1

It is often necessary to perform statistical filtering and peak location in dig-
ital spectra for communications signal processing. In this paper we consider
an abstraction of the algorithm implemented on one such microprocessor, the
Motorola CAP digital signal processor [5]. One of the major functional units
of the CAP is the adder array, a collection of 20-bit adder/subtracters, each of
which has 8 dedicated input registers and a dedicated path to a local memory.
The CAP adder array was originally designed to support fast FFT computa-
tions, but the designers also included the datapaths necessary to accelerate peak

A Mechanically Checked Proof of a
Comparator Sort Algorithm

Bishop Brock*
J Strother Mooref

February 22, 1999

Abstract

We describe a mechanically checked correctness proof for the compara-
tor sort algorithm underlying a microcode program in a commercially
designed digital signal processing chip. The abstract algorithm uses an
unlimited number of systolic comparator modules to sort a stream of data.
In addition to proving that the algorithm produces an ordered permuta-
tion of its input, we prove two theorems that are important to verifying
the microcode implementation. These theorems describe how positive and
negative “infinities” can be streamed into the array of comparators to
achieve certain effects. Interesting generalizations are necessary in order
to prove these theorems inductively. The mechanical proofs were carried
out with the ACL2 theorem prover. We find these proofs both mathemat-
ically interesting and illustrative of the kind of mathematics that must be
done to verify software.

Informal Discussion of the Problem

finding.

*IBM Austin Research Laboratory, 11501 Burnet Road, Austin, TX 78756,

brock@austin.ibm.com

fDepartment of Computer Sciences, University of Texas, Austin, TX 78712,

moore@cs.utexas.edu.

The so-called “5PEAK” program of the CAP [3] uses the microprocessor’s
adder array as a systolic comparator array as shown in Figure 1. The program
streams data through the comparator array and finds the five largest data points
and the five corresponding memory addresses. In this informal discussion we

Figure 1: Abstract View of Comparator Array

largely ignore memory addresses paired with each data point.

Candidate data points enter the array by way of register C; and move
through the array, towards the right in the diagram. Maximum values (peaks)
remain in the array in the P, registers, and the minima are eventually discarded
when they pass out of the last comparator. On each cycle the comparator array
updates the registers as follows:

C1 = next data point,
Cn = l’IliIl(Cn_l, Pn—l)a n >].,
P, = max(C,,P,).

Informally, the peak registers, P;, maintain the maximum value that has passed
by that point in the comparator array. How can we use this array to sort? Or,
more particularly, to identify the n highest peaks in the stream of data?

Using the comparator array to find the five maxima requires several steps.
We explain the algorithm by example here. In the following we will represent the
contents of the comparator array registers in the format shown below, with the
contents of each peak register above the contents of the corresponsing candidate
register.

p P P P B
C, Cy O3 Cy Cs

The next state of the comparator array on each cycle is

max(P;,C;) max(P,C2) max(Ps;,C5) max(Py,Cy) max(Ps,Cs)
d min(P;,C;) min(Ps,Cy) min(Ps,C3) min(Py,Cs) |’

where d represents the next data point.
We will illustrate the peak search for the 10-element data vector

[2 9354187 10 6].

Although this example uses small unsigned numbers for simplicity, the CAP
implementation of comparator array and 5PEAK microcode will correctly search

any vector of signed, 20-bit 2’s complement data values, subject to a few obvious
restrictions.

The comparator array is initialized by setting Cy to the first (leftmost) el-
ement of the data vector, and setting every other register to —oo. In the fixed
bit-width hardware realization of the comparator array on the CAP, the role of
—oo is played by the most negative number, —219.

—0 -0 —00 —00 —00
2 —00 —00 —00 —O0

Carrying out the comparator array operations for 9 more steps results in the

configuration
10 8 5 3 2
6 9 7 4 1|

Up to this point the algorithm described here is essentially identical to
the two VLSI sorting algorithms described in [8, 4]. These researchers offered
special-purpose hardware designs with the same basic compare-exchange step
described above. There is a key difference, however, in that the VLSI sorting
proposals require reversing the direction of data flow to extract the sorted data.
In these approaches the sorting machine is a stack that accepts data pushes in
arbitrary order but pops data in sorted order. For example, if after loading the
sample vector we were to redefine the next-state function of our sorting array
to be

