
Structured Theory Development for aMechanized Logic�Matt Kaufmannyand J Strother MoorezMarch 1, 1999AbstractExperience has shown that large or multi-user interactive proof e�ortscan bene�t signi�cantly from structuring mechanisms, much like thoseavailable in many modern programming languages. Such a mechanismcan allow some lemmas and de�nitions to be exported, and others not. Inthis paper we address two such structuring mechanisms for the ACL2 the-orem prover: encapsulation and books. After presenting an introductionto ACL2, this paper justi�es the implementation of ACL2's structuringmechanisms and, more generally, formulates and proves high-level correct-ness properties of ACL2. The issues in the present paper are relevant notonly for ACL2 but also for other theorem-proving environments.1 OverviewModern programming languages provide convenient features even though inprinciple, all computations can be performed using Turing machines. By anal-ogy, mechanized logics often include convenient features even though conven-tional mathematical logics, for example �rst-order logic, provide a �rm foun-dation for formal reasoning. In particular, experience has shown that largeor multi-user interactive proof e�orts can bene�t signi�cantly from structuringmechanisms, much like those available in many modern programming languages.�This work was supported in part at Computational Logic, Inc., by the Defense AdvancedResearch Projects Agency, ARPA Order 7406, and the O�ce of Naval Research, ContractN00014-94-C-0193. The views and conclusions contained in this document are those of theauthor(s) and should not be interpreted as representing the o�cial policies, either expressedor implied, of EDS, Inc., the University of Texas, Computational Logic, Inc., the DefenseAdvanced Research Projects Agency, the O�ce of Naval Research, or the U.S. Government.yEDS CIO Services, 98 San Jacinto Blvd., Suite 500, Austin, TX 78701,kaufmann@cio2000.eds.comzDept. of Computer Sciences, University of Texas at Austin, Austin, TX 78712,moore@cs.utexas.edu 1

In this paper we provide structuring mechanisms, implemented in the ACL21theorem prover [8, 11, 4, 12]. Similar mechanisms might be appropriate forother theorem proving systems.Like its predecessor Nqthm [1, 5, 3], the ACL2 system supports developmentof (�rst-order) theories. Users introduce axioms by way of extension principles,which are usually de�nitions, and establish provability of alleged axioms fromthose axioms. Unlike Nqthm, the ACL2 theorem prover provides powerful struc-turing mechanisms that allow the user to designate certain de�nitions and lem-mas as \local", not to be exported from speci�ed scopes. These mechanisms, inconcert with others o�ered by ACL2, challenge us to formalize what these struc-turing mechanisms really mean. In fact, unsoundness crept into early versionsof ACL2 because of our failure to understand subtle aspects of such structuringmechanisms. In this paper, we give a way to understand what an ACL2 sessionmeans in terms of �rst-order logic.The rest of this paper proceeds as follows. First, we give a reasonably briefoverview of ACL2 and, in particular, of the structuring mechanisms that arethe subject of this paper. That section provides the ACL2 prerequisites forthe rest of the paper; no prior knowledge of ACL2 is assumed. Next, Section3 provides an informal introduction without proof of the main result of thepaper, that alleged theorems are indeed theorems. Following a presentationof logical preliminaries in Section 4, we present a somewhat new treatment ofrecursion and induction in Section 5. This treatment is used for explaining whyACL2's structuring mechanisms are sound. Section 6 introduces the crucialnotion of history and proves some important properties of histories. Section 7then introduces the notion of chronology, and demonstrates that the theoremsof a chronology are consequences of its axioms. Finally, we tie things togetherin Section 8 by showing that ACL2 sessions correspond to chronologies. Inparticular, the session's theorems are �rst-order consequences of its axioms,and as a consequence (modulo an obvious restriction) the session's �rst-ordertheory is consistent.There are also two appendices, which address technical points deferred fromthe main exposition. Appendix A proves the correctness of functional instanti-ation against the backdrop of histories. The correctness statement encompassesan optimization in the ACL2 implementation of its encapsulate structuringmechanism. Appendix B proves a relevant technical result on Skolemization.A preliminary work in the direction of this paper is [9]. That work, and thepresent paper, stand in contrast to the lower-level presentation provided in [10],in which we lay out the syntax of ACL2 and present a particular logic suitedto reasoning without quanti�cation. We also consider in [10] important issuesincluding packages and macros. In this paper we work at a higher level of ab-straction, assuming familiarity only with classical �rst-order logic and ignoringsyntactic and extra-logical issues. The issues in the present paper are relevant1\A Computational Logic for Applicative Common Lisp"2

not only for ACL2 but also for other theorem-proving environments.Prerequisites. We assume no familiarity with ACL2 or Common Lisp,providing the necessary background in Section 2. We do assume some basicfamiliarity with �rst-order logic.Conventions. De�nitions and introduction of notation, as well as proofs oflemmas and theorems, conclude with the symbol 2. When the proof is obvious,this symbol appears immediately after the statement of the lemma or theorem.All sequences in this paper are �nite sequences. We use typewriter font to dis-play actual syntax and we use font such as f both to indicate \meta-variables"that stand for syntax and for mathematical entities other than syntactic ele-ments. Example: \f is a function symbol such as CONS appearing in the set Sof sentences."Acknowledgments. Bob Boyer played a major role in the development ofACL2 for its �rst few years. We gratefully acknowledge his numerous contri-butions to its design and implementation. Virtually all of the implementationwork related to this paper was done in the friendly environment of Computa-tional Logic, Inc. EDS graciously provided Kaufmann some time away from itsYear 2000 project to work on this paper.2 Introduction to ACL2\ACL2" stands for \A Computational Logic for Applicative Common Lisp." Weuse the name both for a mathematical logic based on applicative Common Lisp[19] and for a mechanized theorem proving system for that logic. ACL2 is closelyrelated to the Boyer-Moore logic and system and its interactive enhancement[1, 5, 3]. The key reason we abandoned the Nqthm logic and adopted applicativeCommon Lisp is that the latter can result in extremely e�cient runtime code.2.1 The ACL2 LogicThe kernel of the ACL2 logic consists of a syntax, some rules of inference, andsome axioms. The kernel logic is given precisely in [10]. The logic supported bythe mechanized ACL2 system is an extension of the kernel logic.The kernel syntax describes terms composed of variables, constants, andfunction symbols applied to �xed numbers of argument terms. Thus, (* X(FACT N)) is a term that might be written as x�n! in more traditional syntacticsystems. After introducing Lisp-like terms, the kernel logic introduces the notionof \formulas" composed of equalities between terms and the usual propositionalconnectives. There are no quanti�ers.The rules of inference are those for propositional calculus with equality,instantiation, an induction principle and extension principles allowing for thede�nition of new total recursive functions, new constant symbols, new \symbolpackages," and the declaration of the \current package" (used in the resolution3

of naming con
icts). Our extension principles specify conditions under whichthe proposed extensions are admissible. For example, recursive de�nitions mustbe proved to terminate. The admissibility requirements insure the consistencyof the resulting extensions.The ACL2 axioms describe the properties of certain Common Lisp primi-tives. For example,Axioms.X = Y ! (EQUAL X Y) = TX 6= Y ! (EQUAL X Y) = NILX = NIL ! (IF X Y Z) = ZX 6= NIL ! (IF X Y Z) = YUsing the function symbols EQUAL and IF it is possible to \embed" propositionalcalculus and equality into the term language of the logic. When we write a termp where a formula is expected it is an abbreviation for the formula p 6= NIL.Thus, byAxiom (CAR-CONS).(EQUAL (CAR (CONS X Y)) X)we meanAxiom.(EQUAL (CAR (CONS X Y)) X) 6= NILwhich is provably equivalent toAxiom.(CAR (CONS X Y)) = X.We similarly feel free to write :� to denote the term or formula obtained byapplying the function symbol NOT to the term � , where formally:Axiom.(NOT X) = (IF X NIL T).The kernel logic includes axioms that characterize the primitive functionsfor constructing and manipulating certain Common Lisp numbers, characters,strings, symbols, and ordered pairs. In the present work, we consider onlytheories that extend a certain �rst-order theory GZ. This theory is assumedto contain the axioms of the kernel logic mentioned above, together with theanalogous CDR-CONS for CDR in place of CAR, guaranteeing that the ordered-pairoperation CONS is one-to-one. It also contains a few other axioms described inSection 4, notably a well-founded induction principle. Notice that the axiomsabove imply: T 6= NIL. 4

The logic supported by the ACL2 system is somewhat richer than the kernellogic. The full logic is obtained from the kernel by (a) a syntactic extension andsome syntactic restrictions (b) the inclusion of a new extension principle called\encapsulation" and a derived rule of inference called \functional instantiation,"and (c) the inclusion of a new extension principle called \defchoose." Thesyntactic extension is provided via the incorporation of Common Lisp's notionof macros, whereby new syntactic forms are implemented by functions thattranslate those forms into terms in the kernel syntax. The syntactic restrictionshave to do with syntactic limitations on the use of certain primitives so as toallow e�cient execution. For example, functions returning multiple values mustreturn the correct number, even though in the kernel logic a bundle of valuesis just a list and insu�ciently long bundles are e�ectively padded with nils.Encapsulation and functional instantiation are the subject of the present paper.The defchoose feature, discussed below, essentially allows the introduction ofuniversal and existential quanti�ers.2.2 The ACL2 SystemThe ACL2 system presents itself to the user as a read-eval-print command loop.The most basic commands are those that de�ne new functions, constants andpackages or designate a package as the current one. These commands correspondto the extension principles in the kernel logic. Each time such a command isexecuted the current �rst-order theory is extended. Such commands are calledevents. A sample event command is shown below. This command de�nes afunction named APP. Immediately following the command we show the system'stext output in response. The response is mainly concerned with the admissibilityrequirements for recursive de�nitions.(defun APP (X Y) ; concatenate lists x and y(IF (CONSP X)(CONS (CAR X) (APP (CDR X) Y))Y))The admission of APP is trivial, using the relation E0-ORD-< (whichis known to be well-founded on the domain recognized by E0-ORDINALP)and the measure (ACL2-COUNT X). We observe that the type of APP isdescribed by the theorem (OR (CONSP (APP X Y)) (EQUAL (APP X Y) Y)).We used primitive type reasoning.Another event command directs the ACL2 system to prove a theorem, and,when successful, to build the theorem into the system's data base. Below is acommand to prove that APP is associative. The proof, not shown, is successfuland the theorem is built-in as a left-to-right rewrite rule.(defthm ASSOCIATIVITY-OF-APP(EQUAL (APP (APP A B) C) 5

