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Abstract

We describe a mechanically checked proof of the correctness of the kernel of the floating
point division algorithm used on the AMD5 586 microprocessor. The kernel is a non-restoring
division algorithm that computes the floating point quotient of two double extended precision
floating point numbers, p and d (d # 0), with respect to a rounding mode, mode. The
algorithm is defined in terms of floating point addition and multiplication. First, two Newton-
Raphson iterations are used to compute a floating point approximation of the reciprocal of d.
The result is used to compute four floating point quotient digits in the 24,17 format (24 bits
of precision and 17 bit exponents) which are then summed using appropriate rounding modes.
We prove that if p and d are 64,,15 (possibly denormal) floating point numbers, d # 0 and
mode specifies one of six rounding procedures and a desired precision 0 < n < 64, then the
output of the algorithm is p/d rounded according to mode. We prove that every intermediate
result is a floating point number in the format required by the resources allocated to it. OQur

claims have been mechanically checked using the ACL2 theorem prover.

1 The Algorithm

The floating point division algorithm, called “divide” and shown in Figure 1, takes three

inputs: floating point numbers p and d and a “rounding mode” mode. The algorithm uses
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Algorithm divide(p, d, mode)
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a lookup table which we discuss after we have explained how to read the “pseudocode” in
which the algorithm is expressed.

The algorithm is proved correct only when p and d are 64,,15 (possibly denormal) floating
point numbers. We define the n,, m notation on page 11; informally, n is the number of bits

of precision and m is the maximum number of bits in the exponent.

1.1 The Pseudocode Semantics

The algorithm consists of 32 assignment statements, each of the form
1. var = exrpr pair scomment

where 7 is a line number, var is a variable symbol, expr is a mathematical expression, pair is
either a “rounding mode” of the form [name n] or an “exactness claim” of the form [exact
nl, and comment is a comment. The expression involves previously mentioned variable
symbols and the familiar operations of addition (4), subtraction (—), and multiplication (x)
of rational numbers, table lookup (in the assignment to sdy on line 1) and ones complement
(denoted by comp in the assignments to sdy and sdy on lines 4 and 6). If the variables involved
in an expression have rational values, then the expression has a well-defined mathematical
value and that value is rational.

The execution of such a statement assigns to the variable var the result eround(val, pair),
where val is the value of expr (under the preceding assignments). The function eround is
defined on page 14 and can be informally described as follows. If pair is a rounding mode,
eround(val, pair) rounds val to n bits of precision according to pair and checks that the
exponent of the rounded result fits in 17 bits. If so, eround returns the rounded result;
otherwise, eround returns an “error object.” 1If pair is an exactness claim, eround checks
that val has at most n bits of precision and a 17 bit exponent and returns val or an error
object accordingly.

The value computed by the algorithm is determined by executing each of the assignment
statements, sequentially, and returning either the first error object assigned to a variable, if

any, or the value of the variable divide.
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1.2 The Lookup Table

The function lookup maps a 64,,17 floating point number d into an approximation of 1/d.

The approximation is an 8,,17 floating point number.

lookup(d) =

o4 X table(s;) x 27,

where a4, 54 and e4 are the sign, significand, and exponent, respectively, of d (see Section 5).

By table(s;) above we mean the entry associated with the most significant 8 bits of s, (i.e.,

truncn(sg, 8), page 11) in Table 1. The table maps each of the 128 8-bit non-0 significands

to an 8-bit approximation of its reciprocal. The computation of the table entries is discussed

in [8].
top 8 bits approx top 8 bits approx top 8 bits approx top 8 bits approx
of d inverse of d inverse of d inverse of d inverse

1.00000002 O0.111111115 1.01000002 0.110011005 1.10000002 0.101010105 1.11000002  0.100100105
1.00000012  0.111111015 1.01000012  0.110010115 1.10000012  0.101010015 1.11000012  0.100100015
1.00000102 0.111110115 1.01000102 0.110010105 1.10000102  0.101010005 1.11000102  0.100100015
1.00000112  0.111110015 1.01000112  0.110010005 1.10000112  0.101010005 1.11000112  0.100100005
1.00001002 0.111101115 1.01001002 0.110001115 1.10001002 0.101001115 1.11001002  0.100011115
1.00001012  0.111101015 1.01001012  0.110001105 1.10001012  0.101001105 1.11001012  0.100011115
1.00001102  0.111101005 1.01001102  0.110001015 1.10001102  0.101001015 1.11001102  0.100011105
1.00001112  0.111100105 1.01001112  0.110001005 1.10001112  0.101001005 1.11001112  0.100011105
1.00010002  0.111100005 1.01010002  0.110000105 1.10010002  0.101000115 1.11010002  0.100011015
1.00010012  0.111011105 1.01010012  0.110000015 1.10010012  0.101000115 1.11010012  0.100011005
1.00010102 0.111011015 1.01010102  0.110000005 1.10010102  0.101000105 1.11010102  0.100011005
1.00010112  0.111010115 1.01010112 0.101111115 1.10010112  0.101000015 1.11010112  0.100010115
1.00011002 0.111010015 1.01011002  0.101111105 1.10011002  0.101000005 1.11011002  0.100010115
1.00011012  0.111010005 1.01011012  0.101111015 1.10011012  0.100111115 1.11011012  0.100010105
1.00011102  0.111001105 1.01011102  0.101111005 1.10011102  0.100111115 1.11011102  0.100010015
1.00011112  0.111001005 1.01011112 0.101110115 1.10011112  0.100111105 1.11011112  0.100010015
1.00100002 0.111000115 1.01100002 0.101110105 1.10100002 0.100111015 1.11100002  0.100010005
1.00100012  0.111000015 1.01100012  0.101110015 1.10100012  0.100111005 1.11100012  0.100010002
1.00100102  0.111000005 1.01100102  0.101110005 1.10100102  0.100111005 1.11100102  0.100001115
1.00100112  0.110111105 1.01100112  0.101101115 1.10100112  0.100110115 1.11100112  0.100001115
1.00101002 0.110111015 1.01101002  0.101101105 1.10101002  0.100110105 1.11101002  0.100001105
1.00101012  0.110110115 1.01101012  0.101101015 1.10101012  0.100110015 1.11101012  0.100001015
1.00101102  0.110110105 1.01101102  0.101101005 1.10101102  0.100110015 1.11101102  0.100001015
1.00101112  0.110110005 1.01101112 0.101100115 1.10101112  0.100110005 1T.11101112  0.100001005
1.00110002 0.110101115 1.01110002  0.101100102 1.10110002  0.100101115 1.11110002  0.100001005
1.00110012  0.110101015 1.01110012  0.101100015 1.10110012  0.100101115 1.11110012  0.100000115
1.00110102  0.110101005 1.01110102  0.101100005 1.10110102  0.100101105 1.11110102  0.100000115
1.00110112  0.110100115 1.01110112  0.101011115 1.10110112  0.100101015 T.11110112  0.100000102
1.00111002  0.110100015 1.01111002  0.101011105 1.10111002  0.100101015 1.11111002  0.100000105
1.00111012  0.110100005 1.01111012  0.101011015 1.10111012  0.100101005 1.11111012  0.100000015
1.00111102  0.110011115 1.01111102  0.101011005 1.10111102  0.100100115 T.11111102  0.100000015
1.00111112 0.110011015 1T.01111112 0.101010115 T.10111112 0.100100115 T.11111112 0.100000005

Table 1: Inverse Table
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2 The Theorem

We have mechanically checked a proof of the following theorem, stated informally below and

formally in Section 5.