Output = maz(Cy, P1),
P, = maz(Chi1,Put1),
C, = min(C,,P,), n<5,
P = —x

and pump ten times, the original input vector would be popped to the output
in descending order. As long as there are enough registers and comparators for
the input data set size, a machine of this type can sort data as fast as it can
be physically moved to and from the sorting array. Reference [8] also describes
ways to pipeline the use of these sorting machines to increase throughput.
Although the CAP provided numerous data paths in the adder array, revers-
ing the direction of data flow was not possible, and another solution to extracting
the maxima had to be found. Among the many possiblities that were supported
by the hardware, the most straightforward involved simply continuing to step
the original compare-exchange algorithm and collecting the maxima as they are
ejected out the array. This was the algorithm ultimately encoded in CAP mi-
crocode. In the CAP algorithm, data input is completed by stepping the array
one more cycle with a dummy input of +o0o. In the fixed bit-width hardware
realization on the CAP the role of +o0 is played by the most positive data value,

219 _ 1,
10 9 7 4 2
+00 6 8 5 3 |°

At this point register P; holds the maximum value, yet the rest of the array is
not yet ordered in any discernable way, except that the P, registers satisfy the
invariant given above. As we will show later, this invariant guarantees that if
we ‘pump’ the array four times with +o0o, then the maxima will collect at the
end of the array in registers Ps, Cy4, Py, Cs, and Ps.

400 +o0 10 8 6
400 400 400 9 7 |°

At this point the comparator array data registers Cy, P1,Cs,...,C5, Ps are or-
dered, and the array acts like a shift register as long as 4+oo is pumped into
(3. Pumping the array five times with +o0o forces the five maxima out of the
comparator array in reverse order, where they can be collected and stored.

To summarize, the systolic comparator array can be used to compute the
five maxima, of a data vector by the following steps:

e The first data point is loaded into C7, and the rest of the comparator
array is initialized to —oo.

e The data vector is pumped into the array one point at a time, and a single
+00 is inserted to finish the data input.

e Pumping four times with +o00 causes the maxima to collect at the end of
the array.

e Pumping five times with +o0o forces the maxima out of the array in reverse
order, where they are collected and stored.

The algorithm above is implemented in microcode on the CAP. It is among
several microcode programs for that processor that we have mechanically ver-
ified. As described briefly in [3], we formalized the CAP in the ACL2 logic,
sketched below. We then extracted the microcode for the 5PEAK program from
the CAP ROM, obtaining a sequence of bit vectors, and used the ACL2 theo-
rem prover to show that when the abstract CAP machine executes the extracted
code on an appropriate initial state and for the appropriate number of cycles,
the five highest peaks and their addresses are deposited into certain locations.
We defined the “highest peaks and their addresses” by defining, for specification
purposes only, a sort function in ACL2 which sorts such address/data pairs into
descending order. The reader will see that this sorting function is exactly the
stack-like sorting method of the VLSI implementations described above. In our
BPEAK specification we refer to the first five pairs in the ordering.

The argument that the microcode is correct is quite subtle, in part because
an arbitrary amount of data is streamed through and in part because the positive

and negative infinities involved in the algorithm can be legitimate data values
but are accompanied by bogus addresses; correctness depends on a certain “anti-
stability” property of the comparator array. A wonderfully subtle generalization
of a key lemma was necessary in order to produce a theorem that could be proved
by mathematical induction.

In this paper we discuss only the high-level algorithm sketched above and
its correctness proof. We do not discuss the microcode itself.

The event list is available at http://www.cs.utexas.edu/users/moore/publi-
cations/csort/csort.lisp.

2 ACL2

Before we present this work in detail we briefly describe the ACL2 logic and
theorem prover.

ACL2 stands for “A Computational Logic for Applicative Common Lisp.”
ACL2 is both a mathematical logic and system of mechanical tools which can be
used to construct proofs in the logic. The logic formalizes a subset of Common
Lisp. The ACL2 system is essentially a re-implemented extension, for applica-
tive Common Lisp, of the so-called “Boyer-Moore theorem prover” Nqthm [1, 2].

The ACL2 logic is a first-order, essentially quantifier-free logic of total recur-
sive functions providing mathematical induction and two extension principles:
one for recursive definition and one for “encapsulation.”