(APP A (APP B C))):rule-classes :rewrite)Loosely speaking, the record of all successful event commands is called the\chronology" of a session. Other commands allow the user to display parts ofthe chronology and to \undo" commands so as to roll-back the chronology tosome prior setting. For example, the cryptic command:ubt! 1undoes back through the �rst command and thus restores the system to itsinitial state.The ACL2 system also supports the constrained introduction of new functionsymbols. That is, it is possible to introduce a new symbol that is constrained tosatisfy certain axioms, without providing a de�nition that uniquely determinesthe function's behavior. To insure that the constraints are satis�able, the usermust provide a \witness," i.e., an existing function that can be proved to havethe required properties. The mechanism by which all this is accomplished inACL2 is called encapsulation. In a certain sense, this paper is about the logicalunderpinnings of encapsulation { underpinnings that are su�ciently subtle tohave caused us to introduce soundness bugs into versions of ACL2 prior toconstruction of the careful arguments in this paper.Here is an example encapsulation. Suppose the chronology at the time thiscommand is executed is called �.(encapsulate((EXECUTE (S) T) ; Signatures for execute(STATEP (S) T)) ; and statep(local (defun EXECUTE (S) S)) ; Witness for execute(local (defun STATEP (S) (NULL S))) ; Witness for statep(defthm STATEP-EXECUTE ; Constraint: execute(IMPLIES (STATEP S) ; preserves statep(STATEP (EXECUTE S)))))The signatures declare that the encapsulate command will introduce twofunction symbols, EXECUTE and STATEP, each of which takes one argument andreturns one result. The next two forms are \local defuns" that de�ne EXECUTE tobe the identity function and STATEP to be NULL, i.e., to return T or NIL accordingto whether its argument is NIL. These two events are \local" in the sense thatthe axioms added by them are relevant only during the admissibility analysisfor the encapsulate; these axioms provide alleged witnesses for the constraintsto be placed on the new symbols. The last event in the encapsulate above is adefthm event that asserts that EXECUTE preserves STATEP. Locally, this event isadmissible provided it can be proved. The proof is trivial given the witnesses.This theorem will become the constraint on the new symbols.This encapsulation command is admissible because the constrained symbolsare new, the local and non-local events of the body of the encapsulate are6

admissible (so the witnesses satisfy the constraint), and the non-local eventsuse no locally de�ned symbols other than the constrained ones. During theadmission analysis an extension of �, containing the local and non-local events,is produced. Once the admissibility requirements have been met, this extensionis of no further interest.The e�ect of the above encapsulate is to produce an extension of � in whichEXECUTE and STATEP have the syntactic signatures given and are axiomatizedto satisfy the formula named STATEP-EXECUTE. Very roughly speaking, the con-straints of an encapsulate are all of the non-local events. In this example, theonly constraint is STATEP-EXECUTE and the two new functions have no otherconstraints on them.Because local events are not \exported" by the encapsulate, we sometimesuse encapsulate simply to structure proofs. For example, one might declare nofunction signatures and then prove a series of local lemmas leading to a desiredtheorem. The e�ect of such an encapsulation is to add the desired theorem asa consistent axiom without cluttering the ACL2 data base with the lemmasnecessary to prove it.We now return to the example encapsulate above. Once this event has beenadmitted, the user might issue the following additional commands. The �rst ofthese commands de�nes a function, CYCLE, which iteratively applies EXECUTE acertain number of times. The next two commands prove theorems about CYCLE.Here, ZP is true of all but the positive integers.(defun CYCLE (S N)(IF (ZP N)S(CYCLE (EXECUTE S) (- N 1))))(defthm STATEP-CYCLE(IMPLIES (STATEP S)(STATEP (CYCLE S N))))(defthm CYCLE-COMPOSITION(IMPLIES (AND (INTEGERP I)(<= 0 I)(INTEGERP J)(<= 0 J))(EQUAL (CYCLE S (+ I J))(CYCLE (CYCLE S I) J))))The �rst theorem says that CYCLE preserves states. The second shows howto decompose a long run into two shorter ones. These theorems are provedinductively (and fully automatically).Recall that STATEP and EXECUTE are merely constrained, not de�ned. Theymay be thought of as \generic." The de�ned function CYCLE and the theorems7

proved are generic in the same sense. ACL2 provides a means by which suchgeneric function symbols can be instantiated.Suppose we de�ne some concrete notion of a \machine state" and someconcrete \execution step" that we prove preserves the concrete notion of state.Then any theorem about the generic functions gives rise to an analogous theoremabout the concrete ones. In particular, if we de�ne a concrete notion of a cyclicexecution engine we could appeal to STATEP-CYCLE and CYCLE-COMPOSITION toobtain two important properties of the concrete cyclic engine. Such an appeal ismade by stating the desired concrete theorem and noting that it is a \functionalinstantiation" of the appropriate generic one, given the functional substitutionthat maps generic symbols to concrete ones. Such a functional instance is ad-missible provided the concrete symbols satisfy the constraints on the genericones. It is not necessary to reconstruct the arguments necessary to prove thegeneric theorems in the �rst place.Thus the development of the generic functions and theorems constitute a use-ful body of knowledge. This knowledge can be codi�ed in the form of an ACL2\book." A book is just a �le of admissible events, starting with a designationof the current symbol package. The user could thus create a suitable book byputting the text for the encapsulate, defun CYCLE and the two defthms aboveinto a �le and adding (in-package "ACL2") at the top. Let us name that �le"generic-cycle.lisp".The command (certify-book "generic-cycle") will \certify" the bookby checking the admissibility of every event in it. Once certi�ed, the com-mand (include-book "generic-cycle") will extend the existing chronologyby events in the book, provided certain syntactic requirements are met thatinsure that names are not rede�ned.Books are like encapsulations in that they may contain local events. Whena book is certi�ed its local events are processed. But when a book is included ina session, its local events are skipped. Thus, we often mark some of the lemmasin a book as local. They are proved and used during the certi�cation of thebook, but do not clutter the ACL2 data base when the book is included in auser session.The provision of such structuring mechanisms, especially books and encapsu-lations, is one of the reasons ACL2 has been successfully applied to \industrial-strength" veri�cation problems such as the veri�cation of
oating-point divisionmicrocode on the AMD K5 [14] and
oating-point square root microcode on theAMD K5 and
oating-point square root hardware on the K7 [15, 16], the veri-�cation of microcode on the Motorola CAP digital signal processor [4, 6], andthe veri�cation of certain aspects of the Rockwell-Collins JEM1 (a silicon JavaVirtual Machine) [7]. Structured proofs produce smaller and simpler contexts,making it easier for the user to control the theorem prover while exploiting itsautomatic features. In addition, books allow users to combine and build on thework of others or their own past work. For example, if an existing book containsa thousand theorems, ten of which are needed in a new project, the user can8

create a new book which provides just the ten useful theorems: the new booklocally includes the old one and then non-locally states the desired ten theorems.Including this new book imports the desired ten without importing the others.This paper demonstrates a notion of correctness that encompasses bothencapsulate and include-book events. However, the attention in this paper isturned more toward the treatment of encapsulate rather than include-book,because only the former events can directly introduce constrained functions. Ofcourse, a book may include encapsulate events among its events.From the brief description given so far it may appear that encapsulate istoo simple to warrant a paper like this. But suppose an encapsulation introducesthe new, constrained function symbol FN. Suppose the events in the encapsu-lation include a local de�nition of FN (as it must) and a non-local theoremabout FN. That theorem will clearly be part of the constraint on FN. But whatif the encapsulate contains some other non-local theorems, not mentioningFN? Are they part of the constraints on FN or can they be \moved out" of theencapsulate altogether? What if they mention function symbols that use FN?Can non-local function de�nitions that do not call FN be moved out? What ifthe termination argument for such a function symbol involves FN? Finally, whatshould be done with theorems about the local witness for FN that are deducedimplicitly by ACL2, e.g., theorems that characterize its type and link it to sug-gested induction schemes? Should such theorems be part of the constraint?These and related issues are considered carefully in this paper. As noted, weuncovered soundness bugs in ACL2 via this careful consideration. One such bugwas involved with the use of a constrained function in the termination argumentof a recursive function de�ned non-locally within the same encapsulation. Thefailure to include the de�nition of that other function among the constraintsof the encapsulate allowed the theorem prover to do unsound inductions afterthe encapsulation. The well-foundedness argument for those \inductions" de-pended on properties of the witness used for the constrained function, but thoseproperties were not made explicit among the constraints of the encapsulation.The following additional events are especially relevant to this paper becauseof their interactions with encapsulate.The ACL2 user may introduce a new axiom with an event of the form(defaxiom name term :::), where term is a term to added as a new axiomwith the name name. We generally discourage the use of defaxiom because it al-lows the introduction of inconsistency by over constraining already-axiomatizedfunction symbols. If a new (i.e., previously unaxiomatized) function symbol isto be constrained it is recommended that the introduction of the symbol and ofall the constraints on it be done at once, via encapsulate.The ACL2 user may introduce n mutually recursive function de�nitions withan event of the form (mutual-recursion defun1 ::: defunn). Mutual recur-sion is otherwise prohibited by the syntactic restrictions on the defun event:every function symbol used in a de�nition, other than the one being de�ned,must have been already introduced. Here is a simple example of mutual recur-9