Theorem: [f p and d are 64,,15 (possibly denormal) floating point numbers, d #+ 0, and
mode is a rounding mode of the form [name nl, where name € {trunc, away, sticky,
nearest, posinf, neginf} and n is an integer, 0 < n < 64, then the algorithm yields the
n,, 17 floating point number obtained by dividing p by d and rounding the precise mathematical
result according to mode.

A corollary is that when p, d, and mode satisfy the conditions of the theorem, the algorithm
never signals an error. Hence, all the intermediate results fit in floating point registers of the
size indicated by the pair field of each assignment.

Suppose one has hardware that implements floating point addition and multiplication
with respect to a rounding mode as done in the IEEE floating point standard. The algorithm
discussed here shows an implementation of the division operation with respect to a rounding
mode. Our theorem establishes that the algorithm returns the result of rounding the infinitely
precise answer according to the specified mode.

We do not here deal with the NaNs, infinities and signed zeros of the IEEE standard; we

discuss how denormalized numbers are handled later.

3 How the Algorithm Works

3.1 Some Illustrative Examples in Decimal Notation

Consider the familiar long division algorithm. In Figure 2 we show the long division calcu-
lation of 430 divided by 12.

Very loosely, the long division of p by d can be thought of as generating a sequence of n
quotient digits, ¢; and partial remainders, p;, where p = pg, such that the final quotient is the

sum of the n quotient digits and p, is the final remainder.
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e Given p; and d, guess the next quotient digit, ¢;, by inspection of the high order parts
of p; and d. Tn dividing 430 by 12 in Figure 2 our qq is the digit 3 in the tens place, or
30. In long division one generally tries to choose ¢; to make the next partial remainder

nonnegative and minimal but there is quite a lot of flexibility in the choice of ¢;.

e To obtain the next partial remainder, p,y 1, multiply ¢; times d and subtract the result
from p;. In the example of 430 divided by 12 with a ¢q of 30, the first partial remainder
is 430 — (12 x 30) = 70.

Let g be the sum of the n quotient digits. Tet r be the last partial remainder, p,. Then

p = dq + r. If one chooses appropriate ¢; and n, |r| can be made to approach 0.

quotient digits
_———09 =30
3583
d ——12) 43000 — P
-— d

36 a,

70 ——
60 partial remainder
100 )
96 R=p - dd,
40
36

R

0

N

Figure 2: The Nomenclature of Long Division

In Figure 3 we show the same long division problem, except this time we generalize the
quotient digits to two (decimal) digit floating point numbers and we show how the reciprocal
of the divisor is used to generate the quotient digits using fixed precision operations.

The reciprocal of 12 is 0.083 which we approximate to two decimal digits of precision with
0.083. We call this quantity sdy because its use in this decimal example is analogous to the
variable sdy in the binary floating point algorithm of Figure 1.

The basic idea behind the computation of the quotient digits is to let ¢; be the high order
part of p;/d = (1/d)p;. The first quotient digit, go, is obtained by multiplying sdy by 430,

obtaining 35.69, which is rounded to two digits. In this example away rounding is used. (In
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36. Reciprocal Calculation:
+ =17 1/12 = 0.0833 ~ 0.083 = sd,
+ 0034
-.000067
* 35833333 Quotient Digit Calculation:
12 1430000000 0.083 x 430.0000 = 35.6900000 =~ 36.000000 = ¢o
432 0.083 x -2.0000 = -.1660000 ~ -.170000 = ¢,
Zoa 0.083 x 0400 = .0033200 ~ .003400 = g,
04 0.083 x  -.0008 = -.0000664 ~ -.000067 = ¢3
0408
-0008 . , .
000804 Summation of Quotient Digits:
000004 Go + q1 + q2 + g3 = 35.833333

Figure 3: Quotient Digits Can be Negative

the actual algorithm, away rounding is used on all but the last digit, where trunc rounding
is used.) Thus, go here is 36. This is slightly too big: the next partial remainder, pq, is
-2.0, so the next quotient digit, ¢1, is negative (-.17 after away rounding to two digits) and so
tends to correct the over-estimation of the first digit. The sum, ¢, of the four quotient digits
is 35.833333. Observe that a correct answer is still obtained: 430 divided by 12 produces
35.833333 with a remainder of 0.000004.

3.2 The Reciprocal Computation

Now consider the algorithm in Figure 1. Lines 1 through 6 are devoted to the computation of
the reciprocal of d. At line 6 the variable sdy is assigned a 32,,17 floating point number that
(we will prove) is 1/d with a relative error less than 272%. This is done by obtaining an initial
approximation via Table 1 and then refining it with two iterations of an easily computed

variation of the Newton-Raphson method,
Sdi—H = 9(]7(2 — Sdi X (]) (0 S 7 S ])

The variation is obtained by making the following transformations on the equation above.
o Instead of d we use the floating point number obtained by rounding d with the mode
laway 32],i.e., we use a 32,,17 floating point number approximating the 64,,17 number

d from above.
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o After multiplying sd; by (the approximation to) d with a 32x32-bit floating point mul-
tiply, we truncate the result to 32 bits. This is our sdd; and can be thought of as an

approximation to sd; x d.

o Instead of subtracting the result from 2 to form (2 — sd; x d) we complement sdd;,
which yields (2 — sdd; — 27%") or (2 — sdd; — 27%), depending on whether sdd; < 1.

This notion of “complement” is explained in Subsection 5.1.

o After multiplying by sd; we truncate the result to 32 bits.

3.3 The Quotient Digit Computation

Lines 7 through 29 of the algorithm are devoted to the computation of four quotient digits,
go through ¢3. Fach quotient digit is a 24,,17 floating point number. Quotient digit ¢; is
obtained by multiplying sdy by the top 32-bits of p; (a 32 x 32-bit operation) and rounding
to 24 bits. See lines 11, 17, 23, and 29. In the computations of the first three quotient digits
we use away rounding, but in the last quotient digit we use trunc.

Successive partial remainders are defined with the equation p,y1 = p; — (¢; x d). However,
computing the right-hand side directly would require a 24 x 64-bit multiply. We do the
multiplication in two 32-bit pieces. In particular, dh and dl are defined (lines 7 and 8) to be
the high and low 32 bits of d. Thus (¢; x d) = ¢; x dh 4+ ¢; x dl. Fach product, called ¢dh;
and ¢dl;, can be computed exactly with a 24 x 32-bit multiplication. See for example lines
12 and 13. We then subtract these two products successively from p; to obtain p,y 1 in a 64
X 64-bit operation. The 64,,17 floating point result is exact; no precision is lost and p,; 4 as

computed is indeed the mathematical p; — (¢; x d).

3.4 Summing the Quotient Digits

In lines 30 through 32 the quotient digits are summed. The two least significant digits, ¢
and g3 are added together first. The result is sticky rounded to 64 bits and called ggo. Then

¢1 1s added to gz, sticky rounded to 64 bits and called g¢;. Finally, gq is added to gqy,



Correctness of the AMDg 86 Floating Point Division Algorithm 9

but this time the result is rounded according to the user-specified mode and returned as the

quotient.