The syntax of ACL2 is a subset of that of Common Lisp. However, we do not
use Lisp syntax in this paper. The rules of inference are those of propositional
calculus with equality together with instantiation and mathematical induction
on the ordinals up to g = w*” . The axioms of ACL2 describe five primitive
data types: the numbers (actually, the complex rationals), characters, strings,
symbols, and ordered pairs or “conses”.

Essentially all of the Common Lisp functions on the above data types are
axiomatized or defined as functions or macros in ACL2. By “Common Lisp
functions” here we mean the programs specified in [9] that are (i) applicative,
(ii) not dependent on state, implicit parameters, or data types other than those
in ACL2, and (iii) completely specified, unambiguously, in a host-independent
manner. Approximately 170 such functions are axiomatized or defined. The
functions used in Table 1 are particularly important here.

Common Lisp functions are partial; they are not defined for all possible
inputs. In ACL2 we complete the domains of the Common Lisp functions and
provide a “guard mechanism” by which one can establish that the completion
process does not affect the value of a given expression. See [6].

The most important data structure we use in this paper is lists. The empty
list is usually represented by the symbol nil. The non-empty list whose first
element is z and whose remaining elements are those in the list y is represented

expression meaning

endp (z) true iff z is the empty list

cons (z,y) the ordered pair < z,y >

car (z) the left component of (the ordered pair) =

cdr (z) the right component of

cadr (z) the left component of the right component of
cddr (z) the right component of the right component of z
zp (z) z = 0 (or z is not a natural number)

len (z) the number of elements in the list z

Table 1: The Meaning of Certain Expressions

by the ordered pair < x,y >. This ordered pair is the value of the expression
cons (z, y).

Here is an example of a simple list processing function, namely, the function
for concatenating two lists. In the syntax of Common Lisp we could write this
as

(defun append (z y)
(if (endp x)

y
(cons (car z) (append (cdr z) y)))).

but we will here use the notation

DEFINITION:
append (z,y)

if endp (z) then y
else cons (car (z),

append (cdr (z),y))
fi

The concatenation of the empty = to y yeilds y. The concatenation of a
non-empty z to y is obtained by consing the first element of z, car (z), to the
concatenation of the rest of z, cdr (z), to y.

Readers interested in learning more about Common Lisp should consult [9].
Readers interested in the logical foundations of applicative Common Lisp as for-
malized in ACL2 should see [7]. Readers interested in the ACL2 system should
see [6, 3] as well as the home page for ACL2, http://www.cs.utexas.edu/users/-
moore/acl2, which contains the source code, 5 megabytes of hypertext docu-
mentation, a bibliography, and many applications.

3 High-Level Specification

We typically approach the verification of a machine code program in two phases,
by first characterizing what the machine code computes at a low level, and then
showing that the low-level behavior meets, or is somehow equivalent to, a higher-
level specification. If we had approached the veriication of the 5PEAK algorithm
in this way we would have first specified the exact function computed by the
comparator array, and then proved that this function computed the five peaks.
For this particular application, it turned out to be more convenient to directly
prove that the machine code execution satisfies the high-level specification, but
to formalize the specification in a way particularly oriented toward the code.
To that end, we specified the 5PEAK application in terms of an abstract sorting
algorithm. We proved that the BPEAK microcode computes the first five elements
of the output vector of this abstract algorithm, i.e., the five maxima.

We defined the abstract sorting algorithm in a way that made the corre-
spondence proof relatively easy. But it was then encumbent upon us to prove
that the abstract algorithm was actually a sorting algorithm, i.e., that it returns
an ordered permutation of its input. In addition, in relating the abstract algo-
rithm to the microcode it was necessary to prove several theorems about how
the signed infinities are handled by the abstract algorithm. These theorems are
especially interesting to prove.

Therefore, this paper presents the abstract sorting algorithm and the key
theorems about it. We focus on the hardest of these theorems to prove, namely
the treatment of positive infinities. Despite the general nature of these theorems
—e.g., the absence of bounds on the lengths of the vectors being sorted or the size
of the data — the reader is reminded that these theorems play a direct role in the
very practical problem of the 5PEAK microcode verification and are illustrative
of the kind of general mathematics one must handle in code verification.

The abstract sorting algorithm sorts lists of “records” with integer keys.
The algorithm is inspired by the operation of a comparator array, except that it
uses an unlimited number of comparators.. The records are represented as cons
pairs as constructed by cons (other, data), where where the data field represents
the integer sort key, and the other field is arbitrary (but, in practice, contains
the address from which the data was obtained). The basic systolic cycle of the
general algorithm is captured by the function cstep.