sion.(mutual-recursion(defun EVEN-NATP (N)(IF (ZP N)T(ODD-NATP (- N 1))))(defun ODD-NATP (N)(IF (ZP N)NIL(EVEN-NATP (- N 1)))))The �rst recognizes the even natural numbers and the second recognizes the oddnatural numbers. The measure theorems for a mutually recursive clique estab-lish termination of all the functions in the clique. ACL2 supports explicit mu-tually recursive de�nitions even though, as above, singly recursive alternativesare often possible. Indeed, in a certain sense, all mutually recursive de�nitionsare eliminable in favor of a singly recursive de�nition.Finally, the user can introduce a conservative \choice" function satisfying agiven proposition. For example,(defchoose AN-EVEN-ELEMENT (E) (X)(AND (MEMBER E X)(EVEN-NATP E)))introduces the function AN-EVEN-ELEMENT and axiomatizes it so that when ap-plied to X it returns a member of the list X that is an even natural number,provided there is such an object. The defchoose event is very similar to astylized use of encapsulate in which the new function is constrained to satisfythe axiom described, except that defchoose frees the user from exhibiting thewitness that would be required by encapsulate.3 Introduction to Main ResultWe have seen in the preceding section that a session with ACL2 may be viewedas the extension of a built-in ground-zero theory by a sequence of events. Theseevents may be classi�ed into two groups. The axiomatic events are those thatintroduce new facts: de�nitions (especially defun events, possibly in the con-text of mutual-recursion), constrained axioms (via encapsulate events), and\pure" axioms (defaxiom events). The other events are theorems that are, atleast allegedly, proved from those facts.The claim below is probably the �rst property one would require of a theoremprover: When the prover asserts provability of a formula, then that formulareally is provable from the appropriate axioms.10

Informal Claim: Provability of ACL2-checked formulas. Every allegedtheorem of an ACL2 session is in fact a theorem �rst-order derivable from theextension of the built-in logic (with induction) by the axiomatic events of thatsession.This claim is perhaps stronger than it appears. The ACL2 user typicallyde�nes some function symbols of interest but must also introduce extra de�ni-tions and lemmas before leading ACL2 to a proof of a conjecture involving thosefunction symbols of interest. The claim above implies that the theorem really is�rst-order derivable from the original de�nitions and axioms, i.e., that the extrade�nitions are at most heuristically useful, not logically necessary. To see this,recall that books may have local events, so one can presumably certify thebook obtained by marking the auxiliary functions and lemmas as local. A newsession could start with an include-book command, which would import intothe session only the non-local events. The application of the claim to the newsession allows us to conclude that the theorem is �rst-order provable withoutthe auxiliary de�nitions.The remainder of the paper will justify the informal claim above in two steps.Up through Section 7 we will introduce notions that allow us to state a theoremthat formalizes the claim above and to prove that theorem. Then, in Section 8 wewill tie that theorem to the informal claim above. We will not consider \extra-logical" correctness issues, such as the correctness of the ACL2 theorem prover'sterm-manipulation procedures (e.g., rewriter and decision procedures), ACL2'shandling of syntax (e.g., packages and macros), and the capability provided forslipping into a \program-only" mode.4 Logical PreliminariesIn this section we review some notions of �rst-order logic, a subject with whichwe assume some familiarity on the part of the reader. We also introduce somelogical conventions and some ACL2-speci�c de�nitions important for what fol-lows.The logic considered in this paper is �rst-order logic with equality, as de-scribed for example in [18], with the restriction that there are no relation sym-bols other than equality. The set of function symbols occurring in a set S offormulas is called the language of S. As usual, a theory is the set T of �rst-orderconsequences of a given set S of axioms, that is, the set of formulas �rst-orderderivable from S whose extra-logical symbols all occur in S. These formulas(the elements of T) are sometimes called theorems of S, or of T . Recall that atheory T1 is a conservative extension of a theory T0 if T1 is a superset of T0 andfor every theorem ' of T1 in the language of T0, ' is a theorem of T0.The Completeness Theorem for �rst-order logic is of use on occasion in thispaper: if a �rst-order theory T is consistent then it has a model. We also useimplicitly its converse, the Soundness Theorem for �rst-order logic.11

We only consider (consistent) theories that extend the �rst-order ground-zero theory GZ �rst discussed in Section 2. It is easy to see that GZ itself isconsistent, even when extended as described below.We write PR to denote the language of GZ.2 In this paper we typically write\IF x then y else z" instead of the more formal \IF(x; y; z)".We also assume that GZ contains the binary function symbol �. Intuitively,� is a well-founded relation on the ACL2 universe. For each set of functionsymbols there is a corresponding set of induction axioms, which are the universalclosures of all formulas of the following form, called the induction axioms for '(with respect to the variable y).(8y)(((8x � y)'[y := x])! ')!(8y)'De�nition. The set of induction axioms in a given language L is de�nedto be the set of all induction axioms for ' with respect to y (as de�ned above),where ' ranges over the set of formulas of L and y ranges over the set of freevariables of '. 2De�nition. A �rst-order theory T is inductively complete if it containsGZtogether with every induction axiom in the language of T . 2Assumptions. We use make the following additional assumptions aboutGZ. (1) The ordering < on nonnegative integers is inherited from �. (2) Thepredicate ZP returns NIL on the positive integers and T on all other arguments.(3) The Peano axioms are contained in GZ. This last assumption permitsthe carrying out of standard arguments guaranteeing de�nability of primitiverecursive functions on the natural numbers, and allows us to apply certain knowntheorems and techniques in Appendix B.All of the above requirements for GZ are honored in the ACL2 implementa-tion.Convention. We consider only consistent, inductively complete �rst-ordertheories (which therefore extend GZ). Henceforth, the term \theory" will beunderstood to mean: \consistent and inductively complete theory". 2De�nition. The inductive completion of a set S of �rst-order formulas withrespect to a language L is the theory whose axioms are S together with the setof induction axioms in the language L. When L is omitted, it is understood tobe the language of S[GZ. 2De�nition. Let T be a theory. A de�nitional axiom over T is a (�nite)conjunction D of equations each of the formf(x1; : : : ; xn) = term2The notations \PR" and \GZ" are intended to suggest \Primitive Recursive" and\Ground-Zero", respectively. 12

where: term is a term in the union of the language of T with the set of left-handside function symbols of D; x1, . . . , xn are distinct variables that include allvariables occurring in term; and each left-hand-side function symbol is distinctfrom the others and from all function symbols in the language of T . Both Dand the conjunct above are said to de�ne f , with list of formal parameters(x1; : : : ; xn). We may also say in this case that f(x1; : : : ; xn) is de�ned by D.When the theory T is understood or is not important for the discussion, wemay talk simply about a de�nitional axiom. 2Notation. We sometimes write f(~x) as an abbreviation for a term of theform f(x1; : : : ; xn). We also feel free to extend this abbreviation in obviousways, for example writing (~x; y) to abbreviate (x1; : : : ; xn; y).Convention. We will use the standard notion of �rst-order de�nable func-tion with respect to a theory T . This notion applies to a formula ' together witha list (~x; y) enumerating the free variables of ', with the following property: itis a theorem of T that for all ~x there is a unique y such that ' holds. In thiscase, the arity of the implicitly de�ned function is n. When the theory T isimplicit or not important for the discussion, we may omit it and just talk abouta �rst-order de�nable function. 2Finally, we introduce a basic logical notion underlying the defchoose event.De�nition. For any �rst-order formula ' with free variables contained inthe sequence v; x1; ::; xk of distinct variables, and any function symbol f of arityk, the Skolem axiom introducing f for ' with respect to v is de�ned to be thefollowing formula. ' ! let v = f(x1; : : : ; xk) in 'We also allow more than one bound variable: if ' has free variables among thedistinct variables v1, . . . , vn, x1, . . . , xk (n > 1) and f is a function symbolof arity k, the Skolem axiom introducing f for ' with respect to hv1; : : : ; vni isde�ned to be the following formula.'! let (LIST v1 : : : vn) = f(x1; : : : ; xk) in 'In any context where we use this de�nition, it will be provable that f returns alist of length n. 25 Recursion and InductionIn this section we introduce two notions of admissibility for recursive de�ni-tions. One notion, measure admissibility, is similar to the de�nitional principlefor Nqthm explained in [1, 5], and is used by the ACL2 implementation. How-ever, for our treatment of histories and chronologies below we need a di�erentnotion, which we call interpreter admissibility. The following properties aredemonstrated below. 13

� If a de�nitional axiom is measure admissible, then it is interpreter admis-sible.� If a de�nitional axiom is interpreter admissible, then it yields a conserva-tive extension.� If a de�nitional axiom is interpreter admissible, then the associated in-duction rule of inference is a derived (sound) rule.5.1 Measure AdmissibilitySection III.I of [1] argues that if a recursive de�nition satis�es a certain de�ni-tional principle, then this de�nitional axiom de�nes a unique function. Here wepresent a self-contained explication of essentially the same principle, which likethe Nqthm version is based a notion of measure that can be viewed informallyas guaranteeing that the function (or set of functions) being de�ned terminateson all inputs. The idea is to imagine that each recursive call is ruled by certainconditions that guarantee that a given measure of the arguments is smaller forthat recursive call than for the top-level call.We �rst illustrate with an example. Consider the following de�nition of apair of functions de�ning the notions of odd and even natural numbers. Herewe assume that ZIP (\zero-integer-property") is de�ned so that it is true of 0and of all non-integers. Recall that T conventionally represents \true" and NILconventionally represents \false". Following a usual convention of ACL2 andNqthm, we write these functions so that they treat non-integers as 0.ODDP(x) = IF ZIP(x) then NIL elseIF x < 0 then EVENP(x+ 1) else EVENP(x� 1)EVENP(x) = IF ZIP(x) then T elseIF x < 0 then ODDP(x+ 1) else ODDP(x� 1)It's clear that execution of functions satisfying these de�nitions will terminate,because the absolute value of x decreases in each recursive call. The absolutevalue function is what we call a measure for the de�nition above; clearly it is�rst-order de�nable if `<' and `�' are. In general, each function de�ned in agiven de�nitional axiom may have its own measure function.The example above may be viewed as generating the following proof obliga-tions for the de�nition of ODDP, when we use jxj as the measure function for bothODDP and EVENP. The same proof obligations are generated for the de�nition ofEVENP. Note that there is one proof obligation for each recursive call, and ineach case the \tests" (negated when appropriate) from the if-then-else tree areantecedents for the implication.(:ZIP(x) ^ x < 0) ! jx+ 1j < jxj(:ZIP(x) ^ :(x < 0)) ! jx� 1j < jxj14