4 The ACL2 Logic and Theorem Prover

Our mechanical proof of the correctness of this algorithm was carried out with ACL2. “ACL2”
stands for “A Computational Logic for Applicative Common Lisp.” Tt provides a formal
mathematical logic and a mechanical theorem prover to help the user construct proofs of
theorems in the logic. Because our work was done formally within that logic, the logic has
influenced the style of our formalization. To help the reader understand that style we introduce
the ACL2 system briefly here. However, this section can be skipped: the mathematics as
presented in this paper is accessible to those with no knowledge of ACI.2.

The logic formalizes a useful applicative subset of the ANSI standard programming lan-
guage Common Lisp [14, 15]. Expressions in the logic are Common Lisp expressions. Given
values for the variables, logical expressions can evaluated by Common Lisp implementa-
tions. Technically, the ACL2 logic is a first-order, quantifier-free logic of recursive functions
providing mathematical induction on the ordinals up to ¢ = w*” , recursive definition, and
witnessed constraint of new function symbols. The following disjoint data types are axio-

matized:

e Symbols. Symbols are Common Lisp objects denoting words. We display symbol

constants in typewriter font. For example, trunc and away are both symbol constants.

e Rationals and Integers. The rational numbers are axiomatized so that the integers
are a subset of the rationals. Thus, 22/7 and —5 are both rationals; the latter is an
integer. The familiar arithmetic operators are defined in accordance with the laws of
rational arithmetic: e.g., 22/7 x 1/11 = 2/7. The logic implements “infinitely precise”

rational arithmetic.

o Lists. ACL2 supports arbitrary ordered pairs and lists of ACL2 objects. For example,
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laway 24] is a list of length two containing the symbol away and the integer 24.

e Characters and Strings. ACIL2 supports many of Common Lisp’s character objects

and strings of characters, e.g., "bad post-round exponent".

As noted, the syntax of ACL2 is that of Common Lisp. Thus, for example, the formal ex-
pression of x X2 in ACT.20s (* x (expt 2 (+ i 1))). In this paper we hand translate all
of the arithmetic expressions into traditional notation. We also use traditional mathematical
English rather than formal logical notation.

ACIL2 is described in more detail in [6, 7]. ACL2 is available without fee on the Internet.
See http://www.cli.com.

Because ACL2 is an executable logic and divide is defined as a function in ACL2, it is
possible to execute divide on concrete data to test it. For example, divide(1,3, [trunc 24])
produces the rational 5592405/16777216 or 0.0101010101010101010101010,. On a Sparc
Station 20 such a test of the formal pseudocode semantics takes about 0.3 seconds. If we
use away rounding instead, the answer is 0.0101010101010101010101011,. In both cases the

answer returned is the true quotient, 1/3, rounded as specified.

5 Formalization of the Theorem

5.1 Basic Concepts

We now explain our formalization of the floating point numbers. Every non-0 rational number

x can be uniquely represented in the form o x s x 2° where
e o€ {+1,—1},
e sis a rational and 1 < s < 2, and
e e is an integer.

We call o the sign, s the significand and e the exponent of x. We define the unary function

symbols o, s and e for accessing the corresponding components of 2. We sometimes write o,
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s, and e, instead of the more formal o (), (), and e(2). We make the conventions that the
sign of 0 is +1, the significand is 0, and the exponent is 0. When we say “s is a significand”
we mean s — Qor 1 < s < 2.

Note that our notions of significand and exponent are defined for all rationals, not just for
those, say, with finite binary expansions. Of course if a rational has an infinitely repeating
binary expansion, then its significand does also. For example, 1/3 = 0.0101, has a significand
of 4/3 = 1.0101T; and an exponent of -2, since 1/3 =1 x4/3 x2 % and 1 <4/3 < 2.

To truncate a significand to n bits we use:

|s x 271
277,71 )

trunen(s,n) =
For example,

trunen(4/3,5) = trunen(1.01010T4, 5)
= |1.01010T4 x 2*]/2*
= [10101.0T,]/2*
= 10101,/2*
= 1.0101,

= 21/16

We say x is an n,,m floating point number if and only if = is a rational number,
trunen(s,,n) = s,, and 1 — 271 <e, <27 ' Tt is helpful to think of z as “normalized” in
this context.

We say « is an n,,m™ floating point number if and only if x is a rational number,
trunen(s,,n) = s,, and 2 —n — 27" < e, < 277" In our informal discussions above
when we say something is a “64,,15 (possibly denormal) floating point number” we mean it
is a 64,,15% floating point number.

For example, the exponent values for the 4,.3 floating point numbers are {-3, -2, ..., 3,
4}. Thus, 1.0005 x 27 is a 4,.3 floating point number. But 0.0015 x 272 =1 x 27% is not

a 4,,3 floating point number because its exponent is -6. However the exponent range of the
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4,,3% floating point numbers extends downward to -6, so 0.001, x 277 is a 4,,3% floating
point number.

The reader familiar with the IEEE standard will note several discrepancies between the
standard and our formal definitions above. We are not trying to formalize the standard here;
we are defining a subset of the rationals on which our algorithm works.

Our notion of the n,,m floating point numbers does not include the denormals, NaNs,
infinities and signed zeroes of the standard. Furthermore, we allow an exponent range of
1 —2m7 1 <e, < 2™ " while the standard narrows the legal exponent values to 2 — 2™ <
e, < 271 — 1, disallowing the top and bottom values in our range. In the standard those
values are appropriated for use as marks for the special cases of denormals, etc. Thus, for
a given choice of n and m, our n,,m floating point numbers include all of the normalized
ITEEE floating point numbers in that format as well as the additional rationals with exponents
larger or smaller by one.

Our notion of the n,, m™ floating point numbers includes all of the standard’s normalized
and denormal numbers in the corresponding format, as well as additional rationals. The
excess in this case comes not only from our slightly larger exponent bound but also from
the fact that we permit a denormal to have a full n bits of precision while the standard’s
denormals lose a bit of precision for each additional exponent value beyond the normal range.
For example, we admit 0.0011115 x 277 = 1.111 x 27% as a 4, . 3" floating point number.

We define the complement of an n bit floating point number x to be

22— =27 ifr <1
comp(z,n) =
2 — a2 — 27"  otherwise

For example, comp(1.1110000,,8) = 0.000111115 and comp(0.1110000,,8) = 1.00011115.
A more general notion of complement could be defined (taking into account the sign and
exponent of ) but we use this one because we are only interested in the case where 1/2 <
x < 2. Indeed, we prove that both sddy and sdd, the arguments to comp in lines 4 and 6

of the algorithm  have this property.
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We define an “ulp” (“unit in the last place”) of an n,,m floating point number, z, as
ulp(z,n) = 2°= "+ Thus, for example, ulp(1111.0001,,8) = 2>~ = (.0001,.

A final basic concept is that of the n™ bit of a significand. We index the bits by the power
of 2 indicated by their positions. Because we are here thinking of s as a significand we know
0 < s < 2 and hence all bit numbers are nonpositive. Thus, bit 0 is the bit in the ones place,
bit -1 is the bit in the 1/2 place, etc. It is useful to remember that the least significant bit in

an n bit significand is at position 1 — n.