DEFINITION:
cstep (acc)

if endp (acc) then nil
elseif endp (cdr (acc)) then acc
else cons (max-pair (cadr (acc), car (acc)),
cons (min-pair (cadr (acc), car (acc)),
cstep (cddr (acc))))

where

DEFINITION:
max-pair (pair!, pair2)

if data (pair?) < data (pair2) then pair2
else pairl
fi

DEFINITION:
min-pair (pairl, pair2)

if data (pair?) < data (pair2) then pairl
else pair2
fi

The function cstep orders adjacent records in the accumulator acc pairwise,
just as the comparator array orders C,, P, into P,, C,4+1 on each cycle.

Feeding the input vector into the unlimited resource comparator array is
modeled by the function cfeed

DEFINITION:
cfeed (ist, acc)
if endp (Ist) then acc
else cfeed (cdr (Ist),
cstep (cons (car (Ist), acc)))
fi

The function cfeed maintains an important invariant on the accumulator men-
tioned earlier in reference to the comparator array. If we number the elements
of the accumulator, acc,

accy, aCCy, - « ., aCCy

where accy is the first element of the accumulator, then
acc; > accy, for ¢ even and ¢ < j.

That is, the even numbered elements dominate the elements to their right. Call
this property ® (acc). It is not difficult to prove that ® is invariant under cfeed.
That is, if an accumulator has property ® and a list of records is fed into it

with cfeed then the result satisfies ®. Since @ (nil) holds, we can create an
accumulator satisfying ® by feeding an arbitrary list of records into the empty
accumulator.

Furthermore, we can also prove that if a non-empty accumulator acc has
property ®, then the first element of acc is a maximal element and the result of
applying cstep- to cdr (acc) satisfies ®. Thus, we can sort such an accumulator
by ‘draining’ off the maxima while stepping the remainder.!

DEFINITION:
cdrain (n, acc)

if zp (n) then acc
else cons (car (acc),

cdrain (n — 1, cstep (cdr (acc))))
fi

The final sorting algorithm feeds the input data vector into an empty accu-
mulator and then drains off the maxima.

DEFINITION:
csort (Ist)

cdrain (len (Ist), cfeed (Ist, nil))

4 The Key Theorems

Given the foregoing claims about @ it is not difficult to prove

THEOREM: Ordered Permutation Property
The function csort returns an ordered (weakly descending) permu-
tation of its input.

To relate these abstractions to the microcode, we had to develop two other
interesting and crucial properties. First, observe that in the definition of csort
above the cfeed operation is done with the initial accumulator nil. But in the
code, the corresponding operation is done with the peak and candidate value
registers initialized to the most negative CAP integer. To prove that the code
implements csort (in the sense described) we had to prove

1We define cdrain with a counter n because this is convenient for mapping operations
from the actual fixed-size comparator array on the CAP to the unlimited resource comparator
sorter.

THEOREM: Negative Infinity Property

Let [st be a list of records and min be one record, and suppose every
element of [st dominates (i.e., has data greater than or equal to the
data of)min. Let minlst be a list of n repetitions of min. Then
cfeed (Ist, minlst) is just append (cfeed (Ist, nil), minlst).

This theorem tells us that if we initialize the comparator array to “negative
infinities” as done on the CAP (i.e., to minlst where min is a record containing
the most negative CAP integer) and then feed the input vector into it, the
abstract result is the same as feeding the vector into an empty comparator array,
as in our definition of csort, and then concatenating the “negative infinities” to
the right. Since we are only interested in the first five elements, we can see
that the negative infinities are irrelevant to the final answer if the input vector
contains more than five elements.

The second interesting property concerns the fact that our csort uses the
function cdrain while the second phase of the microcode performs this step by
feeding in “positive infinities.” We prove the following theorem to overcome this
difference:

THEOREM: Positive Infinity Property

Let acc be a list of records satisfying ®. Let maxz be a record that
dominates every element of acc. Finally, let maxlst be a list of n
repetitions of maz, where n is an integer, 0 < n < |acc|. Then
cfeed (mazxlst, acc) is append (mazlst, cdrain (n, acc)).