We now make precise the notion of measure.De�nition. Let D be a de�nitional axiom over a theory T . A measure forD (over T) associates with each conjunctf(~x) = termof D a �rst-order de�nable function mf (~x) with respect to T . 2Roughly speaking, the measure should decrease for the arguments of eachrecursive call, subject to the conditions ruling that call; see the example aboveinvolving EVENP and ODDP. We now de�ne recursively a notion of rules. A moregenerous notion is found in [10], which for example would say that both P and:Q govern the call of f in the following term:IF P then g(IF Q then 0 else f(x)) else 1But here, only P rules the calls of f. That is: we only consider the top-levelif-then-else structure of the term. This decision is in accord with the ACL2 im-plementation, which makes this choice for heuristic reasons involving induction.De�nition. We say that a term t rules an occurrence of a term s in aterm b i� b is of the form IF test then tbr else fbr and one of the followingconditions holds:(a) the occurrence is in tbr and either t is test or t rules the occurrence of s intbr; or(b) the occurrence is in fbr and either t is :test or t rules the occurrence of sin fbr. 2De�nition. Let D be a de�nitional axiom with measure m over a theoryT . The measure theorem for D via m, denoted m(D), is the conjunction of theimplications obtained as follows from each occurrence of a term f(u1; : : : ; un)in a right-hand side of D, where f is de�ned by D with formal parametersx1; : : : ; xn, and the occurrence is ruled by terms t1; : : : ; tk.t1 ^ : : : ^ tk ! mf (u1; : : : ; un) � mf (x1; : : : ; xn)2 De�nition. Let T be a theory. A de�nitional axiom D over T is measureadmissible over T if for some measurem forD over T , the correspondingmeasuretheorem m(D) is a theorem of T . In this case we also say that D is measureadmissible via m over T . 25.2 Introduction to Interpreter AdmissibilityThe handling of recursive de�nitions in our theory can present an opportunityfor confusion or error if it is not done carefully. If we only require the Nqthmnotion of admissibility presented just above, then when we include a book witha recursively de�ned function whose measure is marked local, it is not clear15

that the de�nitional axiom is still measure admissible, because the measure mayhave been de�ned using some of those local functions.Below we develop an alternate notion of admissibility, interpreter admissibil-ity. We will show that this notion follows from measure admissibility, which isimportant for verifying (in Section 8) that the implementation is well-behaved.The main idea of interpreter admissibility is to consider, for a given de�nitionalaxiom, a canonical interpreter that is de�nable using only function symbols thatare used in the de�nitional axiom or are built-in (members of PR). This in-terpreter is �rst-order de�nable in the current history because its recursion isparticularly simple: an extra \stack depth" argument decreases on each recur-sive call. We represent \divergence" { insu�cient stack depth for termination {by a return value of NIL; otherwise, the return value is a pair that is intended toequal the result of CONSing the \real" value with NIL.3 Interpreter admissibilityis de�ned to mean that the canonical interpreter is total: for any given argumentlist there is a su�cient stack depth for non-divergence (termination).Conventions. For the rest of this section, �x a de�nitional axiom D overa theory T (which, as always, is assumed to be inductively complete), and letF be the set of function symbols de�ned by D. We also assume that a one-onemap associates each f 2 F with a function symbol f 0 not in the language ofT [fDg, whose arity exceeds the arity of f by 1. 25.3 Canonical InterpretersWe turn now to the notion of canonical interpreter that was promised above.A key idea is embodied in the next de�nition. We show how to map a term uto a term ud, which is intended to represent CONS(u; NIL) if the \stack depth"d is su�ciently large for computing the value of u using de�nitional axiomD, otherwise NIL. For technical reasons, we want to categorize occurrences ofterms according to whether or not they are at the top-level of the if-then-elsestructure of a right-hand-side of D. The subscript b below is a Boolean
agused in order to make this distinction; it is set to 1 initially (for the right-handside of a conjunct of D), but becomes 0 when we leave the top-level if-then-elsestructure.De�nition. For terms t and d, and for value b of 0 or 1, we de�ne the termtd;b by recursion on t as follows.If t is a variable or a constant: td;b = CONS(t; NIL)(IF t0 then t1 else t2)d;1 =if (t0)d;0 =NILthen NIL3A similar idea is used in the Nqthm \value-and-cost" function V&C$ (see [5]), except thathere we do not care about the \cost". 16

else if CAR((t0)d;0) 6=NILthen (t1)d;1else (t2)d;1If f 62 F , where b = 0 if f is IF:(f(t1; : : : ; tn))d;b =if (t1)d;0 = NIL or . . . or (tn)d;0 = NILthen NILelse CONS(f(CAR((t1)d;0); : : : ; CAR((tn)d;0)); NIL)If f 2 F :(f(t1; : : : ; tn))d;b =if (t1)d;0 =NIL or . . . or (tn)d;0 =NILthen NILelsef 0(d; CAR((t1)d;0); : : : ; CAR((tn)d;0))2Recall from Section 4 that the function symbol ZP is de�ned in the ground-zero theory GZ to return NIL for positive integer arguments and T otherwise.De�nition (Canonical interpreter). The canonical interpreter for D is thede�nitional axiom obtained by replacing each conjunct f(~x) = u of D by:f 0(d; ~x) = IF ZP(d) then NIL else ud�1;1We say that the canonical interpreter for D is total in a theory T if for eachf(~x) de�ned by D, the following is a theorem of T :(8~x)(9d)(f 0(d; ~x) 6= NIL) 2Convention (De�nability of f 0). Standard arguments show that for a givende�nition, there are �rst-order de�nable functions ff 00 : f 2 Fg for which theequations of its canonical interpreter are in fact theorems of T . Henceforth,when we mention f 0 we will be referring to this �rst-order de�nition over T(what we have just called f 00), rather than to a new function symbol. 2De�nition (Interpreter admissibility). A de�nitional axiom D is said to beinterpreter admissible over a theory T if the canonical interpreter for D is totalin T . 2The following obvious proposition may be used implicitly.Proposition (Preservation of Interpreter Admissibility). If D is interpreteradmissible over T , and T 0 extends T , then D is interpreter admissible over T 0.2 17

5.4 Some LemmasIn this subsection we develop machinery to allow us to prove the main resultson interpreter admissibility.Lemma (Interpreter Monotonicity). Let D be a de�nitional axiom over atheory T , and let u be a term in the language of T [fDg. Let d and d0 bevariables not occurring in u. Then the following is a theorem of T :d � d0 ^ ud;b 6= NIL ! ud;b = ud0;b ^ ud0;b = CONS(CAR(ud;b); NIL) (1)Proof. We start with three reductions. First of all, it su�ces to prove (1)without the �rst conjunct in the consequent of the implication, because thesecond conjunct gives us a value for ud0;b that is independent of the choice ofd0 � d. Second, it su�ces to prove the theorem only for terms u that are right-hand sides of equations of D. For once that is done, then the theorem followsby an easy induction using the de�nition of td;b. Third and �nally, we assume,by renaming variables in D if necessary, that variables d and d0 do not occur inD. Let Ad;d0 be the universal closure of the (�nite) conjunction of all formulasof the following form, as u ranges over subterms of D and b is 0 or 1:d � d0 ^ ud;b 6= NIL ! ud0;b = CONS(CAR(ud;b); NIL)Let ~y be a sequence of all the variables occurring in D (and hence not d or d0).It su�ces to prove the following claim by strong induction on d within T :T`(8~y)(8d0)Ad;d0Hence, it su�ces to show that the following holds for each subterm u of D andeach value of b in the set f0; 1g.T ` ((8e < d)(8~y)(8e0)Ae;e0)!(d � d0 ^ ud;b 6= NIL! ud0;b = CONS(CAR(ud;b); NIL)) (2)We show that (2) holds by induction on subterms u of D. So, working inside T ,assume (8e < d)(8~y)(8e0)Ae;e0 (3)as well as d � d0 and ud;b 6= NIL, to prove the following.ud0;b = CONS(CAR(ud;b); NIL) (4)The rest of the proof depends on the choice of u. If u is a variable or a constantthen ud;b and ud0;b are both (syntactically) the term CONS(u; NIL), so (4) isclear. Otherwise u is of the form f(t1; : : : ; tn). The case where f is IF and b is1 is similar to an argument below, and is left to the reader. Otherwise, since18

ud;b 6= NIL, (ti)d;0 6= NIL when 1 � i � n. Since (by the inductive hypothesison terms) property (2) holds for all subterms of u, then for 1 � i � n we have(ti)d0;0 = CONS(CAR((ti)d;0); NIL): (5)There are now two cases. If f 62 F , then by de�nition ud0;b isCONS(f(CAR((t1)d0;0); : : : ; CAR((tn)d0;0)); NIL);which by (5) and axiom CAR-CONS (see Subsection 2.1) is equal toCONS(f(CAR((t1)d;0); : : : ; CAR((tn)d;0)); NIL);which equals ud;b by de�nition. Otherwise ud0;b isf 0(d0; CAR((t1)d0;0); : : : ; CAR((tn)d0;0));so by (5) and axiom CAR-CONS, it su�ces, for arbitrary ~x such thatf 0(d; ~x) 6= NIL (6)to prove the following.f 0(d0; ~x) = CONS(CAR(f 0(d; ~x)); NIL): (7)Let u be the body of the de�nition of f , i.e., so that \f(~x) = u" is a conjunctof D. By de�nition of the canonical interpreter for D, we know that d > 0 (andhence d0 > 0 as well) and f 0(d; ~x) = ud�1;1 (8)f 0(d0; ~x) = ud0�1;1 (9)By (3) we have Ad�1;d0�1 and hence since ud�1;1 = f 0(d; ~x) 6= NIL (by (8) and(6)): ud0�1;1 = CONS(CAR(ud�1;1); NIL)= CONS(CAR(f 0(d; ~x)); NIL):This, together with (9), implies (7). 2De�nition. Fix a variable symbol d that does not occur in D. We de�nethe theory TD be the inductive completion of the extension of T by the universalclosures of the following equations, one for each f(~x) de�ned by D.f(~x) =8<: NIL if f 0(d; ~x) = NIL for all dCAR(f 0(d; ~x)) otherwise, where d is leastsuch that f 0(d; ~x) 6= NIL2 19

