
A Mechanically Checked Proof of theCorrectness of the Kernel of the AMD5K86 TMFloating-Point Division AlgorithmJ Strother Moore, Tom Lynch and Matt KaufmannMarch, 1996AbstractWe describe a mechanically checked proof of the correctness of the kernel of the
oatingpoint division algorithm used on the AMD5K86 microprocessor. The kernel is a non-restoringdivision algorithm that computes the
oating point quotient of two double extended precision
oating point numbers, p and d (d 6= 0), with respect to a rounding mode, mode. Thealgorithm is de�ned in terms of
oating point addition and multiplication. First, two Newton-Raphson iterations are used to compute a
oating point approximation of the reciprocal of d.The result is used to compute four
oating point quotient digits in the 24,,17 format (24 bitsof precision and 17 bit exponents) which are then summed using appropriate rounding modes.We prove that if p and d are 64,,15 (possibly denormal)
oating point numbers, d 6= 0 andmode speci�es one of six rounding procedures and a desired precision 0 < n � 64, then theoutput of the algorithm is p=d rounded according to mode. We prove that every intermediateresult is a
oating point number in the format required by the resources allocated to it. Ourclaims have been mechanically checked using the ACL2 theorem prover.1 The AlgorithmThe
oating point division algorithm, called \divide" and shown in Figure 1, takes threeinputs:
oating point numbers p and d and a \rounding mode" mode. The algorithm uses1

Correctness of the AMDK86 Floating Point Division Algorithm 2Algorithm divide(p; d;mode)1. sd0 = lookup(d) [exact 8] ; 8-bit approx of 1/d2. dr = d [away 32]3. sdd0 = sd0 � dr [away 32] ; �rst NR iteration4. sd1 = sd0 � comp(sdd0; 32) [trunc 32]5. sdd1 = sd1 � dr [away 32] ; second NR iteration6. sd2 = sd1 � comp(sdd1; 32) [trunc 32] ; 32-bit approx of 1/d7. dh = d [trunc 32] ; prepare for8. dl = d � dh [exact 32] ; quotient digit calc9. p0 = p [exact 64]10. ph0 = p0 [trunc 32]11. q0 = sd2 � ph0 [away 24] ; quotient digit 012. qdh0 = q0 � dh [exact 64]13. qdl0 = q0 � dl [exact 64]14. pt1 = p0 � qdh0 [exact 64]15. p1 = pt1 � qdl0 [exact 64] ; partial remainder 116. ph1 = p1 [trunc 32]17. q1 = sd2 � ph1 [away 24] ; quotient digit 118. qdh1 = q1 � dh [exact 64]19. qdl1 = q1 � dl [exact 64]20. pt2 = p1 � qdh1 [exact 64]21. p2 = pt2 � qdl1 [exact 64] ; partial remainder 222. ph2 = p2 [trunc 32]23. q2 = sd2 � ph2 [away 24] ; quotient digit 224. qdh2 = q2 � dh [exact 64]25. qdl2 = q2 � dl [exact 64]26. pt3 = p2 � qdh2 [exact 64]27. p3 = pt3 � qdl2 [exact 64] ; partial remainder 328. ph3 = p3 [trunc 32]29. q3 = sd2 � ph3 [trunc 24] ; quotient digit 330. qq2 = q2 + q3 [sticky 64] ; sum the digits31. qq1 = qq2 + q1 [sticky 64]32. divide = qq1 + q0 modeFigure 1: The Division Algorithm

Correctness of the AMDK86 Floating Point Division Algorithm 3a lookup table which we discuss after we have explained how to read the \pseudocode" inwhich the algorithm is expressed.The algorithm is proved correct only when p and d are 64,,15 (possibly denormal)
oatingpoint numbers. We de�ne the n; ;m notation on page 11; informally, n is the number of bitsof precision and m is the maximum number of bits in the exponent.1.1 The Pseudocode SemanticsThe algorithm consists of 32 assignment statements, each of the formi: var = expr pair ; commentwhere i is a line number, var is a variable symbol, expr is a mathematical expression, pair iseither a \rounding mode" of the form [name n] or an \exactness claim" of the form [exactn], and comment is a comment. The expression involves previously mentioned variablesymbols and the familiar operations of addition (+), subtraction (�), and multiplication (�)of rational numbers, table lookup (in the assignment to sd0 on line 1) and ones complement(denoted by comp in the assignments to sd1 and sd2 on lines 4 and 6). If the variables involvedin an expression have rational values, then the expression has a well-de�ned mathematicalvalue and that value is rational.The execution of such a statement assigns to the variable var the result eround(val; pair),where val is the value of expr (under the preceding assignments). The function eround isde�ned on page 14 and can be informally described as follows. If pair is a rounding mode,eround(val; pair) rounds val to n bits of precision according to pair and checks that theexponent of the rounded result �ts in 17 bits. If so, eround returns the rounded result;otherwise, eround returns an \error object." If pair is an exactness claim, eround checksthat val has at most n bits of precision and a 17 bit exponent and returns val or an errorobject accordingly.The value computed by the algorithm is determined by executing each of the assignmentstatements, sequentially, and returning either the �rst error object assigned to a variable, ifany, or the value of the variable divide.

Correctness of the AMDK86 Floating Point Division Algorithm 41.2 The Lookup TableThe function lookup maps a 64,,17
oating point number d into an approximation of 1=d.The approximation is an 8,,17
oating point number.lookup(d) = �d � table(sd)� 2�ed ;where �d, sd and ed are the sign, signi�cand, and exponent, respectively, of d (see Section 5).By table(sd) above we mean the entry associated with the most signi�cant 8 bits of sd (i.e.,truncn(sd; 8), page 11) in Table 1. The table maps each of the 128 8-bit non-0 signi�candsto an 8-bit approximation of its reciprocal. The computation of the table entries is discussedin [8].top 8 bits approxof d inverse1:00000002 0:1111111121:00000012 0:1111110121:00000102 0:1111101121:00000112 0:1111100121:00001002 0:1111011121:00001012 0:1111010121:00001102 0:1111010021:00001112 0:1111001021:00010002 0:1111000021:00010012 0:1110111021:00010102 0:1110110121:00010112 0:1110101121:00011002 0:1110100121:00011012 0:1110100021:00011102 0:1110011021:00011112 0:1110010021:00100002 0:1110001121:00100012 0:1110000121:00100102 0:1110000021:00100112 0:1101111021:00101002 0:1101110121:00101012 0:1101101121:00101102 0:1101101021:00101112 0:1101100021:00110002 0:1101011121:00110012 0:1101010121:00110102 0:1101010021:00110112 0:1101001121:00111002 0:1101000121:00111012 0:1101000021:00111102 0:1100111121:00111112 0:110011012

top 8 bits approxof d inverse1:01000002 0:1100110021:01000012 0:1100101121:01000102 0:1100101021:01000112 0:1100100021:01001002 0:1100011121:01001012 0:1100011021:01001102 0:1100010121:01001112 0:1100010021:01010002 0:1100001021:01010012 0:1100000121:01010102 0:1100000021:01010112 0:1011111121:01011002 0:1011111021:01011012 0:1011110121:01011102 0:1011110021:01011112 0:1011101121:01100002 0:1011101021:01100012 0:1011100121:01100102 0:1011100021:01100112 0:1011011121:01101002 0:1011011021:01101012 0:1011010121:01101102 0:1011010021:01101112 0:1011001121:01110002 0:1011001021:01110012 0:1011000121:01110102 0:1011000021:01110112 0:1010111121:01111002 0:1010111021:01111012 0:1010110121:01111102 0:1010110021:01111112 0:101010112

top 8 bits approxof d inverse1:10000002 0:1010101021:10000012 0:1010100121:10000102 0:1010100021:10000112 0:1010100021:10001002 0:1010011121:10001012 0:1010011021:10001102 0:1010010121:10001112 0:1010010021:10010002 0:1010001121:10010012 0:1010001121:10010102 0:1010001021:10010112 0:1010000121:10011002 0:1010000021:10011012 0:1001111121:10011102 0:1001111121:10011112 0:1001111021:10100002 0:1001110121:10100012 0:1001110021:10100102 0:1001110021:10100112 0:1001101121:10101002 0:1001101021:10101012 0:1001100121:10101102 0:1001100121:10101112 0:1001100021:10110002 0:1001011121:10110012 0:1001011121:10110102 0:1001011021:10110112 0:1001010121:10111002 0:1001010121:10111012 0:1001010021:10111102 0:1001001121:10111112 0:100100112