Note that the accumulator produced from nil by cfeed satisfies ® and thus
has the property required of acc in the theorem above. Furthermore, a list of n
repetions of the “positive infinity” record has the property required of maxlst
above. The theorem thus tells us that when the second phase of the CAP code
feeds positive infinitives into the array the result is the same as concatenating
positive infinities to the result of draining the comparators as specified in our
definition of csort. Thus, at the conclusion of the second phase, the rightmost
registers in the CAP array contain the answer computed by cdrain.

We find this relationship between cfeed and cdrain to be both surprising and
beautiful.

5 Proof of the Positive Infinity Property

The two infinity properties are challenging to prove. We will briefly discuss our
proof of the Positive Infinity Property. The problem is a familiar one to anyone
who has proved theorems by induction: the theorem must be generalized. This
problem is a mathematical one and is independent of the particular mechanized
logic or mechanical theorem prover employed.

10

The theorem we wish to prove involves feeding a series of n maxz’s into acc.
What happens when you do that? The maz’s pile up (in reverse order) at the
front and acc is stepped with cstep, except that odd/even parities of the elements
of acc alternate because of the maz’s being added to the front. We leave to the
reader the problem of discovering what goes wrong with an attempt to prove
the theorem directly by induction, but dealing with these changing parities is
one of the problems.

To prove the Positive Infinity Property we prove a stronger property by in-
duction. We state the stronger property, Positive Infinity Property Generalized,
below. But we motivate (and sketch the proof of) the property in the discussion
below, where we explain how to strengthen the original property. The original
property involves feeding a list of maz’s into an accumulator acc. We will gen-
eralize the theorem by generalizing both the list of maz’s and the accumulator.
We start with the latter.

From the discussion above it is clear that the general state of the accumulator
is not one merely satisfying ® but one containing a pile of max’s at the front
and satisfying ®. Thus, the accumulator should have the form append(s, acc’).
At first it may appear sufficient to require that s be a list of maz’s and that
append (s, acc') satisty ®, but we need to generalize further. In particular, we
require that s be an ordered (weakly descending) list of records such that |s]| is
even and every element of s dominates every element of acc’.

Note that under these conditions, if acc’ satisfies ® then so does the concate-
nation of s and acc’. The facts that |s| is even and every element of s dominates
every element of acc’ allows us to distribute ® over the concatenation, e.g.,
append (s, acc') has property @ iff both s and acc’ have the property. Note also
that if |s| is even, then cstep distributes over append also: the result of stepping
the concatenation of s and acc’ is the concatenation of the results of stepping
s and stepping acc’. Such observations are crucial and we use them implicitly
below.

So the general shape of the accumulator is append (s, acc') where s and acc’
are as above.

Instead of feeding in a list of max’s, we feed in an arbitrary list of records,
lst, such that [st is ordered but weakly ascending, every element of /st dominates
the elements of s and of acc’, and |Ist| < |acc'|.

To see why this version of the theorem is necessary, consider inductively
proving a theorem involving the expression

cfeed(Ist, append(s, acc))
where [st, s and acc’ have the properties required above.
In the induction step, lst is non-empty, i.e., is cons(me,[st'). Consider

what happens when we feed in the first element, mx, to the comparator. The
function cfeed conses mz onto append(s, acc'), steps it, and recursively handles

11

Ist’. That is, the expression above becomes
cfeed (Ist', cstep (cons (mz, append (s, acc'))))

and we seek an induction hypothesis that will enable us to manipulate this
expression further. But the inductive hypothesis will be of the form

cfeed (Ist', append (o, @),

for Ist’ and some o and « satisfying our general conditions on Ist, s and acc
above. Clearly, we must manipulate the cstep expression above, which we shall
call ¥, into the append form.

Because |lst| < |acc'| we can write acc’ as cons (a, acc’"). Thus,

¥ = cstep (cons (mz, append (s, acc')))
= cstep (cons (ma, append (s, cons (a, acc’))))
= cstep (append (cons (maz, append (s, cons (a, nil))), acc))

Because [s]| is even, so is |cons(mz, append(s, cons(a, nil)))|. Thus, we can dis-
tribute cstep over the append to obtain

¥ = append (cstep (cons (mz, append (s, cons (a, nil)))),
cstep (acc’"))

Since s is ordered, weakly descending, mz dominates everything in s and a
is dominated by everything in s, the list cons (mz, append (s, cons (a,nil))) is
ordered, weakly descending. Thus the first cstep expression above is a no-op.