Lemma (Conservativity of TD). TD is a conservative extension of T .Proof. This is clear from the Convention on De�nability of f 0, i.e., f 0 isde�nable over T for each function symbol f de�ned by D. 2Lemma (Interpreter Eliminability). Let u be a term in the language ofT [fDg. Then: TD`ud;b 6= NIL! ud;b = CONS(u; NIL):Proof. This is easily established by induction on the term u, using thede�nition of ud;b. The Interpreter Monotonicity Lemma is used for the casef(~t) where f 2 F . 2Lemma (Divergence Infectiousness). Let u and d be terms. Then thefollowing is a theorem of TD: ud;0 = NIL if and only if for some subterm f(~t) ofu where f 2 F , f 0(d;~t) = NIL.Proof. For given d and f(~t) this is easily proved by induction on the termu, using the de�nition of ud;b and the Interpreter Eliminability Lemma. 2Lemma (Interpreter Correctness) Suppose that D is interpreter admissibleover the theory T , i.e., the canonical interpreter forD is total in T . Then TD`D.Proof. Fix a conjunct f(~x) = u of D. By totality of the canonical interpreterfor D, then working in TD we may choose d such that f 0(d; ~x) 6= NIL. Pick theleast such d. Then we have:f(~x) = CAR(f 0(d; ~x)) (by de�nition of TD)= CAR(ud�1;1) (by de�nition of the canonical interpreter)= u (by the Interpreter Eliminability Lemma)We have shown that TD proves that f(~x) = u, as desired. 2Lemma (Interpreter Provability). Let D be an interpreter admissible def-initional axiom over a theory T . Then TD is a subtheory of the inductivecompletion T 0 of the extension of T by D.Proof. It su�ces to prove, even without assuming interpreter admissibilityof D, that the conclusion of the Interpreter Eliminability Lemma holds for T 0in place of TD: T 0`ud;b 6= NIL! ud;b = CONS(u; NIL):The proof is an easy induction on u, as in the proof of the Interpreter Elim-inability Lemma (also mostly omitted). 25.5 Key Properties of Interpreter AdmissibilityOur �rst goal below is to show that measure admissibility of D implies that itscanonical interpreter is total. The following lemma is key. Its proof shows whywe introduced a
ag b in the notion ud;b.Lemma. For every term u, the following is a theorem of T . Suppose thatfor every subterm of u of the form f(~t) where f 2 F , if G is the conjunction of20

the terms ruling this subterm in u then:G! (9d)(f 0(d;~t) 6= NIL):Then: (9d)(ud;1 6= NIL):Proof. By the lemma on Conservativity of TD, it su�ces to prove theorem-hood in TD rather than T . The proof is by induction on u. If u is not a call of IFthen no subterm of u has any terms ruling it and hence the result is clear fromthe Divergence Infectiousness Lemma. Otherwise, suppose u has the followingform: IF u0 then u1 else u2. First observe that every subterm of u0 of acall of a function in F has no terms ruling it in u, so by the same argumentas in the non-IF case above, we may choose d0 such that u0d0;0 6= NIL. It fol-lows from the Interpreter Monotonicity Lemma that u0d;0 6= NIL for all d � d0.Henceforth restrict to d � d0. Now assume that u0 6= NIL; the other case issimilar. By the Interpreter Eliminability Lemma (note that this is where it ishandy to work in TD rather than in T), u0d;0 = CONS(u0; NIL). It follows thatud;1 = u1d;1. The inductive hypothesis may now be applied to u1 in place of uto obtain d1 for which u1d1;1 6= NIL, and the maximum of d0 and d1 then servesas the desired value of d, by the Interpreter Monotonicity Lemma. 2Theorem (Interpreter Admissibility). Suppose that D is a measure admis-sible de�nitional axiom over the theory T . Then D is interpreter admissibleover T .Proof. By de�nition of measure admissibility, there exists a measure m forD over T such that the corresponding measure theorem m(D) is a theorem ofT . Suppose for a contradiction that the canonical interpreter for D is not totalin T . By well-foundedness of � (more precisely, inductive completeness of T)we may choose a conjunct f(~x) = u of D such that:(9d)(f 0(d; ~x) 6= NIL) (10)and yet for all g(~y) de�ned by D (renaming ~y if necessary so as to be disjointfrom ~x), mg(~y) � mf (~x)! (9d)(g0(d; ~y) 6= NIL)It now follows immediately from the measure theorem m(D) and the precedinglemma that for some d, ud;1 6= NIL. But the canonical interpreter yields f 0(d+1; ~x) = ud;1, so f 0(d+ 1; ~x) 6= NIL, contradicting (10). 2Our development of the theory of histories in the next section requires thatde�nitional events provide conservative extensions. The following lemma is thuscrucial.Lemma (Conservativity of De�nitions). Suppose that the de�nitional axiomD is interpreter admissible over the theory T . Then the inductive completionof the extension of T by D is a conservative extension of T .21

Proof. The indicated extension of T is a subtheory of TD, by the InterpreterCorrectness Lemma. So, we are done by the Conservativity of TD Lemma. 2Finally, we consider the use of induction schemes by the ACL2 implemen-tation. One of the reasons that the measure-based notion of admissibility hasworked successfully in Nqthm is that it has been used to justify correspondinguses of induction. A similar justi�cation applies for ACL2. At the root of thejusti�cation is the measure admissibility of the given de�nition. In order toregain that justi�cation in the present setting, we need to show that interpreteradmissibility implies the existence of an appropriate measure. Below, the re-sulting measure is de�ned in the inductive completion of the extension of T byD, rather than in T as is traditional. However, this does not present a problemfor justifying inductions. What is important, however, is that the measure isde�ned using only function symbols from D and from PR, so that its de�nitionstill exists in appropriate subtheories containing D.De�nition (Canonical Measure). For D an interpreter admissible de�ni-tional axiom over an inductively complete theory T , the canonical measure mfor D is de�ned as follows in T :mf (~x) = least d such that f 0(d; ~x) 6= NILThe following technical de�nition and proposition will be used only in Ap-pendix A. Brie
y put, it identi�es de�nitions whose recursive calls only involvefunctions belonging to a given set S, and furthermore, whose top-level IF testsonly involve functions in S.De�nition (Tight De�nability). Let D be a de�nitional axiom, and let Sbe a set of function symbols containing GZ. We say that D is tight with respectto S if every function symbol of a term u belongs to S provided that u is asubterm of a right-hand side r of D and u belongs to either of the followingsets. (1) u is a proper subterm of a call of a member of D. (2) u is a subterm of(or equal to) a term t such that t or its negation rules some subterm of r thatis a call of a function introduced by D. 2Proposition (Tight De�nability of Canonical Measure). Let D be an in-terpreter admissible de�nitional axiom over a theory T (inductively complete),and let S be a set of function symbols containing GZthat is disjoint from the setof function symbols introduced by D. Suppose that D is tight with respect toS. Then the canonical measure for D is �rst-order de�nable in T by a de�nitionusing only function symbols in S. 2Theorem (Canonical Measure Theorem). For D an interpreter admissiblede�nitional axiom over a theory T with canonical measure m, the measuretheorem holds for D via m in the inductive completion of the extension of T byD. Proof. Let m be the canonical measure for D. It su�ces to prove that m is ameasure for D over the theory TD, by the Interpreter Provability Lemma. Thus,�x a conjunct f(~x) = u of D and suppose that g 2 F and g(~t) is a subterm of22

u ruled by the set G of terms. We need to prove the following (noting that �extends <, by Assumption (1) in Section 4).TD`(^G)! mg(~t) < mf (~x)By de�nition of mf , it then su�ces to prove that for d � 0:TD`(^G) ^ f 0(d+ 1; ~x) 6= NIL! g0(d;~t) 6= NILBy de�nition of f 0 (i.e., of the canonical interpreter), this reduces to:TD`(^G) ^ ud;1 6= NIL! g0(d;~t) 6= NIL (11)We establish (11) for all terms u, nonnegative integers d, and subterm occur-rences g0(d;~t) of u ruled by a set G of terms, by induction on u. If u is not a callof IF then ud;1 is the same term as ud;0, so (11) is immediate from the Diver-gence Infectiousness Lemma (since we are working in TD). Otherwise write u asIF u0 then u1 else u2. If the occurrence g0(d;~t) is in u0 then the argumentis analogous to the case just handled. Otherwise the occurrence is in u1 or u2.Assume that it is in u1; the other case is completely analogous. Then G is theresult of adding u0 to the set G0 of terms ruling the occurrence in u1. By theinductive hypothesis,TD`(^G0) ^ (u1)d;1 6= NIL! g0(d;~t) 6= NIL (12)If we can show TD`u0 ^ ud;1 6= NIL! ud;1 = (u1)d;1 (13)then (12) and (13) together imply (11) and we are done. By de�nition of ud;1,(13) follows from:TD`(u0)d;0 6= NIL! CAR((u0)d;0) = u0:But this is immediate from the Interpreter Eliminability Lemma, since we areworking in TD. 26 HistoriesWe now introduce the notion of an ACL2 history. This notion formalizes theaxiomatic content of an ACL2 session. Histories do not record the proved the-orems and local function de�nitions of a session { aspects of a session whichwe must formalize in order to reach our ultimate goal of logically characterizingthe result of a user's interaction with ACL2. We extend our attention to proved23