top 8 bits approxof d inverse1:11000002 0:1001001021:11000012 0:1001000121:11000102 0:1001000121:11000112 0:1001000021:11001002 0:1000111121:11001012 0:1000111121:11001102 0:1000111021:11001112 0:1000111021:11010002 0:1000110121:11010012 0:1000110021:11010102 0:1000110021:11010112 0:1000101121:11011002 0:1000101121:11011012 0:1000101021:11011102 0:1000100121:11011112 0:1000100121:11100002 0:1000100021:11100012 0:1000100021:11100102 0:1000011121:11100112 0:1000011121:11101002 0:1000011021:11101012 0:1000010121:11101102 0:1000010121:11101112 0:1000010021:11110002 0:1000010021:11110012 0:1000001121:11110102 0:1000001121:11110112 0:1000001021:11111002 0:1000001021:11111012 0:1000000121:11111102 0:1000000121:11111112 0:100000002Table 1: Inverse Table

Correctness of the AMDK86 Floating Point Division Algorithm 52 The TheoremWe have mechanically checked a proof of the following theorem, stated informally below andformally in Section 5.Theorem: If p and d are 64,,15 (possibly denormal)
oating point numbers, d 6= 0, andmode is a rounding mode of the form [name n], where name 2 ftrunc, away, sticky,nearest, posinf, neginfg and n is an integer, 0 < n � 64, then the algorithm yields then,,17
oating point number obtained by dividing p by d and rounding the precise mathematicalresult according to mode.A corollary is that when p, d, andmode satisfy the conditions of the theorem, the algorithmnever signals an error. Hence, all the intermediate results �t in
oating point registers of thesize indicated by the pair �eld of each assignment.Suppose one has hardware that implements
oating point addition and multiplicationwith respect to a rounding mode as done in the IEEE
oating point standard. The algorithmdiscussed here shows an implementation of the division operation with respect to a roundingmode. Our theorem establishes that the algorithm returns the result of rounding the in�nitelyprecise answer according to the speci�ed mode.We do not here deal with the NaNs, in�nities and signed zeros of the IEEE standard; wediscuss how denormalized numbers are handled later.3 How the Algorithm Works3.1 Some Illustrative Examples in Decimal NotationConsider the familiar long division algorithm. In Figure 2 we show the long division calcu-lation of 430 divided by 12.Very loosely, the long division of p by d can be thought of as generating a sequence of nquotient digits, qi and partial remainders, pi, where p = p0, such that the �nal quotient is thesum of the n quotient digits and pn is the �nal remainder.

Correctness of the AMDK86 Floating Point Division Algorithm 6� Given pi and d, guess the next quotient digit, qi, by inspection of the high order partsof pi and d. In dividing 430 by 12 in Figure 2 our q0 is the digit 3 in the tens place, or30. In long division one generally tries to choose qi to make the next partial remaindernonnegative and minimal but there is quite a lot of
exibility in the choice of qi.� To obtain the next partial remainder, pi+1, multiply qi times d and subtract the resultfrom pi. In the example of 430 divided by 12 with a q0 of 30, the �rst partial remainderis 430 � (12 � 30) = 70:Let q be the sum of the n quotient digits. Let r be the last partial remainder, pn. Thenp = dq + r. If one chooses appropriate qi and n, jrj can be made to approach 0.
1 2 4 3 0.0 0

3 6

3 5.8 3

7 0
6 0
1 0 0

9 6
4 0
3 6

4

0
p

q
0

q
0

d

p
1 0

p q
0

d

p = d

quotient digits

= 30

partial remainder

= -Figure 2: The Nomenclature of Long DivisionIn Figure 3 we show the same long division problem, except this time we generalize thequotient digits to two (decimal) digit
oating point numbers and we show how the reciprocalof the divisor is used to generate the quotient digits using �xed precision operations.The reciprocal of 12 is 0:083 which we approximate to two decimal digits of precision with0:083. We call this quantity sd2 because its use in this decimal example is analogous to thevariable sd2 in the binary
oating point algorithm of Figure 1.The basic idea behind the computation of the quotient digits is to let qi be the high orderpart of pi=d = (1=d)pi. The �rst quotient digit, q0, is obtained by multiplying sd2 by 430,obtaining 35.69, which is rounded to two digits. In this example away rounding is used. (In

Correctness of the AMDK86 Floating Point Division Algorithm 7
1 2

+
+
+

.0 4

.0 0 0 0 0 4

-2.0 4
-2.

3 5.8 3 3 3 3 3
4 3 0.0 0 0 0 0 0
4 3 2.

-.1 7
3 6.

.0 4 0 8

.0 0 0 8-

.0 0 3 4

.0 0 0 0 6 7-

.0 0 0 8 0 4-

Reciprocal Calculation:1=12 = 0:0833 � 0.083 = sd2Quotient Digit Calculation:0.083 � 430.0000 = 35.6900000 � 36.000000 = q00.083 � -2.0000 = -.1660000 � -.170000 = q10.083 � .0400 = .0033200 � .003400 = q20.083 � -.0008 = -.0000664 � -.000067 = q3Summation of Quotient Digits:q0 + q1 + q2 + q3 = 35:833333Figure 3: Quotient Digits Can be Negativethe actual algorithm, away rounding is used on all but the last digit, where trunc roundingis used.) Thus, q0 here is 36. This is slightly too big: the next partial remainder, p1, is-2.0, so the next quotient digit, q1, is negative (-.17 after away rounding to two digits) and sotends to correct the over-estimation of the �rst digit. The sum, q, of the four quotient digitsis 35.833333. Observe that a correct answer is still obtained: 430 divided by 12 produces35.833333 with a remainder of 0.000004.3.2 The Reciprocal ComputationNow consider the algorithm in Figure 1. Lines 1 through 6 are devoted to the computation ofthe reciprocal of d. At line 6 the variable sd2 is assigned a 32,,17
oating point number that(we will prove) is 1=d with a relative error less than 2�28. This is done by obtaining an initialapproximation via Table 1 and then re�ning it with two iterations of an easily computedvariation of the Newton-Raphson method,sdi+1 = sdi(2 � sdi � d) (0 � i � 1):The variation is obtained by making the following transformations on the equation above.� Instead of d we use the
oating point number obtained by rounding d with the mode[away 32], i.e., we use a 32,,17
oating point number approximating the 64,,17 numberd from above.

Correctness of the AMDK86 Floating Point Division Algorithm 8� After multiplying sdi by (the approximation to) d with a 32�32-bit
oating point mul-tiply, we truncate the result to 32 bits. This is our sddi and can be thought of as anapproximation to sdi � d.� Instead of subtracting the result from 2 to form (2 � sdi � d) we complement sddi,which yields (2 � sddi � 2�31) or (2 � sddi � 2�32), depending on whether sddi < 1.This notion of \complement" is explained in Subsection 5.1.� After multiplying by sdi we truncate the result to 32 bits.3.3 The Quotient Digit ComputationLines 7 through 29 of the algorithm are devoted to the computation of four quotient digits,q0 through q3. Each quotient digit is a 24,,17
oating point number. Quotient digit qi isobtained by multiplying sd2 by the top 32-bits of pi (a 32 � 32-bit operation) and roundingto 24 bits. See lines 11, 17, 23, and 29. In the computations of the �rst three quotient digitswe use away rounding, but in the last quotient digit we use trunc.Successive partial remainders are de�ned with the equation pi+1 = pi� (qi�d). However,computing the right-hand side directly would require a 24 � 64-bit multiply. We do themultiplication in two 32-bit pieces. In particular, dh and dl are de�ned (lines 7 and 8) to bethe high and low 32 bits of d. Thus (qi � d) = qi � dh + qi � dl. Each product, called qdhiand qdli, can be computed exactly with a 24 � 32-bit multiplication. See for example lines12 and 13. We then subtract these two products successively from pi to obtain pi+1 in a 64� 64-bit operation. The 64,,17
oating point result is exact; no precision is lost and pi+1 ascomputed is indeed the mathematical pi � (qi � d).3.4 Summing the Quotient DigitsIn lines 30 through 32 the quotient digits are summed. The two least signi�cant digits, q2and q3 are added together �rst. The result is sticky rounded to 64 bits and called qq2. Thenq1 is added to qq2, sticky rounded to 64 bits and called qq1. Finally, q0 is added to qq1,