_ 1T if [s x27"] is odd
bitn(s,n) =
0 otherwise

For example, bit number -4 in the rational 4/3 is equal to 1. That is, bitn(4/3,—4)
= bitn(1.010101,, —4) = 1 because the floor expression above produces an odd integer,
[1.010107; x 2*| = [10101.0T3| = 101015.

5.2 Rounding Procedures

Six rounding procedures are mentioned in this paper. We start with the three that are used

explicitly in the division algorithm, trunc, away and sticky.

trunc(a,n) = o, X trunen(s,,n) x 2%
away(x,n) = o, X awayn(s,,n) x 2%
sticky(z,n) = o, x stickyn(s,,n) x 2°

Fach is defined in terms of an analogous operation on the significand which is then signed

and scaled for the general case. We have already defined truncn.

(5.m) 3 if trunen(s,n) = s
awayn(s,n) =
trunen(s,n) +2'"  otherwise

) 3 if trunen(s,n) = s or bitn(s, 1 —n) =1
stickyn(s,n) =
awayn(s,n) otherwise
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In addition to the rounding procedures above, we prove that the division algorithm sup-
ports three others: round to nearest, to positive infinity and to negative infinity, denoted by

nearest(x,n), posinf(z,n) and neginf(x,n). We omit their definitions here for brevity.

5.3 Rounding Modes

A rounding mode is a list of length two, [name n] where name € {trunc, away, sticky,
nearest, posinf, neginf} and n is an integer such that 0 < n < 64.
The general-purpose rounding operation rounds a rational according to a specified round-

ing mode [name nJ:

away(z,n)  if name =away
sticky(z,n)  if name =sticky
nearest(z,n) if name =nearest
round(x, [name nl) =

posinf(z,n) if name =posinf

neginf(x,n) if name =neginf

trunc(z,n)  otherwise

5.4 Pseudocode Semantics Revisited

In Subsection 1.1 we defined the semantics of the pseudocode in terms of the function eround.

If x is not a rational
then err("non-rational input",z)
elseif sym —exact
then if [exact n] is true of =
eround(z, [sym nl) =
then 2 else err("inexact", x)
elseif [exact n] is true of round(z, [sym nl)

then round(x, [sym n]l)

else err("bad post-round exponent", )
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where err(msg, 1) returns a list object (i.e., a non-rational “error ohject”) and where we say
the exactness claim [exact nl, where n is an integer, 0 < n < 64, is true of x if and only if

x1s an n,,17 floating point number.

5.5 The Main Theorem

Main Theorem If p and d are 64, 15% floating point numbers, d # 0, and mode is a

rounding mode, then divide(p, d, mode) = round(p/d, mode).

Recall that the 64,, 15" floating point numbers include all the double extended precision
normal and denormal numbers of the IEEE standard.
By definition of “rounding mode”, we see that the algorithm supports trunc, away,

sticky, nearest, posinf, and neginf rounding, to any precision 0 < n < 64.

6 The Main Proof

To allow clear talk about the values of the variables in the pseudocode we define functions
corresponding to the 32 variable names in the pseudocode.
Consider for example line 6
6. sdy = sdy x comp(sdd;,32) [trunc 32]
The semantics of this line can be rendered as the following function of d, provided we have

rendered the preceding lines as analogous functions :
esdqy(d) = eround(esd;(d) x comp(esdd;(d),32), [trunc 32]).

We call esd, the semantic function for the pseudocode variable “sd,.” Assuming no previous
line signals an error, the meaning of the pseudocode variable “sdy” is esdy(d). More generally,
if the division algorithm is executed with d = = and executes to line 6 with no error, then
esdy(x) is the value of “sdy”.

Because we always assume no previous line has signaled an error when we use esdy(d) we

need not concern ourselves with the meaning of the definition above when esdd;(d), say, is
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an error object. But esdy(d) may itself signal the first error. Thus, it is somewhat awkward
to reason about esdy(d) because it is not always numeric.

Now consider the function
sdo(d) = trunc(sdq(d) x comp(sdd;(d),32),32).

This can be thought of as the “non-erroneous” value of sd,. In particular, esdy(d) = sdy(d)
unless the former is an error object. Furthermore, the former is an error object if and only
if the precision or exponent of the latter is too big. Thus, not only are the non-erroneous
semantic functions like sdy easier to handle but their arithmetic properties can be readily
traded-in for properties about the true semantics, e.g., esds.

A “non-erroneous version” of the algorithm is shown in Figure 4, which actually defines
all 32 of the non-erroneous semantic functions. Note that we use divide! as the name of the
last function, which is the non-erroneous version of the division algorithm.

In Figure 4 we follow a convention that we follow henceforth in this paper, namely,
when we use a pseudocode variable (other than p, d and mode) it is merely an abbreviation
for the application of the corresponding non-erroneous semantic function to the appropriate
subsequence of p, d, and mode. For example, consider line 11 of Figure 4: gy = qo(p,d) =
away (sdy X phg, 24) = away(sdy(d) X phy(p), 24).

We will prove that the non-erroneous algorithm enjoys an even stronger correctness prop-

erty than the actual algorithm:

Theorem 1 [f p and d are rational numbers, d # 0, and mode is a rounding mode, then

divide!(p, d,mode) = round(p/d, mode).

The 64,, 157 hypotheses are necessary only to relate the non-erroneous algorithm to the

actual one. We will also prove:

Theorem 2 If p and d are 64,,15% floating point numbers, d # 0 and mode is a rounding
mode, then dividel(p, d,mode) = divide(p, d, mode).

Theorems 1 and 2 together imply the main theorem. We prove Theorem 1 in Section 8 and

Theorem 2 in Section 9.
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sdo(d)
d,(d)
sddo(d)
sdq(d)
sddy(d)
sdo(d)
dh(d)
di(d)
po(p)
pho(P)
do(p, d)
qdho(p, d)
qd]o(Pa d)
pt1(Pa d)
p1(p,d)
ph, (Pa d)
ai(p, d)
qdh1 (Pa d)
qdh (Pa d)
ptz(Pa d)
p2(p, d)
phz(Pa d)
da2(p, d)
qdhz(p, d)
qd]z(Pa d)
pt:&(Pa d)
pa(p,d)
ph:a(i?a d)
ds(p, d)
qq,(p, d)
qq,(p,d)

divide!(p, d, mode)

lookup(d)

away (d, 32)

away (sdy X d,,32)
trunc(sdy x comp(
away (sdy x d,,32)
trunc(sd; x comp(sddy, 32),32)
trunc(d, 32)
d—dh

p

trunc(po, 32)

away (sdy X phg,24)

Go X dh

Go X dl

po — qdhg

pti — qdly

trunc(py, 32)

away (sdy X phy,24)

q1 X dh

q1 x dl

p1 — qdhy

sddy,32),32)

pta — qdl;

trunc(pz, 32)

away (sdy X pho,24)
gz X dh

gy x dl

p2 — qdhy

pta — qdl;

trunc(ps, 32)
trunc(sdy X pha, 24)
sticky(q2 + g3, 64)
sticky(qqe + q1,64)
round(gq1 + go, mode)

Figure 4: The Non-Frroneous Semantic Functions
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7 Fundamental Elementary Results

In our presentation of the proof we take for granted many key properties of the three rounding
procedures, trunc, away, and sticky. But in the development of the proof itself, and especially
in its mechanization, a large percentage of the total manpower went into the identification
and proof of these key properties. We show only a few here.