¥ = append (cons (maz, append (s, cons (a, nil))),
cstep (acc’))

Hence, 9 is in the form append(o,), where

o : cons(me,append (s, cons (a,nil)))

a : cstep (acc”)

A little thought will show that these values of ¢ and « satisfy the conditions on
s and acc’ required by the theorem.

In short, an inductive proof of the following general theorem is straight-
forward, given the fairly subtle relationships between the conditions illustrated
above.

THEOREM: Positive Infinity Property Generalized

Let acc’ be a list of records satisfying ®. Let [st be a list of records
such that |lst| < |acc’| and suppose that [st is ordered weakly as-
cending. Let s be a list of records such that |s| is even and s is
ordered weakly descending. Finally, suppose every element of [st
dominates every element of s and of acc’ and that every element of
s dominates every element of acc’. Then

12

cteed (Ist, append (s, acc'))

append (reverse ([st), s, cdrain (|Ist|, acc')).

Note that our Positive Infinity Property follows from the one above, if we
let s be nil, acc’ be acc and lst be a list of n maz’s.

6 A Tour of the ACL2 Proof Script

Proofs of all three of the key theorems noted here have been checked with
the ACL2 theorem prover. Ninety-five ACL2 definitions and theorems are
involved in our proof of these theorems. This includes the definitions nec-
essary to define all of the concepts. The ACL2 input script or “book” is
http://www.cs.utexas.edu/users/moore/publications/csort/csort.lisp. We give
a brief sketch of the book here. The book is divided into six “chapters.”

Chapter 1 deals with elementary list processing and is completely indepen-
dent of the specifics of the comparator sort problem. It defines functions for
retrieving the first n elements of a list and for producing a list of n repetitions
of an element, and it defines the predicate that determines whether one list is
a permutation of another. The chapter then proves fundamental properties of
several primitive ACL2 functions and these functions, including

e the concatenation function is associative,
e the length of the concatenation of two lists is the sum of their lengths,
e the first n element of a list of length n is the list itself, and

e the reverse of n repetitions of an element is just n repetitions of the ele-
ment.

The most important contribution of this chapter is that it establishes that
the permutation predicate is an equivalence relation and that it is a congruence
relation for certain Lisp primitives such as list membership, concatenation, and
length. Here we will denote that a is a permutation of b by “a ~ b”. When
we say that the permutation predicate is a congruence relation for (the second
argument of) list membership, we mean “a ~b — (z € a) < (z € b)".

ACL2 supports congruence-based rewriting. When ACL2 rewrites an ex-
pression it does so in a context in which it is trying to maintain some given
equivalence relation. Generally, at the top-level of a formula, it rewrites to
maintain propositional equivalence. Because of the above congruence relation,
when ACL2 rewrites an expression like “y € a” to maintain propositional equiv-
alence (“4»”) it can rewrite « to maintain the permutation relation (“~”).

How does ACL2 rewrite maintaining “~”?7 The answer is that it uses rewrite

rules that use “~” as their top-level predicate. For example, the theorem that

13

reverse(z) ~ z can be so used as a rewrite rule in the second argument of “€”.
Thus, “e € reverse(z)” rewrites to “e € z”. This rewrite rule about reverse
(modulo ~) is included in the first chapter of our book. In all, Chapter 1
contains 37 definitions and theorems.

Chapter 2 deals with the idea of ordering lists of pairs by the “data” compo-
nent. It defines the function “data” and the predicate “ordered” and also defines
two other predicates. The first (“all-gte”) checks that one pair dominates all
the pairs in a given list, in the sense that the pair’s data field is greater than or
equal to that of each of the other pairs. The second (“all-all-gte”) checks that
every pair in one list dominates all the pairs in another. These predicates are
used in our formalizations of the two infinity properties.

The chapter then lists about 20 theorems about these functions and predi-
cates, including,

e that permutation is a congruence relation for all-gte and all-all-gte, e.g.,
that a ~ b — all-gte (p, a) <> all-gte (p, b).

e that the concatenation of two lists is ordered precisely when the two lists
are ordered and all the elements of the first dominate those of the second,

e that a pair dominates the elements of the concatenation of two lists pre-
cisely when it dominates all the elements of each list, and

e that the list consisting of n repetitions of an element is ordered.

A total of 25 events are in this chapter.

Chapter 3 contains the six events defining min-pair, max-pair, cstep, cfeed,
cdrain and csort.