Correctness of the AMDK86 Floating Point Division Algorithm 9but this time the result is rounded according to the user-speci�ed mode and returned as thequotient.4 The ACL2 Logic and Theorem ProverOur mechanical proof of the correctness of this algorithmwas carried out with ACL2. \ACL2"stands for \A Computational Logic for Applicative Common Lisp." It provides a formalmathematical logic and a mechanical theorem prover to help the user construct proofs oftheorems in the logic. Because our work was done formally within that logic, the logic hasin
uenced the style of our formalization. To help the reader understand that style we introducethe ACL2 system brie
y here. However, this section can be skipped: the mathematics aspresented in this paper is accessible to those with no knowledge of ACL2.The logic formalizes a useful applicative subset of the ANSI standard programming lan-guage Common Lisp [14, 15]. Expressions in the logic are Common Lisp expressions. Givenvalues for the variables, logical expressions can evaluated by Common Lisp implementa-tions. Technically, the ACL2 logic is a �rst-order, quanti�er-free logic of recursive functionsproviding mathematical induction on the ordinals up to �0 = !!!::: , recursive de�nition, andwitnessed constraint of new function symbols. The following disjoint data types are axio-matized:� Symbols. Symbols are Common Lisp objects denoting words. We display symbolconstants in typewriter font. For example, trunc and away are both symbol constants.� Rationals and Integers. The rational numbers are axiomatized so that the integersare a subset of the rationals. Thus, 22=7 and �5 are both rationals; the latter is aninteger. The familiar arithmetic operators are de�ned in accordance with the laws ofrational arithmetic: e.g., 22=7 � 1=11 = 2=7. The logic implements \in�nitely precise"rational arithmetic.� Lists. ACL2 supports arbitrary ordered pairs and lists of ACL2 objects. For example,

Correctness of the AMDK86 Floating Point Division Algorithm 10[away 24] is a list of length two containing the symbol away and the integer 24.� Characters and Strings. ACL2 supports many of Common Lisp's character objectsand strings of characters, e.g., "bad post-round exponent".As noted, the syntax of ACL2 is that of Common Lisp. Thus, for example, the formal ex-pression of x�2i+1 in ACL2 is (* x (expt 2 (+ i 1))). In this paper we hand translate allof the arithmetic expressions into traditional notation. We also use traditional mathematicalEnglish rather than formal logical notation.ACL2 is described in more detail in [6, 7]. ACL2 is available without fee on the Internet.See http://www.cli.com.Because ACL2 is an executable logic and divide is de�ned as a function in ACL2, it ispossible to execute divide on concrete data to test it. For example, divide(1; 3; [trunc 24])produces the rational 5592405/16777216 or 0:01010101010101010101010102. On a SparcStation 20 such a test of the formal pseudocode semantics takes about 0.3 seconds. If weuse away rounding instead, the answer is 0:01010101010101010101010112 . In both cases theanswer returned is the true quotient, 1/3, rounded as speci�ed.5 Formalization of the Theorem5.1 Basic ConceptsWe now explain our formalization of the
oating point numbers. Every non-0 rational numberx can be uniquely represented in the form � � s � 2e where� � 2 f+1;�1g,� s is a rational and 1 � s < 2, and� e is an integer.We call � the sign, s the signi�cand and e the exponent of x. We de�ne the unary functionsymbols �, s and e for accessing the corresponding components of x. We sometimes write �x,

Correctness of the AMDK86 Floating Point Division Algorithm 11sx and ex instead of the more formal �(x), s(x), and e(x). We make the conventions that thesign of 0 is +1, the signi�cand is 0, and the exponent is 0. When we say \s is a signi�cand"we mean s = 0 or 1 � s < 2.Note that our notions of signi�cand and exponent are de�ned for all rationals, not just forthose, say, with �nite binary expansions. Of course if a rational has an in�nitely repeatingbinary expansion, then its signi�cand does also. For example, 1/3 = 0:01012 has a signi�candof 4=3 = 1:01012 and an exponent of -2, since 1=3 = 1 � 4=3 � 2�2 and 1 � 4=3 < 2.To truncate a signi�cand to n bits we use:truncn(s; n) = bs� 2n�1c2n�1 :For example, truncn(4=3; 5) = truncn(1:0101012; 5)= b1:0101012 � 24c=24= b10101:012c=24= 101012=24= 1:01012= 21=16We say x is an n; ;m
oating point number if and only if x is a rational number,truncn(sx; n) = sx, and 1� 2m�1 � ex � 2m�1. It is helpful to think of x as \normalized" inthis context.We say x is an n; ;m+
oating point number if and only if x is a rational number,truncn(sx; n) = sx, and 2 � n � 2m�1 � ex � 2m�1. In our informal discussions abovewhen we say something is a \64,,15 (possibly denormal)
oating point number" we mean itis a 64; ; 15+
oating point number.For example, the exponent values for the 4,,3
oating point numbers are f-3, -2, ..., 3,4g. Thus, 1:0002 � 2�3 is a 4,,3
oating point number. But 0:0012 � 2�3 = 1 � 2�6 is nota 4,,3
oating point number because its exponent is -6. However the exponent range of the

Correctness of the AMDK86 Floating Point Division Algorithm 124; ; 3+
oating point numbers extends downward to -6, so 0:0012 � 2�3 is a 4; ; 3+
oatingpoint number.The reader familiar with the IEEE standard will note several discrepancies between thestandard and our formal de�nitions above. We are not trying to formalize the standard here;we are de�ning a subset of the rationals on which our algorithm works.Our notion of the n; ;m
oating point numbers does not include the denormals, NaNs,in�nities and signed zeroes of the standard. Furthermore, we allow an exponent range of1 � 2m�1 � ex � 2m�1 while the standard narrows the legal exponent values to 2 � 2m�1 �ex � 2m�1 � 1, disallowing the top and bottom values in our range. In the standard thosevalues are appropriated for use as marks for the special cases of denormals, etc. Thus, fora given choice of n and m, our n; ;m
oating point numbers include all of the normalizedIEEE
oating point numbers in that format as well as the additional rationals with exponentslarger or smaller by one.Our notion of the n; ;m+
oating point numbers includes all of the standard's normalizedand denormal numbers in the corresponding format, as well as additional rationals. Theexcess in this case comes not only from our slightly larger exponent bound but also fromthe fact that we permit a denormal to have a full n bits of precision while the standard'sdenormals lose a bit of precision for each additional exponent value beyond the normal range.For example, we admit 0:0011112 � 2�3 = 1:111 � 2�6 as a 4; ; 3+
oating point number.We de�ne the complement of an n bit
oating point number x to becomp(x; n) = 8><>: 2 � x� 21�n if x < 12 � x� 2�n otherwiseFor example, comp(1:11100002; 8) = 0:000111112 and comp(0:11100002 ; 8) = 1:00011112.A more general notion of complement could be de�ned (taking into account the sign andexponent of x) but we use this one because we are only interested in the case where 1=2 <x < 2. Indeed, we prove that both sdd0 and sdd1 | the arguments to comp in lines 4 and 6of the algorithm | have this property.