In this section we implicitly assume that = and y are rationals and 7 is a positive integer.
Recall that the significand of 2 is s(2) which we sometimes write as s,. The exponent of x is

e(x) which may be written e,.

7.1 Key Properties of the Representation

Lemma 7.1.1 s(—a) =s, and e(—2) = e,.
Lemma 7.1.2 [f j is an integer, s(x x 27) = s, and e(x x 27) = e, + j.
Lemma 7.1.3 If 2 # 0 and j is an integer and |x| < 2 then e, < j.
Lemma 7.1.4 If 2 # 0 and j is an integer and 27 < |z| then j < e,.

An upper bound on the exponent of a sum (or difference) is given by:

Lemma 7.1.5 [f2 40 and 2 +y # 0 and e, < e, thene(z +y) <1+e,.

A Tower bound on the exponent of a sum (or difference) of two numbers (when the exponent

of one is sufficiently smaller than that of the other) is given hy
Lemma 7.1.6 [f2 #£0 andy # 0 and e, + 1 < e, then e, < e(x +y).
Bounds on the exponent of a product are given by:

Lemma 7.1.7 [f2 £ 0 and y £ 0 thene, +¢e, <e(x xy) <e,+e, + 1.
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7.2 Elementary Properties of Rounding

Lemma 7.2.1 trunc(—=,1) = —trunc(z, 7).
Analogous lemmas hold for away and sticky.

Lemma 7.2.2 For every x there is an e of the same sign such that trunc(x,7) = 2 — & and

le] < 20+

By “same sign” here we mean that if # < 0 then & <0 and otherwise () < e. Similar lemmas

hold for away and sticky:

Lemma 7.2.3 For every x there is an € of the same sign such that away(x,1) = x + & and

|e] < 207141,
Lemma 7.2.4 For every x there is an & such that sticky(x,i) = x 4+ ¢ and |g| < 20+,

Away and sticky have monotonicity lemmas analogous to
Lemma 7.2.5 [fz <y then trunc(a,7) < trunc(y, ).
How exponents are affected by the rounding procedures are described by

Lemma 7.2.6 [f 2 # 0 then e(trunc(z,i)) = e,.

Lemma 7.2.7 If 2 # 0 then

, T+e, if2<s, +271
e(away(x,1)) =
e, otherwise

Lemma 7.2.8 [fx # 0 then e(sticky(x,1)) = e,.

The rounding procedures distribute over multiplication by a power of two:

Lemma 7.2.9 [fj is an integer then trunc(z x 27,7) = trunc(x,1) x 2.
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Analogous lemmas hold for away and sticky.

The rounding procedures interact simply in certain situations.
Lemma 7.2.10 [f j is an integer and i < j then trunc(trunc(z, 1), j) = trunc(z, 7).
Lemma 7.2.11 [If j is an integer and i < j then trunc(away(x,17),7) = away(x,7).

Since we use the test “trunc(x,n) = 27 to formalize “a fits in n bits” it is Lemma 7.2.11
that captures the remark that “the result of rounding away to 72 bits fits in j bits if 2 < 5.7
Similar results hold for the other rounding modes.

The informal statement that the product of an m bit number and an n bit number fits in

m + n bits is

Lemma 7.2.12 [f m and n are positive integers and trunc(a,m) = = and trunc(y,n) = y

then trunc(z X y,m+n) =2 X y.
The following two lemmas are especially useful in proving exactness claims.

Lemma 7.2.13 For every rational x and positive integer 1 there is an integer j such that

trunc(z,1) = j x 2% F where 0; = o, and 277" < |7] < 2°.

Lemma 7.2.14 Ifn is an integer and |n| < 2°, then trunc(n,1) = n.

7.3 Special Properties of Sticky Rounding

We are especially interested in the interactions between sticky rounding and the other pro-

cedures because of its crucial use to sum the quotient digits.

Lemma 7.3.1 If mode is a rounding mode of the form [name nl where n < 1 then

round(sticky(z,7 4+ 2), mode) = round(x, mode).

An especially important fundamental result is
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Lemma 7.3.2 (Sticky Plus) Let 2 be a non-0 rational that fits in n > 0 bits, which is to
say trunc(x,n) = . Let y be a rational whose exponent is al least two smaller than that of

x, 1 +e, <e,. Letkbe apositive integer such that n +e, —e, < k.

n bits

€x

TTXTTTTTXTTTLTXTTCTTLTXC TXXCTTXCTCTLT

YYYYYYYyyyyyy -yyyyyyyyyyyyyy yyy - . .
———

€y

k bits

Then sticky(x 4+ y,n) = sticky(a + sticky(y, k), n).

The need for Lemma 7.3.2, which is henceforth called the “Sticky Plus” property, can
be informally explained as follows. Suppose one wishes to round the “infinitely precise”
sum = + y to n bits with sticky rounding but one only has a finite number of bits in which
to compute the sum. Suppose =z itself fits in n bits but y is “infinitely precise” and is as
described by the lemma above. Then one can first sticky round the “infinitely precise” y to
k bits, do a finite sum, and sticky round the result to obtain the desired answer. This is the
property of sticky rounding that allows us to sum the quotient digits without endangering the
round of the infinitely precise answer.

Among the lemmas noted in this section, we found Lemma 7.3.2 to be singularly difficult
to prove. Our proof considers the signs and relative magnitudes of = and y (intuitively,
consider the case that the 4 sign in the conclusion above is “really” a — sign). Fven after
that case split, however, the proof is quite interesting. We do not discuss it further here.

We conclude this section with one more important lemma about sticky rounding.

Lemma 7.3.3 Let @ be a non-0 rational such that trunc(z,n) = x, where n > 1. Lel &
and ey be non-0 rationals such that |ei| < 2°* "% and |e9] < 2°> "' Furthermore, suppose
both &1 and ey are positive if either is (i.e., 0 < &1 & 0 < &9). Then sticky(x + 1,n) =

sticky(x + e2,n).

Despite the fact that we have only stated and not proved the lemmas in this section, it is

important for the reader to understand that their proofs were checked mechanically.
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8 Proof of Theorem 1

Recall that pseudocode variables here denote calls of the functions of Figure 4.

Theorem 1 If p and d are rational numbers, d # 0, and mode is a rounding mode, then
divide!(p, d,mode) = round(p/d, mode).

The following proof is a “journal level” description of the one we checked with ACI2.

Proof. Assume p and d are rationals and d # 0.
The first six lines of the algorithm of Figure 4 compute an approximation to the reciprocal

of d. In Subsection 8.1 we will prove

Lemma 8.1.1 For every non-0 rational d there exists a rational 0 < g,59 < 272 such that

sy = (1/d)(1 — 2.12).-

This lemma will enable us prove the crucial properties of the quotient digits, namely, that

their exponents differ by at least 23. The crucial lemma relating ¢ to ¢y for example is

Lemma 8.2.1 (Digit Separation (qo v. ¢1)) If p and d are rationals, d # 0, and ¢; # 0
then e(qr) < e(qo) — 23.