theorems and other aspects of a session when we consider chronologies in thenext section.We begin by de�ning the kinds of objects that we will allow in histories.Each object corresponds to one of the primitive kinds of axiomatic acts of anACL2 session. At this point, we merely describe the syntax of these objects;we'll consider semantic issues shortly.De�nition. A labeled formula is a pair consisting of a label and a formula,where the label has one of the following four forms.� <defuns, D, F>, where F is the �nite set of function symbols de�nedby the de�nitional axiom D.� <defchoose, ', ~y, f>, where f is a function symbol, ' is a formula,and ~y is a nonempty (and �nite) sequence of variables.� <defaxiom>� <constraint, s>, where s is a sequence of labeled formulas.When the meaning is clear, we will feel free to confuse a labeled formulawith its formula, the second component of the hlabel; formulai pair. We willalso feel free to call the universal closure of its formula an axiom of or axiomintroduced by any sequence in which it appears. We may refer to a formula 'as being labeled by defuns, defchoose, defaxiom, or constraint, when there is alabeled formula in the present context that has the corresponding label and hasformula '. 2Notation. We write h;A to denote the result of extending a sequence h bya new element A; we write h;A; h0 to denote the result of extending a sequenceh by the new element A and then by the sequence h0; and so on. It will be clearfrom the context which objects being concatenated are elements and which aresequences. 2De�nition. The (set of) function symbols introduced by a labeled formulaor a sequence of labeled formulas is de�ned by recursion as follows. A formulalabeled by <defuns, D, F> introduces the set F of function symbols; similarly<defchoose,..., f> introduces the singleton set ffg. A formula labeled by<defaxiom> introduces the empty set of function symbols. A formula labeled by<constraint, s> introduces the set of function symbols that s introduces. Asequence of labeled formulas introduces the union of the sets of function symbolsintroduced by each labeled formula in the sequence. 2De�nition. Let h be a sequence of labeled formulas. A function symbol ofh is a function symbol that is either introduced by h or is a member of PR.The language of h is the set of all function symbols of h. The theory of h is theinductive closure of the union of GZ with the universal closures of the formulasof h and the induction axioms in the language of h. 2Convention. When our meaning is clear, we will feel free to confuse asequence of labeled formulas with its theory. We will also feel free to talk about24

one sequence h1 of labeled formulas conservatively extending another sequenceh0 of labeled formulas, to indicate that the theory of h1 conservatively extendsthe theory of h0. Of course, the order of elements in the sequences h0 and h1 isirrelevant for this notion. 2De�nition. The notion of defaxiom-free is de�ned by recursion, as follows.A labeled formula is defaxiom-free if its label is not <defaxiom> and moreover,if its label is <constraint, s> then s is defaxiom-free. A sequence of labeledformulas is defaxiom-free if each of its members is defaxiom-free. 2The following is obvious (and well-known in the case of theories).Lemma (Transitivity of Conservative Extension). If h0, h1, and h2 aretheories or sequences of labeled formulas such that h2 conservatively extends h1and h1 conservatively extends h0, then h2 conservatively extends h0. 2Next, we prepare for the introduction of the notion of history by startingwith the syntactic requirements only, ignoring proof obligations.De�nition (Weak history). A weak history is a �nite sequence h of labeledformulas meeting the following requirements.(1) For each labeled formula in h whose label is not a defaxiom label, theset of function symbols introduced is non-empty.(2) Every function symbol occurring in the formula of a labeled formulaA of h must either be introduced by A or be a function symbol of the set ofpredecessors of A in h.(3) The family of all sets of function symbols introduced by labeled formulasin h is pairwise disjoint. Moreover, each such set of function symbols is alsodisjoint from PR; thus, no introduced function symbol can occur in GZ.(4) For each labeled formula A of h whose label has the form <defchoose,', ~y, f>, the formula of A is the Skolem axiom introducing f for formula ',with respect to the sequence ~y of variables. (See Section 4 for the de�nition.)Furthermore, if h is h0; A; h1, then ' is a formula in the language of h0.(5) If h is h0; A; h1, where A has label <constraint, s>, then: s is adefaxiom-free sequence of labeled formulas; h0; s is a weak history; and theformula of A is in the language of h0; s.(6) If h is h0; B; h1 where B is a labeled formula with label <defuns, D,F>, then D is an de�nitional axiom over the theory of h0. 2De�nition. A history is a weak history h that meets the following require-ments in addition to those above.(5') Extending (5): h0; s is a history and A is a theorem of the theory h0; s.(6') Extending (6): D is an interpreter admissible de�nition of F over thetheory of h0. 2Remark. We will do a number of proofs by induction on sequences oflabeled formulas. Invariably these recursions are justi�ed by considering �rstthe number of constraint labels and then the length of the sequence. We leavethis justi�cation implicit in arguments below. 2Proposition. If h is a weak history, then the language of h includes thelanguage of the theory of h. 2 25

It is possible for the language of h to be a proper superset of the languageof the theory of h. Consider for example what happens if we add a constrainedfunction symbol with no axioms.Implementation note. When an encapsulate event in ACL2 does notintroduce any local functions, it is viewed simply as the sequence of non-localevents contained within. This allows us to satisfy Property (1) above. Thatproperty could probably be safely omitted, but at any rate, ACL2 does notintroduce \constraints" (non-de�nitional axioms) when there are no local func-tions in an encapsulate. This choice can reduce the proof obligations arisingfrom functional instantiation, and can allow induction schemes that would oth-erwise not be used. We will say more about such details of the implementationof encapsulate in Appendix A.We will use the following obvious lemma implicitly.Lemma. (i) Every initial segment of a weak history is a weak history.(ii) Every initial segment of a history is a history. 2Lemma (History Monotonicity). Suppose that h0; h1; h2 is a history, andthat h0; h01 is a history whose theory contains that of h0; h1, such that h1 andh01 introduce the same function symbols. Then h0; h01; h2 is a history.Proof: An easy induction on h2. The key idea is that the proof obligationsintroduced during the processing of h2 are still provable if we replace h1 by thelarger history h01. In particular, the Proposition on Preservation of InterpreterAdmissibility (Subsection 5.3) justi�es property (6') of a history. 2Next, we introduce an operation on sequences of labeled formulas that ismotivated by the idea of replacing each constrained formula by the sequence ofevents justifying it.De�nition. The expansion of a sequence of labeled formulas is de�nedby recursion, as follows. The expansion of the empty sequence is the emptysequence. The expansion of h;A where A is labeled by <constraint,s> is theexpansion of h; s. Finally, the expansion of h;A for any other labeled formulaA is h0; A where h0 is the expansion of h. 2Remark (for readers familiar with ACL2). This notion of \expansion"formalizes the ACL2 :puff command in the case that there are no local events.Lemma (Expansion). Let h1 be the expansion of the sequence h0 of la-beled formulas. Then h1 is a sequence of labeled formulas having the followingproperties.(a) h1 and h0 introduce the same function symbols.(b) The theory of h0 is a subset of the theory of h1, and hence for allsequences h and h0 of labeled formulas, the theory of h; h0; h0 is a subset of thetheory of h; h1; h0.(c) For every history h, if h; h0 is a history, then h; h1 is a history.(d) If h0 is defaxiom-free then h1 is defaxiom-free.(e) h1 contains no constraint labels.Proof: An easy induction. The History Monotonicity Lemma, (a), and (b)are used for the proof of (c). 2 26

Our next goal is to show that histories provide conservative extensions. Infact, we prove a slightly stronger result that is useful later. The following lemmawill be used in its proof.Lemma (Conservativity of Defchoose). Suppose that h is a sequence oflabeled formulas. Suppose also that A is a formula with label <defchoose, ',~y, f>, where f is not in the language of h and ' is a formula in the languageof h. Then h;A conservatively extends h.Proof: Immediate from the conservativity result in Appendix B. 2We are now ready to prove a slight strengthening of a special case of thetheorem concluding this section. Here, we only consider extensions obtained byadding events to the end of a given history.Lemma (History Conservativity). If h0; h1 is a history and h1 is defaxiom-free, then h0; h1 conservatively extends h0. More generally, suppose also thath00 is a sequence of labeled formulas that includes h0 as a subsequence, whereno function symbol introduced by h1 occurs in the theory of h00. Then h00; h1conservatively extends h00.Proof. By parts (a), (c), and (d) of the Expansion Lemma, the hypothesescontinue to hold if we replace h1 by its expansion, which we temporarily call H1.By part (b) of the Expansion Lemma, the theory of h00; H1 includes the theoryof h00; h1. Hence it su�ces to prove the theorem for H1 in place of h1, which byparts (d) and (e) of the Expansion Lemma consists entirely of formulas labeledby defun and defchoose. Without loss of generality, then, we assume that everyformula of h1 is labeled by defun or defchoose.We proceed by induction on the length of h1. The case that h1 is empty isclear. Otherwise let us write h1 as A; h01. We can apply the inductive hypothesisusing: h0; A for h0; h00; A for h00; and h01 for h1. Then, we may conclude thath00; A; h01 (which is h00; h1) conservatively extends h00; A. Thus it remains onlyto show that h00; A conservatively extends h00, since then we are done by thetransitivity of conservative extension. But since we have assumed that everyformula of h1 is labeled by defun or defchoose, this is immediate from theConservativity of De�nitions Lemma (Subsection 5.5) and the Conservativity ofDefchoose Lemma (above). For the defun case we are using the hypothesis thath00 extends h0; together with the fact that the proof obligation for interpreteradmissibility of A is provable in h0 (because h0; h1 is a history). 2Corollary (History Consistency). Every defaxiom-free history is consistent.Proof. This is immediate from the History Conservativity Lemma, whereh0 is the empty history and h1 is the given defaxiom-free history, since GZ hasbeen assumed to be consistent (see Section 4). 2De�nition. Fix a weak history h. We de�ne the set of ancestors of afunction symbol of h or a labeled formula of h as follows. Every function symbolin PR has the empty set of ancestors. Now �x a history and let A be a labeledformula in that history that introduces a function symbol f (perhaps amongothers). The set of ancestors of f (with respect to this history) is de�nedto be the set of ancestors of A, which is de�ned to be the union of the set27