Correctness of the AMDK86 Floating Point Division Algorithm 13We de�ne an \ulp" (\unit in the last place") of an n; ;m
oating point number, x, asulp(x; n) = 2ex�n+1. Thus, for example, ulp(1111:00012 ; 8) = 23�8+1 = 0:00012.A �nal basic concept is that of the nth bit of a signi�cand. We index the bits by the powerof 2 indicated by their positions. Because we are here thinking of s as a signi�cand we know0 � s < 2 and hence all bit numbers are nonpositive. Thus, bit 0 is the bit in the ones place,bit -1 is the bit in the 1/2 place, etc. It is useful to remember that the least signi�cant bit inan n bit signi�cand is at position 1� n.bitn(s; n) = 8><>: 1 if bs� 2�nc is odd0 otherwiseFor example, bit number -4 in the rational 4/3 is equal to 1. That is, bitn(4=3;�4)= bitn(1:0101012;�4) = 1 because the
oor expression above produces an odd integer,b1:0101012 � 24c = b10101:012c = 101012.5.2 Rounding ProceduresSix rounding procedures are mentioned in this paper. We start with the three that are usedexplicitly in the division algorithm, trunc, away and sticky.trunc(x; n) = �x � truncn(sx; n)� 2exaway(x; n) = �x � awayn(sx; n)� 2exsticky(x; n) = �x � stickyn(sx; n)� 2exEach is de�ned in terms of an analogous operation on the signi�cand which is then signedand scaled for the general case. We have already de�ned truncn.awayn(s; n) = 8><>: s if truncn(s; n) = struncn(s; n) + 21�n otherwisestickyn(s; n) = 8><>: s if truncn(s; n) = s or bitn(s; 1� n) = 1awayn(s; n) otherwise

Correctness of the AMDK86 Floating Point Division Algorithm 14In addition to the rounding procedures above, we prove that the division algorithm sup-ports three others: round to nearest, to positive in�nity and to negative in�nity, denoted bynearest(x; n), posinf(x; n) and neginf(x; n). We omit their de�nitions here for brevity.5.3 Rounding ModesA rounding mode is a list of length two, [name n] where name 2 ftrunc, away, sticky,nearest, posinf, neginfg and n is an integer such that 0 < n � 64.The general-purpose rounding operation rounds a rational according to a speci�ed round-ing mode [name n]:round(x; [name n]) = 8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>: away(x; n) if name =awaysticky(x; n) if name =stickynearest(x; n) if name =nearestposinf(x; n) if name =posinfneginf(x; n) if name =neginftrunc(x; n) otherwise5.4 Pseudocode Semantics RevisitedIn Subsection 1.1 we de�ned the semantics of the pseudocode in terms of the function eround.
eround(x; [sym n]) = 8>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>:

If x is not a rationalthen err("non-rational input"; x)elseif sym =exactthen if [exact n] is true of xthen x else err("inexact"; x)elseif [exact n] is true of round(x; [sym n])then round(x, [sym n])else err("bad post-round exponent"; x)

Correctness of the AMDK86 Floating Point Division Algorithm 15where err(msg; x) returns a list object (i.e., a non-rational \error object") and where we saythe exactness claim [exact n], where n is an integer, 0 < n � 64, is true of x if and only ifx is an n,,17
oating point number.5.5 The Main TheoremMain Theorem If p and d are 64; ; 15+
oating point numbers, d 6= 0, and mode is arounding mode, then divide(p; d;mode) = round(p=d;mode).Recall that the 64; ; 15+
oating point numbers include all the double extended precisionnormal and denormal numbers of the IEEE standard.By de�nition of \rounding mode", we see that the algorithm supports trunc, away,sticky, nearest, posinf, and neginf rounding, to any precision 0 < n � 64.6 The Main ProofTo allow clear talk about the values of the variables in the pseudocode we de�ne functionscorresponding to the 32 variable names in the pseudocode.Consider for example line 66. sd2 = sd1 � comp(sdd1; 32) [trunc 32]The semantics of this line can be rendered as the following function of d, provided we haverendered the preceding lines as analogous functions :esd2(d) = eround(esd1(d)� comp(esdd1(d); 32); [trunc 32]):We call esd2 the semantic function for the pseudocode variable \sd2." Assuming no previousline signals an error, the meaning of the pseudocode variable \sd2" is esd2(d). More generally,if the division algorithm is executed with d = x and executes to line 6 with no error, thenesd2(x) is the value of \sd2".Because we always assume no previous line has signaled an error when we use esd2(d) weneed not concern ourselves with the meaning of the de�nition above when esdd1(d), say, is

Correctness of the AMDK86 Floating Point Division Algorithm 16an error object. But esd2(d) may itself signal the �rst error. Thus, it is somewhat awkwardto reason about esd2(d) because it is not always numeric.Now consider the functionsd2(d) = trunc(sd1(d) � comp(sdd1(d); 32); 32):This can be thought of as the \non-erroneous" value of sd2. In particular, esd2(d) = sd2(d)unless the former is an error object. Furthermore, the former is an error object if and onlyif the precision or exponent of the latter is too big. Thus, not only are the non-erroneoussemantic functions like sd2 easier to handle but their arithmetic properties can be readilytraded-in for properties about the true semantics, e.g., esd2.A \non-erroneous version" of the algorithm is shown in Figure 4, which actually de�nesall 32 of the non-erroneous semantic functions. Note that we use divide! as the name of thelast function, which is the non-erroneous version of the division algorithm.In Figure 4 we follow a convention that we follow henceforth in this paper, namely,when we use a pseudocode variable (other than p, d and mode) it is merely an abbreviationfor the application of the corresponding non-erroneous semantic function to the appropriatesubsequence of p, d, and mode. For example, consider line 11 of Figure 4: q0 = q0(p; d) =away(sd2 � ph0; 24) = away(sd2(d)� ph0(p); 24).We will prove that the non-erroneous algorithm enjoys an even stronger correctness prop-erty than the actual algorithm:Theorem 1 If p and d are rational numbers, d 6= 0, and mode is a rounding mode, thendivide!(p; d;mode) = round(p=d;mode).The 64; ; 15+ hypotheses are necessary only to relate the non-erroneous algorithm to theactual one. We will also prove:Theorem 2 If p and d are 64; ; 15+
oating point numbers, d 6= 0 and mode is a roundingmode, then divide!(p; d;mode) = divide(p; d;mode).Theorems 1 and 2 together imply the main theorem. We prove Theorem 1 in Section 8 andTheorem 2 in Section 9.

Correctness of the AMDK86 Floating Point Division Algorithm 171. sd0(d) = lookup(d)2. dr(d) = away(d; 32)3. sdd0(d) = away(sd0 � dr; 32)4. sd1(d) = trunc(sd0 � comp(sdd0; 32); 32)5. sdd1(d) = away(sd1 � dr; 32)6. sd2(d) = trunc(sd1 � comp(sdd1; 32); 32)7. dh(d) = trunc(d; 32)8. dl(d) = d� dh9. p0(p) = p10. ph0(p) = trunc(p0; 32)11. q0(p; d) = away(sd2 � ph0; 24)12. qdh0(p; d) = q0 � dh13. qdl0(p; d) = q0 � dl14. pt1(p; d) = p0 � qdh015. p1(p; d) = pt1 � qdl016. ph1(p; d) = trunc(p1; 32)17. q1(p; d) = away(sd2 � ph1; 24)18. qdh1(p; d) = q1 � dh19. qdl1(p; d) = q1 � dl20. pt2(p; d) = p1 � qdh121. p2(p; d) = pt2 � qdl122. ph2(p; d) = trunc(p2; 32)23. q2(p; d) = away(sd2 � ph2; 24)24. qdh2(p; d) = q2 � dh25. qdl2(p; d) = q2 � dl26. pt3(p; d) = p2 � qdh227. p3(p; d) = pt3 � qdl228. ph3(p; d) = trunc(p3; 32)29. q3(p; d) = trunc(sd2 � ph3; 24)30. qq2(p; d) = sticky(q2 + q3; 64)31. qq1(p; d) = sticky(qq2 + q1; 64)32. divide!(p; d;mode) = round(qq1 + q0;mode)Figure 4: The Non-Erroneous Semantic Functions

Correctness of the AMDK86 Floating Point Division Algorithm 187 Fundamental Elementary ResultsIn our presentation of the proof we take for granted many key properties of the three roundingprocedures, trunc, away, and sticky. But in the development of the proof itself, and especiallyin its mechanization, a large percentage of the total manpower went into the identi�cationand proof of these key properties. We show only a few here.In this section we implicitly assume that x and y are rationals and i is a positive integer.Recall that the signi�cand of x is s(x) which we sometimes write as sx. The exponent of x ise(x) which may be written ex.7.1 Key Properties of the RepresentationLemma 7.1.1 s(�x) = sx and e(�x) = ex.Lemma 7.1.2 If j is an integer, s(x� 2j) = sx and e(x� 2j) = ex + j.Lemma 7.1.3 If x 6= 0 and j is an integer and jxj < 2j then ex < j.Lemma 7.1.4 If x 6= 0 and j is an integer and 2j � jxj then j � ex.An upper bound on the exponent of a sum (or di�erence) is given by:Lemma 7.1.5 If x 6= 0 and x+ y 6= 0 and ey � ex then e(x+ y) � 1 + ex.A lower bound on the exponent of a sum (or di�erence) of two numbers (when the exponentof one is su�ciently smaller than that of the other) is given byLemma 7.1.6 If x 6= 0 and y 6= 0 and ey + 1 < ex then ey < e(x+ y).Bounds on the exponent of a product are given by:Lemma 7.1.7 If x 6= 0 and y 6= 0 then ex + ey � e(x� y) � ex + ey + 1.