The Digit Separation lemma (page 27) states an analogous or slightly stronger property for
all three quotient digits as well as for what we will call ¢3 below.

One implication of Digit Separation is that two non-0 quotient digits have a non-0 sum.
For example, if g3 and ¢3 are non-0 then g2 + g3 is non-0, for otherwise the exponents of ¢,
and g3 would be equal, since e(—g3) = e(g3). We use these and similar observations implicitly
below.

Lines 7 through 9 of the pseudocode prepare for the quotient digit calculation, by defining
dh and dl to be the high and low parts, respectively, of d, and renaming p to be pg so the
subsequent indexing is regular. Hence, dh 4+ dl = d. Note that in the actual algorithm (as
opposed to the non-erroneous one we are discussing) “dl” is d — dh only if that quantity fits
exactly in 32 bits or less. We deal with this, of course, when we work on Theorem 2.

The first quotient digit, gg, and the next partial remainder, p;, are computed by lines 10
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through 15. Unwinding the definition of py gives py = pty — qdly = (po — qdhg) — qdly =
po — (gdho + qdly) = po — (go X dh + g0 x dl) = po — go X (dh + dl) = py — qo X d.

The computation of the next two quotient digits and remainders is analogous. Thus,
unwinding as above, we get p3 = po — (g0 + ¢1 + q2) X d. If we define ¢4 to be p3/d it follows

that po = (g0 + ¢1 + ¢2 + ¢3) X d, which is to say

p/d = po/d

= (go+ ¢ +¢@+q). (1)

FEquation (1) tells us that the “infinitely precise” answer is the sum of the first three quotient
digits plus ¢5. Note however that the algorithm does not compute ¢4 but ¢z = trunc(sdy x
trunc(ps, 32), 24), which is generally different.

In this paper we address only the case where all four quotient digits are non-0 and leave
the other cases to the reader. Hint: if one quotient digit is 0 all subsequent ones are ().

The final steps of the computation sum the quotient digits.
divide! = round(qo + sticky(q1 + sticky(q2 + ¢3,64),64), mode)

However, by Lemma 7.3.1 (page 20) we know

divide! = vound(y, mode) (2)
where
Y = sticky(go + sticky(qr + sticky(gs + g5, 64), 64), 66) (3)
We will show that
¥ = sticky(go + sticky(qr + sticky(ga + sticky(ga, 2), 24),45), 66). (4)

To prove this we reduce the right-hand sides of both (3) and (4) to sticky(go+ ¢1 + g2 + g3, 66).
The reduction of (4) repeatedly applies Sticky Plus, starting on the inside and working

out, appealing to Digit Separation and our non-0 sum observations to relieve the hypotheses:

b = sticky(qo + sticky(¢r + sticky(gz + sticky(gs, 2),24),45),66)
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= sticky(qo + sticky(qr + sticky(¢2 + ¢3,24),45), 66)
= sticky(qo + sticky(¢1 + g2 + ¢3,45),66)

= sticky(qgo + ¢1 + ¢2 + ¢3,66).

Following the same procedure we reduce the definition of ¢, (3), to the same term and
hence have proved (4).

But we can replace g3 in the right-hand side of (4) by ¢4 to get

b = sticky(qo + sticky(¢r + sticky(gz + sticky(gs, 2),24),45),66)

= sticky(qo + sticky(qi + sticky(ga + sticky(qs,2),24),45), 66) (5)

This is justified because sticky(qgs,2) and sticky(qgs, 2) satisfy the hypotheses on &; and &5 of
Lemma 7.3.3 (page 21). In particular, Digit Separation implies 0 < |sticky(gs, 2)| < 2°(92)=23
and 0 < |sticky(¢4,2)| < 2002723 Tt is also true that 0 < sticky(gs,2) if and only if 0 <
sticky(qs, 2).

Now we eliminate the inner sticky terms from the right-hand side of (5) with Sticky Plus

and Digit Separation (including the one for ¢4), just as we did when we proved (4) above:

= sticky(go + 1 + g0 + ¢l 66). (6)

Thus, we have

divide!
= round (x>, mode) by (2)
= round

sticky(qo + @1 + @2 + ¢5,66), mode) by (6)
sticky(p/d, 66), mode) by (1)

(
(
— round(
— vound(p/d, mode).

The last step above is by Lemma 7.3.1 (page 20) and the definition of rounding mode (which
insures that the result is rounded to 64 digits or less). Q.E.D.
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8.1 The Reciprocal Computation

Lemma 8.1.1 For every non-0 rational d there exists a rational 0 < e,59 < 272 such that

sy = (1/d)(1 — 2.12).-

To give the reader a feel for the mechanization of such proofs, we describe this one at a
fairly low level. Please refer to lines 1 through 6 of Figure 4.
Our proof of Lemma 8.1.1 is based on the observation that without loss of generality we

can restrict our attention to the case where 1 < d < 2. To make this formal, we first observe

Lemma 8.1.2 If d is a rational and d # 0 then sdy(d) = o(d) x sda(s(d)) x 274,

Proof.
sdo(d) = a(d) x sdo(s(d)) x 27)

do(d) = o(d) x d.(s(d)) x 29
sddo(d) = sddo(s(d))

sdy(d) = a(d) x sdy(s(d)) x 2@
sddy(d) = sdd, (s(d))

sda(d) = o(d) x sdy(s(d)) x 9-eld)
Q.E.D.

Given Lemma 8.1.2 it is easy to prove that sdy(s(d)) approximates 1/s(d) with the same

relative error that sdy(d) approximates 1/d,
Lemma 8.1.3 [fd # 0 and sdy(s(d)) = (1/s(d))(1 — &), then sday(d) = (1/d)(1 — ¢).

Hence, we can prove LLemma 8.1.1 by instantiation of L.emma 8.1.4, below: replace d by

s(d); appeal to the fact that for d # 0, 1 < s(d) < 2; and use Lemma 8.1.3.

Lemma 8.1.4 For every rational d, 1 < d < 2, there exists a rational 0 < c540 < 272 such

that sdy = (1/d)(1 — e542).

Proof. Suppose 1 < d < 2.
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It is helpful to generalize away from the particulars of Table 1. Therefore, consider any
table mapping keys to values. We say a table entry, (k,v) mapping key k to value v is e-ok if
and only if £ and v are rational numbers, 0 < v, |kv — 1| < e and |(k+2 7)o — 1| < &. If we
think of v as an approximation of the inverse of = for  in the range k < 2 < k 4+ 277, then
the e-ok condition limits the relative error at the endpoints. We say a table is -0k if every
entry in it is e-ok.

If (k,v) is e-ok, where k is the truncation of d to 8 bits, trunen(d, 8), then it follows from
the monotonicity of multiplication and & < d < k4277 that |dv — 1] < . Thus, if a table is
e-ok and it contains a value v for trunen(d, 8) then |dv — 1] < e.

It is easy to confirm by computation that Table 1 is e-ok for e = 3/512 and that it contains
an entry assigning a value for the 8bit truncation of every 1 < d < 2 (e.g., the 128 8-bit
non-0 significands). Hence, by the definition of lookup and the e-ok property of the table,
|d x lookup(d) — 1] < 3/512.