of function symbols introduced by A with the set of ancestors of all functionsymbols occurring in the formula of A that are not introduced by A.The set of proper ancestors of a labeled formula, or of a function symbol in-troduced by the labeled formula, is de�ned to be the result of removing functionsymbols introduced by the labeled formula from the set of ancestors. 2Note that the recursion above is justi�able by part (2) of the de�nition ofweak history.De�nition. Suppose h is a sequence of labeled formulas, and suppose h0 isa subsequence of h. We say that h0 is closed under ancestors (with respect to h)provided the following two conditions hold.(1) Every ancestor in h of every function symbol occurring in a formula ofh0 is a function symbol of h0.(2) Every element of h labeled by defaxiom is a member of h0. 2The following proposition follows easily from the de�nition above and thede�nition of ancestors.Proposition. If h0 is closed under ancestors with respect to a weak historyh, then every function symbol occurring in a formula of h0 is a function symbolof h0, i.e., is in PR or is introduced by h0. 2The following simple lemma is a key ingredient of the argument required forthe History Conservativity Theorem that follows.Lemma (Restriction). Suppose that h0; s; h1 is a sequence of labeled for-mulas such that h0; s is a history, where s is defaxiom-free, and suppose thatthe function symbols introduced by s do not occur in the formulas of h1. Thenh0; s; h1 conservatively extends h0; h1.Proof. Since h0; s is a history and s is defaxiom-free, then by the HistoryConservativity Lemma, h00; s conservatively extends h00 for every sequence h00 oflabeled formulas that extends h0 such that no function symbol introduced by soccurs in the theory of h00. In particular, h0; h1; s conservatively extends h0; h1;and this is just another way of stating the conclusion above. 2Theorem (History Conservativity). Suppose h is a history and h0 is a sub-sequence of h that is closed under ancestors. Then h is a conservative extensionof h0.Proof: by induction on the number of labeled formulas in h that are not inh0. If that number is 0, then we are done. Otherwise, let A be the �rst labeledformula in h that is not in h0. Let h00 be the result of inserting A into h0 sothat the result is a subsequence of h; thus we may write h00 as h0; A; h1 whereh0 is h0; h1; and h0; A is an initial subsequence of h. Clearly h00 is closed underancestors, since h0 is. By the inductive hypothesis, h is a conservative extensionof h00. Since the relation of conservative extension is transitive, it su�ces toshow that h00 is conservative over h0; i.e., that h0; A; h1 is conservative overh0; h1. Since h0 is closed under ancestors, A is not labeled by a defaxiom label.Hence we are done by the Restriction Lemma, provided we can show that thefunction symbols introduced by A do not occur in the formulas of h1. But thisis clear from the Proposition above, since h0; h1 is closed under ancestors. 228

7 Chronologies and Formal ResultsAs suggested in Section 1, we wish to formulate a well-behaved notion of chronol-ogy that formalizes the result of a user's interaction with ACL2. Chronologieswill be de�ned to consist of axiomatic acts { which is the part forming a historyas de�ned in the preceding section { and formulas allegedly �rst-order deriv-able from those axioms. Thus, we would like a chronology to be a sequenceof labeled and unlabeled formulas such that its restriction to labeled formulasis a history, and such that every unlabeled formula is a theorem of the la-beled formulas. However, users interact with ACL2 in more complex ways thansimply introducing axioms (including de�nitions) and proving theorems: theymay also use the structuring mechanisms provided by local, encapsulate, andinclude-book. In this section we formalize user interaction with ACL2 and keyproperties of it. The next (�nal) section connects this formalization with theimplementation.De�nitions. Let s be a �nite sequence of labeled and unlabeled formulas.(i) H(s) is the subsequence of s consisting of labeled formulas. Intuitively,we think of H(s) as the history part of s, i.e., the axiomatic acts in s.(ii) THM(s) is the set of universal closures of unlabeled formulas of s. In-tuitively, we think of THM(s) as the proved theorems of s.(iii) s is a weak chronology if H(s) is a weak history and for every initialsubsequence of s of the form s0; A where A is an unlabeled formula, everyfunction symbol occurring in A is a function symbol of H(s0). 2De�nition. The class of chronologies is the least class of sequences thatcontains the empty sequence and is closed under the four operations given below.� [Labeled extension]If s is a chronology and A is a labeled formula such that H(s); A is ahistory, then s; A is a chronology.� [Unlabeled extension]If s is a chronology and ' is a formula in the language of H(s) that isprovable from the union of the theory of H(s) with THM(s), then s,' isa chronology.� [Delete]If s is a chronology and s0 is a weak chronology, where s0 is a subsequenceof s that contains all labeled formulas of s with label <defaxiom>, then s0is a chronology.� [Include]Suppose that s0 and s1 are chronologies, that s2 is the subsequence of s1obtained by deleting members of s1 that belong to s0, and that s0; s2 is aweak chronology. Then s0; s2 is a chronology.29

2 Proposition. Every history is a chronology.Proof: By an easy induction on length, using the [Labeled extension] rule.2 Implementation note. ACL2 lays down certain \command markers" thatindicate the initial segments of a given chronology that it will accept as chronolo-gies. However, this restriction is not necessary for correctness, so we do notmodel it here.The following three lemmas are all that remain before we are ready to provethe main results about chronologies.Lemma (History Su�ciency). Suppose that h is a weak history. Assumethat for every initial segment h0; A of h, there exists h00 such that h00; A is ahistory and the set of elements of h00 is a subset of the set of elements of h0.Then h is a history.Proof: by induction on h. If h is empty then this is trivial. Otherwise, writeh as h0; A. By the inductive hypothesis, h0 is a history. And, we are given thath is a weak history. Using the assumption of the theorem we may choose h00such that h00; A is a history, where the set of elements of h00 is a subset of theset of elements of h0. Now clauses (5') and (6') from the de�nition of historyfollow easily, using the inductive hypothesis in order to guarantee satisfactionof the requirement of (5') that h0; s be a history. 2Lemma (Combining). Suppose that h0 and h1 are histories, that h2 is thesubsequence of h1 obtained by removing all elements of h0 from h1; and thath0; h2 is a weak history. Then h0; h2 is a history.Proof. This is an an immediate consequence of the History Su�ciencyLemma. 2Lemma (Ancestors Preserve History). Suppose h is a history and h0 is asubsequence of h that is a weak history and contains all elements of h labeledby defaxiom. Then h0 is a history.Proof. An easy argument, omitted here, uses (2) from the de�nition of weakhistory to show that h0 is closed under ancestors with respect to h. Then thetheorem follows by an easy induction on h0, using the History ConservativityTheorem to guarantee that the proof obligations are met. Notice that it iscritical here that we are using interpreter admissibility rather than measureadmissibility, in order to guarantee that the proof obligations for de�nitionalaxioms are expressed in the sub-history. 2Main Lemma for Chronologies. Let s be a chronology. Then (1) H(s) isa history, (2) s is a weak chronology, and (3) THM(s) is a subset of the theoryof H(s).Proof: by induction on the construction of the class of chronologies. TheAncestors Preserve History Lemma guarantees that the [Delete] rule preserves(1), while the History Conservativity Theorem guarantees that it preserves (3).The only other step requiring a bit of thought is the justi�cation that H(s0; s2)is a history in the application of the [Include] rule. But it is a weak history30

because s0; s2 is assumed to be a weak chronology, so this follows from theCombining Lemma. 2The following theorem is a consequence of the preceding lemma togetherwith the History Conservativity Theorem of the preceding section. It captureswhat we really want to claim about chronologies.Theorem (Correctness of Chronologies). Let s be a chronology. Thenevery theorem of s is a �rst-order consequence of the history of s. Furthermore,suppose that ' is proved in s, and suppose that h is any history contained in sthat contains every labeled formula of s that is labeled by defaxiom or mentionsa function symbol occurring in h. Then ' is provable in h. 2Corollary. Let s be a chronology such that H(s) is defaxiom-free. Then theset of (universal closures of) formulas (labeled and unlabeled) of s is consistent.Proof. By the Correctness of Chronologies Theorem, it su�ces to show thatH(s) is consistent. This follows from the fact that H(s) is a history (part (1)of the Main Lemma for Chronologies) together with the History ConsistencyCorollary. 28 Implementation CorrectnessIn this section we give a high-level argument that our notion of \chronology"adequately models the informal notion of \ACL2 session," i.e., sequence of ACL2events. Our goal is certainly not to prove correctness of routines in the ACL2theorem prover's code; they are assumed to implement the logic, at the levelof this paper. Rather, our goal in this section is to show that each such weakchronology is in fact a chronology. For then, the Correctness of ChronologiesTheorem tells us that every alleged theorem is in fact a �rst-order consequenceof the relevant axioms of the session.To that end, we consider each event type and show that it preserves chronolo-gies, that is, successful execution of such an event in a given chronology leadsto a new chronology. Many ACL2 events have nothing to do with extendingthe logic, while many of the rest are essentially abbreviations for others; but weomit consideration of both such types of events from this paper. We turn ourattention now to those that are left.Defaxiom events preserve chronologies because of the [Labeled extension]rule, noting that if we are extending a chronology s, then H(s) is a history bythe Main Lemma for Chronologies.The argument above for defaxiom also provides justi�cation for de�nitionevents, including defun and mutual-recursion as well as defchoose. The [La-beled extension] rule justi�es the claim that these events preserve chronologies,with the following four caveats. First, we also need the Correctness of Chronolo-gies Theorem, which guarantees that it's su�cient to prove the necessary proofobligations using THM(s) (as does the ACL2 system) in addition to H(s). Sec-ond, we need the Interpreter Admissibility Theorem of Subsection 5.5, in order31