Correctness of the AMDK86 Floating Point Division Algorithm 197.2 Elementary Properties of RoundingLemma 7.2.1 trunc(�x; i) = �trunc(x; i).Analogous lemmas hold for away and sticky.Lemma 7.2.2 For every x there is an " of the same sign such that trunc(x; i) = x� " andj"j < 2ex�i+1.By \same sign" here we mean that if x < 0 then " � 0 and otherwise 0 � ". Similar lemmashold for away and sticky:Lemma 7.2.3 For every x there is an " of the same sign such that away(x; i) = x+ " andj"j < 2ex�i+1.Lemma 7.2.4 For every x there is an " such that sticky(x; i) = x+ " and j"j < 2ex�i+1.Away and sticky have monotonicity lemmas analogous toLemma 7.2.5 If x � y then trunc(x; i) � trunc(y; i).How exponents are a�ected by the rounding procedures are described byLemma 7.2.6 If x 6= 0 then e(trunc(x; i)) = ex.Lemma 7.2.7 If x 6= 0 thene(away(x; i)) = 8><>: 1 + ex if 2 < sx + 2�i+1ex otherwiseLemma 7.2.8 If x 6= 0 then e(sticky(x; i)) = ex.The rounding procedures distribute over multiplication by a power of two:Lemma 7.2.9 If j is an integer then trunc(x� 2j; i) = trunc(x; i)� 2j.

Correctness of the AMDK86 Floating Point Division Algorithm 20Analogous lemmas hold for away and sticky.The rounding procedures interact simply in certain situations.Lemma 7.2.10 If j is an integer and i � j then trunc(trunc(x; i); j) = trunc(x; i).Lemma 7.2.11 If j is an integer and i � j then trunc(away(x; i); j) = away(x; i).Since we use the test \trunc(x; n) = x" to formalize \x �ts in n bits" it is Lemma 7.2.11that captures the remark that \the result of rounding away to i bits �ts in j bits if i � j."Similar results hold for the other rounding modes.The informal statement that the product of an m bit number and an n bit number �ts inm+ n bits isLemma 7.2.12 If m and n are positive integers and trunc(x;m) = x and trunc(y; n) = ythen trunc(x� y;m+ n) = x� y.The following two lemmas are especially useful in proving exactness claims.Lemma 7.2.13 For every rational x and positive integer i there is an integer j such thattrunc(x; i) = j � 2ex�i+1, where �j = �x and 2i�1 � jjj < 2i.Lemma 7.2.14 If n is an integer and jnj < 2i, then trunc(n; i) = n.7.3 Special Properties of Sticky RoundingWe are especially interested in the interactions between sticky rounding and the other pro-cedures because of its crucial use to sum the quotient digits.Lemma 7.3.1 If mode is a rounding mode of the form [name n] where n � i thenround(sticky(x; i+ 2);mode) = round(x;mode).An especially important fundamental result is

Correctness of the AMDK86 Floating Point Division Algorithm 21Lemma 7.3.2 (Sticky Plus) Let x be a non-0 rational that �ts in n > 0 bits, which is tosay trunc(x; n) = x. Let y be a rational whose exponent is at least two smaller than that ofx, 1 + ey < ex. Let k be a positive integer such that n+ ey � ex < k.n bitsz }| {x exz }| {xxxxxxxxxxxxxxxx:xxxxxxxxxxxy yyyyyyyyyyyy| {z }ey :yyyyyyyyyyyyyy| {z }k bits yyy : : :Then sticky(x+ y; n) = sticky(x+ sticky(y; k); n).The need for Lemma 7.3.2, which is henceforth called the \Sticky Plus" property, canbe informally explained as follows. Suppose one wishes to round the \in�nitely precise"sum x + y to n bits with sticky rounding but one only has a �nite number of bits in whichto compute the sum. Suppose x itself �ts in n bits but y is \in�nitely precise" and is asdescribed by the lemma above. Then one can �rst sticky round the \in�nitely precise" y tok bits, do a �nite sum, and sticky round the result to obtain the desired answer. This is theproperty of sticky rounding that allows us to sum the quotient digits without endangering theround of the in�nitely precise answer.Among the lemmas noted in this section, we found Lemma 7.3.2 to be singularly di�cultto prove. Our proof considers the signs and relative magnitudes of x and y (intuitively,consider the case that the + sign in the conclusion above is \really" a � sign). Even afterthat case split, however, the proof is quite interesting. We do not discuss it further here.We conclude this section with one more important lemma about sticky rounding.Lemma 7.3.3 Let x be a non-0 rational such that trunc(x; n) = x, where n > 1. Let "1and "2 be non-0 rationals such that j"1j < 2ex�n+1 and j"2j < 2ex�n+1. Furthermore, supposeboth "1 and "2 are positive if either is (i.e., 0 < "1 $ 0 < "2). Then sticky(x + "1; n) =sticky(x+ "2; n).Despite the fact that we have only stated and not proved the lemmas in this section, it isimportant for the reader to understand that their proofs were checked mechanically.

Correctness of the AMDK86 Floating Point Division Algorithm 228 Proof of Theorem 1Recall that pseudocode variables here denote calls of the functions of Figure 4.Theorem 1 If p and d are rational numbers, d 6= 0, and mode is a rounding mode, thendivide!(p; d;mode) = round(p=d;mode).The following proof is a \journal level" description of the one we checked with ACL2.Proof. Assume p and d are rationals and d 6= 0.The �rst six lines of the algorithm of Figure 4 compute an approximation to the reciprocalof d. In Subsection 8.1 we will proveLemma 8.1.1 For every non-0 rational d there exists a rational 0 � "sd2 < 2�28 such thatsd2 = (1=d)(1 � "sd2).This lemma will enable us prove the crucial properties of the quotient digits, namely, thattheir exponents di�er by at least 23. The crucial lemma relating q0 to q1 for example isLemma 8.2.1 (Digit Separation (q0 v: q1)) If p and d are rationals, d 6= 0, and q1 6= 0then e(q1) � e(q0)� 23.The Digit Separation lemma (page 27) states an analogous or slightly stronger property forall three quotient digits as well as for what we will call q03 below.One implication of Digit Separation is that two non-0 quotient digits have a non-0 sum.For example, if q2 and q3 are non-0 then q2 + q3 is non-0, for otherwise the exponents of q2and q3 would be equal, since e(�q3) = e(q3). We use these and similar observations implicitlybelow.Lines 7 through 9 of the pseudocode prepare for the quotient digit calculation, by de�ningdh and dl to be the high and low parts, respectively, of d, and renaming p to be p0 so thesubsequent indexing is regular. Hence, dh + dl = d. Note that in the actual algorithm (asopposed to the non-erroneous one we are discussing) \dl" is d� dh only if that quantity �tsexactly in 32 bits or less. We deal with this, of course, when we work on Theorem 2.The �rst quotient digit, q0, and the next partial remainder, p1, are computed by lines 10