It is convenient to define e440(d) to be dxlookup(d) —1. Tt follows that sdy = lookup(d) =
(1/d)(1 + e540(d)), where |e.a0(d)| < 3/512 =278 4279,

We now move on to lines 2 through 6 of the pseudocode. Observe that if 0 < x < 2, then
trunc(x,32) = (1 — 7,,), for some 0 < 7, < 277 and away(z,32) = 2(1 + a,), for some
0 < a, < 27", These two observations, along with the definition of comp and appropriate
definitions of €440, Esa1, Esaar, and e442 (as functions of d analogous to €49 above) allow us
to derive the equations and inequalities of Table 2. From these inequalities it readily follows
that 0 < e402(d) < 27%® and hence Lemma 8.1.4 and hence L.emma 8.1.1 have both heen
proved. Q.E.D.

Perhaps the most interesting aspect of checking this proof mechanically is the e-ok prop-
erty of Table 1. Just as described above, we defined this property as an ACL2 (Common Lisp)
predicate and proved the general lemma stating that any table satisfying that predicate gives
sufficiently accurate answers. When the general lemma is applied to our particular lookup,
the system executes the predicate on Table 1 to confirm that it has the required property.

(This computation takes about 0.033 seconds on a Sparc Station 20.) Thus, the only time
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var

value

error bounds

sdg
sddg
sd
sdd
sdsy

— /D0 + o)

1+ €sdao(d)
(1/d)(1 — esan(d))
(1 — esaan (d))

= (1/d)(1 — g542(d))

lesan(d)] < 278 +277

esan(d) < esqao(d) < egqo(d) + 2 30
0< €sd1(d) < er]()((])Q
et (d) — 2790 < e g (d) < een(d)
0 < eeo(d) < 941((])2 +4

Table 2: Frror Analysis for Lines 1-6 (5 = 92729 4 9731

4 (9/512)2%)

27

the particulars of Table 1 are involved in the proof is when the predicate is executed. This

example illustrates the value of computation in a general-purpose logic.

8.2 Digit Separation

Lemma 8.2.1 (Digit Separation) Suppose that p and d are rationals and d #+ 0.
gy = pa/d. Then

¢ #0
g2 70
g3 # 0
g5 # 0

N

e(q) < e(q)—

e(qa) < elq) —

o(gw) < e(q) 23, and
e(g) < elq2) — 23

Let

Proof. In this paper we will prove only the first of the four implications above, namely

¢ £ 0 = elqr) < e(go) — 23. The others are analogous. The relevant lines of code for the

first implication are lines 10 through 17 of Figure 4.

Assume p and d are rationals, d # 0, and ¢; # 0. The desired conclusion,

is equivalent to

e(qi) <

e(away(sdy X phy,24)) <

e(qo) — 23

((70) —23
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By fundamental theorems about e, trunc and away, (7) is implied by |sdy x phy| < 2090723

which is equivalent to |sdy| x [trunc(pe — d x go, 32)| < 2°(9)=2% which is, in turn, implied by
|Sd2| X |p0 —d x (70| < 26((]0)723. (8)

In perhaps the most surprising move of the proof, we now rewrite the left hand side above to

express (8) equivalently as
|sda(po — sdy X d X pho) + sdy x d(sdy x pho — qo)| < 2700) =23, (9)
Let a = sdy(py — sday X d x phg) and 3 = sdy x d(sdy X phg — qo). Then (9) has the form
o+ 8] < 2l (10)

But, as we will show, a and (8 have different signs and their absolute values are bounded
strictly above by 2¢9%)=23  But in this case, it follows that (10) is true.

We first show that o and 3 have different signs. Then we bound each of them.

By “different signs” here we mean that one is nonpositive and the other is nonnegative,
e, ((a<OA0<B)V(B<0OA0<a)). First observe that since & and 3 share a factor
of sdy we can cancel. Simple arithmetic therefore gives us that o and § have different signs
if and only if (po — sdy X d X phg) and (sdy X d X phg — d X qo) have different signs. Now
note that the two expressions whose signs we are comparing are of the form x — y and y — z,
where x 18 pg, y is sdy X d X phg and z is d X qqg.

The following easily proved arithmetic lemma allows us to reduce the question to this

lemma’s conditions (1) (iv).

Lemma 8.2.2 /fx, y and z are rationals then ¥ — vy and y — z have different signs if

(i) yl<lel  and
(1) ly| < |z] and either
(117) 0<aA0O<yA0<z or

(lv) 2<0Ay<0Az<0
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Under the instantiation of x, y, and z above, condition (¢) becomes |sdy x d x pho| < |po.
But we know 0 < sdy xd <1 by Lemma 8.1.1 (page 25) which tells us that sdy approximates
1/d from below. Since |phg| = |[trunc(pg, 32)| < |pol, condition (2) is proved.

Condition (17) becomes |sdy X d x phg| < |d x go|. Cancelling |d| and expanding the
definition of qq gives |sdy x pho| < Jaway(sdy X phg,32)|, which proves (ii).

Finally we must show either condition (ii7) or (iv), which just split on whether z is
positive. Here we handle only the case that 0 < =, i.e., (¢77). We must therefore show
0 < sdy x d x phg and 0 < d X qqg, given 0 < pg. But sdy x d is always positive and 0 < phg
when 0 < pg. Thus the first conjunct is true. As for the second, dx qq is d xaway (sdy X phg, 32)
which is positive if pg is. Thus the second conjunct is true.

This completes the argument that o and [ have different signs. We now turn to the
question of bounding them. We wish to show that |a] < 2990723 and |g] < 2¢(®0)=23  We
address the second first because it is simpler.

Recalling the definition of 3 from page 28, we wish to prove |sdy x d(sdy X pho — qo)| <

2¢(90)=23  Gince () < sdy x d < 1 it suffices to show
|sdy X pho — qo| < 20002 (11)

Expanding the definition of gy gives |sdy x phy — away(sdy X phg,24)| < 2°90)=23 But this

away(m,i))—i+1

follows from |z — away(z,7)| < 2 , which is easily proved from Lemma 7.2.3

(page 19) together with Lemma 7.2.7 (page 19).

So now we turn to the @ hound. We wish to prove |sday(pg — sdy X d x phg)| < 9e(a0) =23

We will prove the stronger |sda(po — sdy x d X phg)| < 260724 Since |sdy| < [1/d] it suffices

to prove

11/d| % |(po — sdy x d % phg)| < 2°(m0)=24 (12)
But we can show
Lemma 8.2.3 |py — sdy x d x phg| < 2¢(p0)=26

Lemma 8.2.4 [fpy # 0 then |1/d| x 2¢(p0) < 2e(90)+2
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If pg = 0 then pho = 0 and so (12) is trivial. Otherwise, we have the two inequalities above.
Multiplying them together and simplifying gives (12) and so the proof of the o bound is
complete. That, in turn, means that the proof of the separation property for ¢ and ¢ is
complete. Q.E.D.

The proofs of Lemmas 8.2.3 and 8.2.4 are left for the reader. Hint: use Lemma 8.1.1
to bound the relative error in sdy, expand the definitions of phy and ¢q, and appeal to the

fundamental properties of trunc and away.

9 Proof of Theorem 2

Theorem 2 If p and d are 64,,15% floating point numbers, d # 0 and mode is a rounding
mode, then dividel(p, d,mode) = divide(p, d, mode).