Chapter 4 establishes the basic properties of the above-mentioned functions,
including that cstep, cfeed, and cdrain produce permutations of their arguments,
the corollaries that the lengths of their outputs are suitably related to the lengths
of their inputs, and that cstep has these three properties:

e cstep distributes over the concatenation of two lists if the first list has
even length,

e cstep distributes over the concatenation of two lists if the second list is
ordered and is dominated by the elements of the first list,

e cstep is a no-op on ordered lists.

Thirteen theorems are in this chapter.
In Chapter 5 we are concerned with the invariant ¢. We define it and prove

e ¢(cdr(acc)) — P(cstep(acc)), and

e ¢(acc) — ¢(cteed(lst, acc)).

14

Two other lemmas are proved to help ACL2 to find the proofs of these two
theorems.

Finally, in Chapter 6 we prove the three theorems discussed in this paper.
The theorem that csort produces an ordered permutation of its input is decom-
posed into two parts. The permutation part, csort(acc) ~ acc, is trivial, given
the work done in Chapter 4. The ordered part is ordered(csort(lst)) and is
proved using the lemma:

e If n is a natural number such that n < |acc| and acc has property ¢, then
ordered(firstn(2 + n, cdrain(n, acc))).

The Positive Infinity Property is proved using the lemma below.

e Suppose data (p1) > data (ps2). Suppose s is an ordered list of even length,
p1 dominates every element of s, and every element of s dominates ps.
Then

cstep (cons (p1, append (s, cons (p2, acc))))

= couns (p1, append (s, cons (p2, cstep (acc)))).

This lemma is the key simplification step in the proof discussed above of Positive
Infinity Property Generalized, which is the next theorem proved in this chapter.
It is necessary to tell ACL2 to use the particular induction scheme used in our
discussion. The Positive Infinity Property is then proved by instantiation.

The Negative Infinity Property relies on a similar, inductively proved gen-
eralization:

e Suppose acc is ordered. Suppose further that every element of [st dom-
inates every element of acc and that every element of s dominates acc.
Then cfeed (Ist, append (s, acc)) = append (cfeed (Ist, s), acc).

It takes about 25 seconds to prove all of theorems in all of the chapters. This
measurement is taken on a 200 MHz Sun Microsystems Ultra-2.

References

[1] R. S. Boyer and J S. Moore. A Computational Logic. Academic Press:
New York, 1979.

[2] R.S. Boyer and J S. Moore. A Computational Logic Handbook, Second
Edition, Academic Press: London, 1997.

[3] B. Brock, M. Kaufmann and J S. Moore, “ACL2 Theorems about
Commercial Microprocessors,” in M. Srivas and A. Camilleri (eds.)
Proceedings of Formal Methods in Computer-Aided Design (FM-
CAD’96), Springer-Verlag, pp. 275-293, 1996.

15

[4]

[5]

[6]

[9]

M. J. Curey, P. M. Hansen, and C. D. Thompson, “Sorting Records in
VLSIL,” in L. Snyder, L. H. Jamieson, D. B. Gannon, and H. J. Siegel
(eds) Algorithmically Specialized Parallel Computers, Academic Press,
New York, NY, pp. 27-36, 1985.

S. Gilfeather, J. Gehman, and C. Harrison. Architecture of a Com-
plex Arithmetic Processor for Communication Signal Processsing in
SPIE Proceedings, International Symposium on Optics, Imaging, and
Instrumentation, 2296 Advanced Signal Processing: Algorithms, Ar-
chitectures, and Implementations V, July, 1994, pp. 624-625.

M. Kaufmann and J Strother Moore “An Industrial Strength Theorem
Prover for a Logic Based on Common Lisp,”IEEE Transactions on
Software Engineering, 23(4), pp. 203-213, April, 1997.

M. Kaufmann and J Strother Moore “A Precise Description of the
ACL2 Logic,” http://www.cs.utexas.edu/users/moore/publications/-
km97a.ps.Z, April, 1998.

G. Miranker, L. Tang, and C. K. Wong, A “Zero-Time’ VLSI Sorter,
IBM J. Res. Develop, 27(2), March, 1983, pp. 140-148.

G. L. Steele, Jr. Common Lisp The Language, Second Edition. Digital
Press, 30 North Avenue, Burlington, MA 01803, 1990.

16