Correctness of the AMDK86 Floating Point Division Algorithm 23through 15. Unwinding the de�nition of p1 gives p1 = pt1 � qdl0 = (p0 � qdh0) � qdl0 =p0 � (qdh0 + qdl0) = p0 � (q0 � dh+ q0 � dl) = p0 � q0 � (dh + dl) = p0 � q0 � d.The computation of the next two quotient digits and remainders is analogous. Thus,unwinding as above, we get p3 = p0 � (q0+ q1+ q2)� d. If we de�ne q03 to be p3=d it followsthat p0 = (q0 + q1 + q2 + q03)� d, which is to sayp=d = p0=d= (q0 + q1 + q2 + q03): (1)Equation (1) tells us that the \in�nitely precise" answer is the sum of the �rst three quotientdigits plus q03. Note however that the algorithm does not compute q03 but q3 = trunc(sd2 �trunc(p3; 32); 24), which is generally di�erent.In this paper we address only the case where all four quotient digits are non-0 and leavethe other cases to the reader. Hint: if one quotient digit is 0 all subsequent ones are 0.The �nal steps of the computation sum the quotient digits.divide! = round(q0 + sticky(q1 + sticky(q2 + q3; 64); 64);mode)However, by Lemma 7.3.1 (page 20) we knowdivide! = round(;mode) (2)where = sticky(q0 + sticky(q1 + sticky(q2 + q3; 64); 64); 66) (3)We will show that = sticky(q0 + sticky(q1 + sticky(q2 + sticky(q3; 2); 24); 45); 66): (4)To prove this we reduce the right-hand sides of both (3) and (4) to sticky(q0+q1+q2+q3; 66).The reduction of (4) repeatedly applies Sticky Plus, starting on the inside and workingout, appealing to Digit Separation and our non-0 sum observations to relieve the hypotheses: = sticky(q0 + sticky(q1 + sticky(q2 + sticky(q3; 2); 24); 45); 66)

Correctness of the AMDK86 Floating Point Division Algorithm 24= sticky(q0 + sticky(q1 + sticky(q2 + q3; 24); 45); 66)= sticky(q0 + sticky(q1 + q2 + q3; 45); 66)= sticky(q0 + q1 + q2 + q3; 66):Following the same procedure we reduce the de�nition of , (3), to the same term andhence have proved (4).But we can replace q3 in the right-hand side of (4) by q03 to get = sticky(q0 + sticky(q1 + sticky(q2 + sticky(q3; 2); 24); 45); 66)= sticky(q0 + sticky(q1 + sticky(q2 + sticky(q03; 2); 24); 45); 66) (5)This is justi�ed because sticky(q3; 2) and sticky(q03; 2) satisfy the hypotheses on "1 and "2 ofLemma 7.3.3 (page 21). In particular, Digit Separation implies 0 < jsticky(q3; 2)j < 2e(q2)�23and 0 < jsticky(q03; 2)j < 2e(q2)�23. It is also true that 0 < sticky(q3; 2) if and only if 0 <sticky(q03; 2).Now we eliminate the inner sticky terms from the right-hand side of (5) with Sticky Plusand Digit Separation (including the one for q03), just as we did when we proved (4) above: = sticky(q0 + q1 + q2 + q03; 66): (6)Thus, we have divide!= round(;mode) by (2)= round(sticky(q0 + q1 + q2 + q03; 66);mode) by (6)= round(sticky(p=d; 66);mode) by (1)= round(p=d;mode).The last step above is by Lemma 7.3.1 (page 20) and the de�nition of rounding mode (whichinsures that the result is rounded to 64 digits or less). Q.E.D.

Correctness of the AMDK86 Floating Point Division Algorithm 258.1 The Reciprocal ComputationLemma 8.1.1 For every non-0 rational d there exists a rational 0 � "sd2 < 2�28 such thatsd2 = (1=d)(1 � "sd2).To give the reader a feel for the mechanization of such proofs, we describe this one at afairly low level. Please refer to lines 1 through 6 of Figure 4.Our proof of Lemma 8.1.1 is based on the observation that without loss of generality wecan restrict our attention to the case where 1 � d < 2. To make this formal, we �rst observeLemma 8.1.2 If d is a rational and d 6= 0 then sd2(d) = �(d)� sd2(s(d)) � 2�e(d).Proof.sd0(d) = �(d) � sd0(s(d))� 2�e(d)dr(d) = �(d) � dr(s(d))� 2e(d)sdd0(d) = sdd0(s(d))sd1(d) = �(d) � sd1(s(d))� 2�e(d)sdd1(d) = sdd1(s(d))sd2(d) = �(d) � sd2(s(d))� 2�e(d).Q.E.D.Given Lemma 8.1.2 it is easy to prove that sd2(s(d)) approximates 1=s(d) with the samerelative error that sd2(d) approximates 1=d,Lemma 8.1.3 If d 6= 0 and sd2(s(d)) = (1=s(d))(1 � "), then sd2(d) = (1=d)(1 � ").Hence, we can prove Lemma 8.1.1 by instantiation of Lemma 8.1.4, below: replace d bys(d); appeal to the fact that for d 6= 0, 1 � s(d) < 2; and use Lemma 8.1.3.Lemma 8.1.4 For every rational d, 1 � d < 2, there exists a rational 0 � "sd2 < 2�28 suchthat sd2 = (1=d)(1 � "sd2).Proof. Suppose 1 � d < 2.

Correctness of the AMDK86 Floating Point Division Algorithm 26It is helpful to generalize away from the particulars of Table 1. Therefore, consider anytable mapping keys to values. We say a table entry, hk; vi mapping key k to value v is "-ok ifand only if k and v are rational numbers, 0 < v, jkv� 1j < " and j(k + 2�7)v � 1j < ". If wethink of v as an approximation of the inverse of x for x in the range k � x < k + 2�7, thenthe "-ok condition limits the relative error at the endpoints. We say a table is "-ok if everyentry in it is "-ok.If hk; vi is "-ok, where k is the truncation of d to 8 bits, truncn(d; 8), then it follows fromthe monotonicity of multiplication and k � d < k + 2�7 that jdv � 1j < ". Thus, if a table is"-ok and it contains a value v for truncn(d; 8) then jdv � 1j < ".It is easy to con�rm by computation that Table 1 is "-ok for " = 3=512 and that it containsan entry assigning a value for the 8-bit truncation of every 1 � d < 2 (e.g., the 128 8-bitnon-0 signi�cands). Hence, by the de�nition of lookup and the "-ok property of the table,jd� lookup(d)� 1j < 3=512.It is convenient to de�ne "sd0(d) to be d�lookup(d)�1. It follows that sd0 = lookup(d) =(1=d)(1 + "sd0(d)), where j"sd0(d)j < 3=512 = 2�8 + 2�9.We now move on to lines 2 through 6 of the pseudocode. Observe that if 0 � x < 2, thentrunc(x; 32) = x(1 � �x), for some 0 � �x < 2�31, and away(x; 32) = x(1 + �x), for some0 � �x < 2�31. These two observations, along with the de�nition of comp and appropriatede�nitions of "sdd0, "sd1, "sdd1, and "sd2 (as functions of d analogous to "sd0 above) allow usto derive the equations and inequalities of Table 2. From these inequalities it readily followsthat 0 � "sd2(d) < 2�28 and hence Lemma 8.1.4 and hence Lemma 8.1.1 have both beenproved. Q.E.D.Perhaps the most interesting aspect of checking this proof mechanically is the "-ok prop-erty of Table 1. Just as described above, we de�ned this property as an ACL2 (Common Lisp)predicate and proved the general lemma stating that any table satisfying that predicate givessu�ciently accurate answers. When the general lemma is applied to our particular lookup,the system executes the predicate on Table 1 to con�rm that it has the required property.(This computation takes about 0.033 seconds on a Sparc Station 20.) Thus, the only time