9.1 The Non-Erroneous Equivalence Lemmas

The proof of Theorem 2 proceeds by showing that each non-erroneous semantic function is

equivalent to the corresponding semantic function. For example,
Lemma 9.1.1 Ifd is a 64,, 15" floating point number and d # 0 then sdy(d) = esdy(d).

We call this theorem the “non-erroneous equivalence lemma” for sd,. If we prove such
a lemma, e.g., v = ev, for each pseudocode variable v (adding appropriate hypotheses for
p, d and mode when necessary) then we will have proved Theorem 2 because it is just the
corresponding lemma for the last line of code, i.e., divide! is the non-erroneous semantic
function corresponding to divide.

But, from the definition of eround, and the non-erroneous equivalence lemmas preceding
that for v, we know that v = ev if v is an n,,17 floating point number. So we are merely
obliged to prove that each v is a floating point number of the desired precision and each has

a 17 bit exponent. We deal with precision first and then look at the exponent bounds.
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9.2 Precision

The precision analysis is interesting only for those lines of pseudocode containing an exactness
claim. (Lines containing a rounding mode are trivial to handle because the corresponding
non-erroneous function is defined to round to the desired precision.) So consider, say, line 15
of Figure 1, where we must prove that p; fits in 64 bits, which is to say trunc(p,64) = p;.
Recall here we are dealing with the non-erroneous functions and we know p; = py — gg X d.

To prove this and the related partial remainder theorems we appeal to the general lemma:

Lemma 9.2.1 [fp, d, and ¢ are non-0 rationals such that trunc(p,64) = p, trunc(d, 64) = d,
trunc(q,24) = q, and |p — g x d| < |d| x 2272 then trunc(p — ¢ x d,64) =p — g x d.

We leave the proof to the reader. Hint: consider whether ¢ x d fits in 87 bits and use
Lemmas 7.2.13 and 7.2.14. We also remind the reader that we have mechanically checked the

proofs of all the lemmas used in our proof.

9.3 Exponents

We must also show that each pseudocode variable satisfies the exponent requirements on n,,17
floating point numbers, provided p and d are 64,151 floating point numbers and mode is a
rounding mode. Thus, we may assume —62 — 2" <e, <2'" and —62 — 2'* < e, < 2'* and
we must prove that the exponent of each psendocode variable v satisifes 1 —2'% <e(v) < 2'°.

Our proof considers sequentially the non-erroneous interpretation of each pseudocode
variable v and bounds e(v) in terms of e, and e,.

Given the work we did for Lemma 8.1.1 (page 25) the first six lines are straightforward.
For example, it is easy to show —e; — 2 < e(sdy) < —e;+ 1. Hence, if —62 — 2 <e; <2,
then it is easy to show 1 — 2'6 <e(sdy) < 2'6.

The remaining lines are handled by the regular application of the elementary lemmas plus

Lemma 9.3.1 If = and y are rationals such that x +y # 0, n and m are positive integers,

trunc(z,n) = and trunc(y, m) =y, then 1 — max(n,m) + min(e,, e,) < e(x + y).
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Lemma 9.3.2 [f 2 and y are non-0 rationals whose sum is non-0, then e(x +y) < 1+

max(e,, e, ).

While these lemmas provide rather sloppy bounds, we can tolerate the sloppiness because
exponents of width 15 (even taking into account the small expansion due to denormalization)
are so much smaller than those of width 17. We can deduce the theorems in Table 3 from

which our goals follow.

7. eq = e(dh) = e4
8. al £ 0 — eq — 63 < e(dl) < eq— 31
9. € = e(pg) = &
10. e, = e(pho) = e
11. p # 0 — e, —eg—2 < e(qo) < e, —es+3
12. qdhy # 0 — e, —2 < e(gdhg) < e, +4
13. qdly # 0 — e, — 65 < e(qdlp) < e, —27
14. pty #= 0 — e, — 65 < e(pt1) < e,+5H
15. m #= 0 — e, — 128 < e(pr) < e,+6
16. m #= 0 — e, — 128 < e(phy) < e,+6
17. G #F 0 = e, —e;—130 < e(q) < ep—e4+9
18. qdhy # 0 — e, — 130 < e(gdhy) < e, +10
19. qdly, # 0 — e, — 193 < e(qdly) < e, —21
20. pty #= 0 — e, — 193 < e(pta) < e+ 11
21. pp #= 0 = e, — 256 < e(p2) < e+ 12
22. pp #= 0 = e, — 256 < e(ph2) < e+ 12
23. g2 # 0 — e, —e;—258 < e(q2) < e, —eg+ 15
24. qdhy # 0 — e, — 258 < e(qdhy) < e,+16
25. qdly #£ 0 — e, — 321 < e(qdly) < e,—15
26. pts #= 0 — e, — 321 < e(pts) < e, 17
27. ps #* 0 — e, — 384 < e(pa) < e, +18
28. ps #* 0 — e, — 384 < e(pha) < e, +18
29. g3 # 0 — e, —e;—386 < e(qs) < ey, —eg+ 21
30. p2 #= 0 — e,—e;—409 < e(qq2) < ep—eg+22
31. pr #£= 0 = e,—e;—472 < e(qq) < e, —eg+23
32. p # 0 — e, —e;—535 < e(divide!l) < e, —e;+25

Table 3: Exponent Bounds for Lines 7 through 32
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10 Related Work

For an introduction to floating point arithmetic see [5]. See also Goldberg’s discussion in
Appendix A of [10]. For a detailed treatment of division, per se, see [4]. We discuss two
areas of related work in formal verification: formalization of floating point arithmetic and
mechanically checked proofs of division algorithms.

Part of ANSI/TEEE-854 [12] is formalized in [9] by P. Miner. Miner casts his formaliz-
ation in the mechanically supported logic of PVS [3]. A few straightforward lemmas about
rounding are shown, such as that truncation produces a number of no greater absolute value.
These lemmas have presumably been proved mechanically by the PVS system. However, no
mechanically checked proofs of floating point algorithms are presented in [9].

There have been several mechanically checked proofs of the SRT division algorithm re-
ported in the literature. In [2] R. E. Bryant reports on the use of OBDD techniques to
verify certain invariants on a radix-4 SR'T division algorithm. Similar work has been done
by E. M. Clarke as well as by Clarke, S. M. German and X. Zhao (private communication).
In [13] H. Reuss, M. Srivas, and N. Shankar report on the use of the PVS system to verify
that a radix r SR'T division algorithm divides.

It is perhaps most telling simply to observe that in none of the SRT work cited above is
it necessary to formalize the notions of floating point number or rounding to state or prove
the theorems reported. But those concepts are key to the algorithm and theorem discussed

here.

11 Concluding Remarks

We have mechanically checked a proof that the kernel of the floating point division algorithm
used on the AMD5 586 microprocessor is correct in the sense that on 64,15 floating point
numbers (which includes the double extended precision normal and denormal numbers of
the TEEE standard), it returns the n,, 17 floating point number obtained by rounding the

“infinitely precise” quotient by the method and to the precision specified by the rounding
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mode.

The successful checking of this proof establishes that it is possible to apply an existing

general purpose theorem proving tool to some floating point algorithms of practical interest.
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