math. Soc., Providence, R. I., 1967, pp. 33-41.20. Milner, R. Implementation and application of Scott's logic for com-putable functions. Proceedings of an ACM Conference on Proving Asser-tions about Programs, SIGPLAN Notices, Vol. 7, No. 1 (Jan. 1972), pp.1-6.21. Milner, R., and Weyhrauch, R. Proving compiler correctness in amechanized logic In Machine Intelligence 7, B. Meltzer and D. Michie,Eds., Edinburgh U. Press, Edinburgh, 1972, pp. 5170.22. Moore, J S. Computational logic: Structure sharing and proof of programproperties. Ph.D. Th., Dep. of Computational Logic, School of Artif.Intel., U. of Edinburgh, Edinburgh, 1973.23. Naur, P. Proof of algorithms by general snapshots. BIT 6 (1966), 310-316. 21

24. Park, D. Fixpoint induction and proofs of program properties. In Ma-chine Intelligence 5, B. Meltzer and D. Michie, Eds., Edinburgh U. Press,Edinburgh, 1969, pp. 59-78.25. Scott, D. Outline of a Mathematical Theory of Computation. Tech.Monograph PRG-2, Programming Res. Group, Oxford U. ComputingLab., Nov. 1970.26. Topor, R., and Burstall, R. M. Private communication (1973).27. Wegbreit, B. The synthesis of loop predicates. Comm. ACM 17, 2(Feb.1974),102-112.received september 1993; revised april 1994

22