Correctness of the AMDK86 Floating Point Division Algorithm 27var = value error boundssd0 = (1=d)(1 + "sd0(d)) j"sd0(d)j < 2�8 + 2�9sdd0 = 1 + "sdd0(d) "sd0(d) � "sdd0(d) � "sd0(d) + 2�30sd1 = (1=d)(1 � "sd1(d)) 0 � "sd1(d) � "sd0(d)2 + �sdd1 = (1� "sdd1(d)) "sd1(d)� 2�30 � "sdd1(d) � "sd1(d)sd2 = (1=d)(1 � "sd2(d)) 0 � "sd2(d) � "sd1(d)2 + �Table 2: Error Analysis for Lines 1-6 (� = 2�29 + 2�31 + (9=512)2�31)the particulars of Table 1 are involved in the proof is when the predicate is executed. Thisexample illustrates the value of computation in a general-purpose logic.8.2 Digit SeparationLemma 8.2.1 (Digit Separation) Suppose that p and d are rationals and d 6= 0. Letq03 = p3=d. Then q1 6= 0 ! e(q1) � e(q0)� 23,q2 6= 0 ! e(q2) � e(q1)� 23,q3 6= 0 ! e(q3) < e(q2)� 23, andq03 6= 0 ! e(q03) < e(q2)� 23:Proof. In this paper we will prove only the �rst of the four implications above, namelyq1 6= 0 ! e(q1) � e(q0) � 23. The others are analogous. The relevant lines of code for the�rst implication are lines 10 through 17 of Figure 4.Assume p and d are rationals, d 6= 0, and q1 6= 0. The desired conclusion,e(q1) � e(q0)� 23is equivalent to e(away(sd2 � ph1; 24)) � e(q0)� 23 (7)

Correctness of the AMDK86 Floating Point Division Algorithm 28By fundamental theorems about e, trunc and away, (7) is implied by jsd2 � ph1j < 2e(q0)�23which is equivalent to jsd2j � jtrunc(p0� d� q0; 32)j < 2e(q0)�23 which is, in turn, implied byjsd2j � jp0 � d � q0j < 2e(q0)�23: (8)In perhaps the most surprising move of the proof, we now rewrite the left hand side above toexpress (8) equivalently asjsd2(p0 � sd2 � d� ph0) + sd2 � d(sd2 � ph0 � q0)j < 2e(q0)�23: (9)Let � = sd2(p0 � sd2 � d� ph0) and � = sd2 � d(sd2 � ph0 � q0). Then (9) has the formj� + �j < 2e(q0)�23: (10)But, as we will show, � and � have di�erent signs and their absolute values are boundedstrictly above by 2e(q0)�23. But in this case, it follows that (10) is true.We �rst show that � and � have di�erent signs. Then we bound each of them.By \di�erent signs" here we mean that one is nonpositive and the other is nonnegative,i.e., ((� � 0 ^ 0 � �) _ (� � 0 ^ 0 � �)). First observe that since � and � share a factorof sd2 we can cancel. Simple arithmetic therefore gives us that � and � have di�erent signsif and only if (p0 � sd2 � d � ph0) and (sd2 � d � ph0 � d � q0) have di�erent signs. Nownote that the two expressions whose signs we are comparing are of the form x� y and y� z,where x is p0, y is sd2 � d� ph0 and z is d� q0.The following easily proved arithmetic lemma allows us to reduce the question to thislemma's conditions (i){(iv).Lemma 8.2.2 If x, y and z are rationals then x� y and y � z have di�erent signs if(i) jyj � jxj and(ii) jyj � jzj and either(iii) 0 < x ^ 0 � y ^ 0 � z or(iv) x � 0 ^ y � 0 ^ z � 0

Correctness of the AMDK86 Floating Point Division Algorithm 29Under the instantiation of x, y, and z above, condition (i) becomes jsd2� d� ph0j � jp0j.But we know 0 < sd2�d � 1 by Lemma 8.1.1 (page 25) which tells us that sd2 approximates1=d from below. Since jph0j = jtrunc(p0; 32)j � jp0j, condition (i) is proved.Condition (ii) becomes jsd2 � d � ph0j � jd � q0j. Cancelling jdj and expanding thede�nition of q0 gives jsd2 � ph0j � jaway(sd2 � ph0; 32)j, which proves (ii).Finally we must show either condition (iii) or (iv), which just split on whether x ispositive. Here we handle only the case that 0 < x, i.e., (iii). We must therefore show0 � sd2 � d� ph0 and 0 � d � q0, given 0 < p0. But sd2 � d is always positive and 0 � ph0when 0 � p0. Thus the �rst conjunct is true. As for the second, d�q0 is d�away(sd2�ph0; 32)which is positive if p0 is. Thus the second conjunct is true.This completes the argument that � and � have di�erent signs. We now turn to thequestion of bounding them. We wish to show that j�j < 2e(q0)�23 and j�j < 2e(q0)�23. Weaddress the second �rst because it is simpler.Recalling the de�nition of � from page 28, we wish to prove jsd2 � d(sd2 � ph0 � q0)j <2e(q0)�23. Since 0 < sd2 � d � 1 it su�ces to showjsd2 � ph0 � q0j < 2e(q0)�23: (11)Expanding the de�nition of q0 gives jsd2 � ph0 � away(sd2 � ph0; 24)j < 2e(q0)�23. But thisfollows from jx � away(x; i)j < 2e(away(x;i))�i+1, which is easily proved from Lemma 7.2.3(page 19) together with Lemma 7.2.7 (page 19).So now we turn to the � bound. We wish to prove jsd2(p0 � sd2 � d� ph0)j < 2e(q0)�23.We will prove the stronger jsd2(p0� sd2� d� ph0)j < 2e(q0)�24. Since jsd2j � j1=dj it su�cesto prove j1=dj � j(p0 � sd2 � d � ph0)j < 2e(q0)�24: (12)But we can showLemma 8.2.3 jp0 � sd2 � d� ph0j < 2e(p0)�26Lemma 8.2.4 If p0 6= 0 then j1=dj � 2e(p0) � 2e(q0)+2

Correctness of the AMDK86 Floating Point Division Algorithm 30If p0 = 0 then ph0 = 0 and so (12) is trivial. Otherwise, we have the two inequalities above.Multiplying them together and simplifying gives (12) and so the proof of the � bound iscomplete. That, in turn, means that the proof of the separation property for q0 and q1 iscomplete. Q.E.D.The proofs of Lemmas 8.2.3 and 8.2.4 are left for the reader. Hint: use Lemma 8.1.1to bound the relative error in sd2, expand the de�nitions of ph0 and q0, and appeal to thefundamental properties of trunc and away.9 Proof of Theorem 2Theorem 2 If p and d are 64; ; 15+
oating point numbers, d 6= 0 and mode is a roundingmode, then divide!(p; d;mode) = divide(p; d;mode).9.1 The Non-Erroneous Equivalence LemmasThe proof of Theorem 2 proceeds by showing that each non-erroneous semantic function isequivalent to the corresponding semantic function. For example,Lemma 9.1.1 If d is a 64; ; 15+
oating point number and d 6= 0 then sd2(d) = esd2(d).We call this theorem the \non-erroneous equivalence lemma" for sd2. If we prove sucha lemma, e.g., v = ev, for each pseudocode variable v (adding appropriate hypotheses forp, d and mode when necessary) then we will have proved Theorem 2 because it is just thecorresponding lemma for the last line of code, i.e., divide! is the non-erroneous semanticfunction corresponding to divide.But, from the de�nition of eround, and the non-erroneous equivalence lemmas precedingthat for v, we know that v = ev if v is an n,,17
oating point number. So we are merelyobliged to prove that each v is a
oating point number of the desired precision and each hasa 17 bit exponent. We deal with precision �rst and then look at the exponent bounds.

Correctness of the AMDK86 Floating Point Division Algorithm 319.2 PrecisionThe precision analysis is interesting only for those lines of pseudocode containing an exactnessclaim. (Lines containing a rounding mode are trivial to handle because the correspondingnon-erroneous function is de�ned to round to the desired precision.) So consider, say, line 15of Figure 1, where we must prove that p1 �ts in 64 bits, which is to say trunc(p1; 64) = p1.Recall here we are dealing with the non-erroneous functions and we know p1 = p0 � q0 � d.To prove this and the related partial remainder theorems we appeal to the general lemma:Lemma 9.2.1 If p, d, and q are non-0 rationals such that trunc(p; 64) = p, trunc(d; 64) = d,trunc(q; 24) = q, and jp � q � dj � jdj � 2e(q)�23, then trunc(p � q � d; 64) = p � q � d.We leave the proof to the reader. Hint: consider whether q � d �ts in 87 bits and useLemmas 7.2.13 and 7.2.14. We also remind the reader that we have mechanically checked theproofs of all the lemmas used in our proof.9.3 ExponentsWe must also show that each pseudocode variable satis�es the exponent requirements on n,,17
oating point numbers, provided p and d are 64; ; 15+
oating point numbers and mode is arounding mode. Thus, we may assume �62 � 214 � ep � 214 and �62 � 214 � ed � 214 andwe must prove that the exponent of each pseudocode variable v satisifes 1�216 � e(v) � 216.Our proof considers sequentially the non-erroneous interpretation of each pseudocodevariable v and bounds e(v) in terms of ep and ed.Given the work we did for Lemma 8.1.1 (page 25) the �rst six lines are straightforward.For example, it is easy to show �ed� 2 � e(sd2) � �ed+ 1. Hence, if �62� 214 � ed � 214,then it is easy to show 1� 216 � e(sd2) � 216.The remaining lines are handled by the regular application of the elementary lemmas plusLemma 9.3.1 If x and y are rationals such that x+ y 6= 0, n and m are positive integers,trunc(x; n) = x and trunc(y;m) = y, then 1 �max(n;m) + min(ex; ey) � e(x+ y).

Correctness of the AMDK86 Floating Point Division Algorithm 32Lemma 9.3.2 If x and y are non-0 rationals whose sum is non-0, then e(x + y) � 1 +max(ex; ey).While these lemmas provide rather sloppy bounds, we can tolerate the sloppiness becauseexponents of width 15 (even taking into account the small expansion due to denormalization)are so much smaller than those of width 17. We can deduce the theorems in Table 3 fromwhich our goals follow.7. ed = e(dh) = ed8. dl 6= 0 ! ed � 63 � e(dl) � ed � 319. ep = e(p0) = ep10. ep = e(ph0) = ep11. p 6= 0 ! ep � ed � 2 � e(q0) � ep � ed + 312. qdh0 6= 0 ! ep � 2 � e(qdh0) � ep + 413. qdl0 6= 0 ! ep � 65 � e(qdl0) � ep � 2714. pt1 6= 0 ! ep � 65 � e(pt1) � ep + 515. p1 6= 0 ! ep � 128 � e(p1) � ep + 616. p1 6= 0 ! ep � 128 � e(ph1) � ep + 617. q1 6= 0 ! ep � ed � 130 � e(q1) � ep � ed + 918. qdh1 6= 0 ! ep � 130 � e(qdh1) � ep + 1019. qdl1 6= 0 ! ep � 193 � e(qdl1) � ep � 2120. pt2 6= 0 ! ep � 193 � e(pt2) � ep + 1121. p2 6= 0 ! ep � 256 � e(p2) � ep + 1222. p2 6= 0 ! ep � 256 � e(ph2) � ep + 1223. q2 6= 0 ! ep � ed � 258 � e(q2) � ep � ed + 1524. qdh2 6= 0 ! ep � 258 � e(qdh2) � ep + 1625. qdl2 6= 0 ! ep � 321 � e(qdl2) � ep � 1526. pt3 6= 0 ! ep � 321 � e(pt3) � ep + 1727. p3 6= 0 ! ep � 384 � e(p3) � ep + 1828. p3 6= 0 ! ep � 384 � e(ph3) � ep + 1829. q3 6= 0 ! ep � ed � 386 � e(q3) � ep � ed + 2130. p2 6= 0 ! ep � ed � 409 � e(qq2) � ep � ed + 2231. p1 6= 0 ! ep � ed � 472 � e(qq1) � ep � ed + 2332. p 6= 0 ! ep � ed � 535 � e(divide!) � ep � ed + 25Table 3: Exponent Bounds for Lines 7 through 32

Correctness of the AMDK86 Floating Point Division Algorithm 3310 Related WorkFor an introduction to
oating point arithmetic see [5]. See also Goldberg's discussion inAppendix A of [10]. For a detailed treatment of division, per se, see [4]. We discuss twoareas of related work in formal veri�cation: formalization of
oating point arithmetic andmechanically checked proofs of division algorithms.Part of ANSI/IEEE-854 [12] is formalized in [9] by P. Miner. Miner casts his formaliz-ation in the mechanically supported logic of PVS [3]. A few straightforward lemmas aboutrounding are shown, such as that truncation produces a number of no greater absolute value.These lemmas have presumably been proved mechanically by the PVS system. However, nomechanically checked proofs of
oating point algorithms are presented in [9].There have been several mechanically checked proofs of the SRT division algorithm re-ported in the literature. In [2] R. E. Bryant reports on the use of OBDD techniques toverify certain invariants on a radix-4 SRT division algorithm. Similar work has been doneby E. M. Clarke as well as by Clarke, S. M. German and X. Zhao (private communication).In [13] H. Reuss, M. Srivas, and N. Shankar report on the use of the PVS system to verifythat a radix r SRT division algorithm divides.It is perhaps most telling simply to observe that in none of the SRT work cited above isit necessary to formalize the notions of
oating point number or rounding to state or provethe theorems reported. But those concepts are key to the algorithm and theorem discussedhere.11 Concluding RemarksWe have mechanically checked a proof that the kernel of the
oating point division algorithmused on the AMD5K86 microprocessor is correct in the sense that on 64; ; 15+
oating pointnumbers (which includes the double extended precision normal and denormal numbers ofthe IEEE standard), it returns the n; ; 17
oating point number obtained by rounding the\in�nitely precise" quotient by the method and to the precision speci�ed by the rounding

Correctness of the AMDK86 Floating Point Division Algorithm 34mode.The successful checking of this proof establishes that it is possible to apply an existinggeneral purpose theorem proving tool to some
oating point algorithms of practical interest.References[1] R. E. Bryant, \Symbolic Boolean manipulation with ordered binary decision dia-grams," ACM Computing Surveys 40(3) 293{318, September, 1992[2] R. E. Bryant, \Bit-Level Analysis of an SRT Divider Circuit," CMU-CS-95-140,School of Computer Science, Carnegie Mellon University, Pittsburg, PA 15213.[3] J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas, \A Tutorial Introduc-tion to PVS," presented at Workshop on Industrial-Strength Formal Speci�cationTechniques, Boca Raton, FL, April 1995 (see http://www.csl.sri.com/pvs.html).[4] M. D. Ercegovac and T. Lang, Division and Square Root: Digit-Recurrence Al-gorithms and Implementations, Kluwer Academic Publishers: Norwell, MA, 1994.[5] D. Goldberg, \What Every Computer Scientist Should Know About Floating-PointArithmetic," ACM Computing Surveys, 23(1) 5{48, March, 1991.[6] M. Kaufmann and J S. Moore, ACL2 Version 1.8, URL ftp://ftp.cli.com/-pub/acl2/v1-8/acl2-sources/doc/HTML/acl2-doc.html, 1995.[7] M. Kaufmann and J S. Moore, \ACL2: An Industrial Strength Version of Nqthm,"submitted.[8] T. Lynch, A. Ahmed, and M. Schulte, \Rounding Error Analysis for Division,"Technical Report, Advanced Micro Devices, Inc., 5204 East Ben White Blvd.,Austin, TX 78741, May 26, 1995.

Correctness of the AMDK86 Floating Point Division Algorithm 35[9] P. M. Miner, \De�ning the IEEE-854 Floating-Point Standard in PVS," NASATechnical Memorandum 110167, NASA Langely Research Center, Hampton, VA23681, 1995.[10] D. A. Patterson and J. L. Hennessy, Computer Architecture, Morgan KaufmannPublishers: San Mateo, CA., 1990.[11] Standards Committee of the IEEE Computer Society. IEEE Standard for BinaryFloating-Point Arithmetic, IEEE Std. 754-1985, IEEE, 345 East 47th Street, NewYork, NY 10017, (1985).[12] Standards Committee of the IEEE Computer Society. IEEE Standard for Radix-Independent Floating-Point Arithmetic, IEEE Std. 854-1987, IEEE, 345 East 47thStreet, New York, NY 10017, (1987).[13] H. Ruess, M. K. Srivas, and N. Shankar, \Modular Veri�cation of SRT Division,"Computer Science Laboratory, SRI International, Menlo Park, CA 49025, 1996.[14] G. L. Steele Jr. Common LISP: The Language, Digital Press: Bedford, MA, 1984.[15] G. L. Steele, Jr. Common Lisp The Language, Second Edition. Digital Press, 30North Avenue, Burlington, MA 01803, 1990.