to conclude that measure admissibility (which is checked by the implementa-tion) implies interpreter admissibility (as required by the de�nitions of historyand chronology). Third, we need the Correctness of Functional InstantiationTheorem (in Appendix A), which allows us to use functional instantiation inthe proof (as does the ACL2 system). And �nally, we need the Canonical Mea-sure Theorem of Subsection 5.5, together with the argument there, to justifyACL2's use of induction schemes in proofs.That defthm events preserve chronologies follows similarly from the [Unla-beled extension] rule, again using the Correctness of Chronologies Theorem, theCorrectness of Functional Instantiation Theorem, and the Canonical MeasureTheorem.Since ACL2 does not permit local defaxiom events, include-book preservechronologies by the [Delete] rule (to delete local events) followed by the [Include]rule.It remains to see that encapsulate events preserve chronologies. Sup-pose that s1 is a chronology corresponding to an ACL2 session from which anencapsulate event is executed successfully, where s2 is the sequence of events(including local events) introduced inside the encapsulate form. Thus wemay assume (inductively) that s1; s2 is a chronology. Let ' be the conjunc-tion of the events to be exported, i.e., those that are not marked local. ThenH(s1; s2)`', by the Correctness of Chronologies Theorem. By the Main Lemmafor Chronologies we know that H(s1; s2) is a history, i.e., H(s1); H(s2) is a his-tory. Let A be the labeled formula with label <constraint, s2> and formula'. Thus H(s1); A is a history, and hence s1; A is a chronology by the [Labeledextension] rule. The implementation checks the requirement for a history thats2 be defaxiom-free. In fact, ACL2 Version 2.0 allowed encapsulate forms withembedded defaxiom forms, and this \feature" led to a soundness bug that hasbeen �xed. The bug was uncovered in the course of writing this paper.

32

APPENDICESA Correctness of Functional InstantiationIn this appendix we prove the correctness of functional instantiation, in threestages. After introducing basic notions we prove a simpli�ed version. This ver-sion is then generalized to a larger class of functional substitutions, and slightlystrengthened in an obvious way to better match the ACL2 implementation.That second version is then strengthened to a version that accounts for an op-timization made by the ACL2 implementation in its handling of encapsulateevents.The Nqthm version of functional instantiation is proved correct in [2].A.1 Functional SubstitutionsDe�nition. Let h be a history. A pseudo-function of h is either a functionsymbol of h, or an expression of the form (LAMBDA vars term) where varsis a list of distinct variables and every function symbol occurring in term isa function symbol of h. In the latter case we de�ne the arity of the pseudo-function to be the length of vars, and variables occurring in term that do notbelong to vars are called free variables of the pseudo-function. 2De�nition. A functional substitution is a �nite, arity-preserving functionfs from function symbols to pseudo-functions. If in addition the range of fsconsists entirely of function symbols, we call it a simple functional substitution.Otherwise, the set of free variables of fs is the union of the sets of free variablesof the pseudo-functions in the range of fs.If h is a (possibly weak) history and fs is a functional substitution that mapsfunction symbols of h to pseudo-functions of h, then we may say that fs is afunctional substitution with respect to h. 2Recall that PR is the set of function symbols occurring in GZ. The followingproposition follows immediately from the de�nition above together with part (3)of the de�nition of weak history (Section 6).Proposition. The domain of a functional substitution fs is disjoint fromPR. 2Notation. xnfs is the functional instance of the term or formula x by thefunctional substitution fs. We may call this a simple functional instance whenfs is simple. We omit details of this de�nition, which may be carried out byrecursion in a straightforward manner as in [2]. 2A.2 Correctness for Simple Functional SubstitutionsOur �rst lemma makes rigorous the following key idea. If a theorem is provedthat involves function symbols not mentioned in the axioms from which it is33

proved, then the meanings of those functions symbols are irrelevant to its prov-ability. Hence, it remains a theorem when those function symbols are replaced.Lemma. Suppose that is a theorem of a given �rst-order theory T andthat fs is a simple functional substitution whose domain is disjoint from the setof function symbols of T . Then nfs is a theorem of T .Proof. A proof-theoretic argument can presumably be made, since Anfs= A for every axiom A of T; and the rules of inference remain valid whenapplying fs to each of their applications. Here, however, we give a model-theoretic argument. First, note that it su�ces to assume that the domainand range of fs are disjoint, since we may write fs as the composition of twoappropriate functional substitutions with that property. (Brie
y: First map thesymbols in the domain to distinct symbols occurring nowhere in sight, and thenmap those to the �nal values.) Now given any model of T (which also interpretsthe symbols in the range of fs, but not in the domain of fs) that satis�es thenegation of nfs, we may expand this to a model of the negation of byinterpreting every function symbol in the domain of fs to be the interpretationof the corresponding function symbol in the range of fs. 2Theorem. Suppose that fs is a simple functional substitution with respectto a history h and that ' is a theorem of h. Suppose further that h0 is asubsequence of h that is closed under ancestors, such that ' is a formula of thelanguage of h0. Finally, suppose that for every labeled formula A of h0, Anfs isa theorem of h. Then 'nfs is a theorem of h.Proof. Since ' is (by assumption) a theorem of h, it is also a theorem ofh0, by the History Conservativity Theorem. Fix a proof of ' from the theoryof h0 (which includes induction axioms). Thus, letting A be the conjunction ofthe axioms and induction axioms of h0 used in the proof, we have that (A! ')is a �rst-order theorem of GZ. By the immediately preceding proposition andlemma, it follows that (A ! ')nfs is a �rst-order theorem of GZ, i.e., that(Anfs ! 'nfs) is a theorem of GZ, hence of h. Hence 'nfs is a theorem ofh, because each conjunct of Anfs is a theorem of h by hypothesis | except, aseparate argument needs to be made for induction axioms. That is, we claimthat the simple functional instance of an induction axiom of h0 is an inductionaxiom of h. This is clear from the form of induction axioms, since every simplefunctional instance by fs of such a formula is of that form as well. 2A.3 Correctness for Functional SubstitutionsIn the ACL2 implementation of functional instantiation, a functional substitu-tions is permitted to map a function symbol f to a pseudo-function (LAMBDAvars term), where the length of vars is the arity of f . Moreover, this pseudo-function may include free variables. So, we need to remove the restriction tosimple functional substitutions from the theorem above. The theorem belowalso restricts the proof obligations in an obvious way, to functional instancesof theorems that contain at least one function symbol bound in the functional34

substitution.But �rst we state a simple lemma that is used in the proof.Lemma. let T1 be an inductively complete theory and let C be a set ofzero-ary function symbols (i.e., constants) that is disjoint from the language ofT1. Let T2 be the inductive completion of T1 with respect to the union of Cwith the language of T1. Then for any formula '1 in the language of T1 andformula '2 resulting from substituting constants from C for some free variablesof '1, if '2 is a theorem of T2 then '1 is a theorem of T1.Proof. Suppose that '1 is not a theorem of T1. Thus by the CompletenessTheorem, there is a model of T1 that satis�es the negation of '1 for someassignment s of values to its variables. An expansion of that model to thelanguage of T2 may be obtained by interpreting members of C occurring in '2by the values of the variables under s that they replace, and interpreting therest of C arbitrarily. That expanded model with assignment s satis�es T2 andthe negation of '2. Hence, '2 is not a theorem of T2. 2The following theorem justi�es ACL2's generation of proof obligations foruses of functional instantiation, other than the optimizations discussed in thenext subsection. The subsequence h0 in the theorem below is taken in theimplementation to include all ancestors of all function symbols occurring in 'or any defaxiom; see the ACL2 documentation [8] for \CONSTRAINT".Theorem (Correctness of Functional Instantiation). Suppose that fs is afunctional substitution with respect to a history h and that ' is a theorem ofh. Suppose further that h0 is a subsequence of h that is closed under ancestors,such that ' is a formula of the language of h0. Finally, suppose that for everylabeled formula A of h0 such that some function symbol in the domain of fsoccurs in A, Anfs is a theorem of h and no free variable of fs occurs in A. Then'nfs is a theorem of h.Proof. First, observe that if no function symbol in the domain of fs occursin a formula A, then Anfs is just A. Therefore, we can remove the restrictionto formulas A for which some function symbol in the domain of fs occurs in A.Next, we reduce this theorem to the case that there are no free variables offs. For if there are, �rst extend h to a new history h0 that introduces, withoutextending the theory, a distinct zero-ary function symbol for each variable freein fs. Technically, h0 is the extension of h by the formula T (true) with label<constraint, s>, where (say) s de�nes each new zero-ary function to havevalue 0. Now consider the functional substitution fs0 obtained from fs byreplacing each variable free in fs by the corresponding new constant (i.e., call ofa new zero-ary function). Note that the hypotheses of the theorem are satis�edwith h0 in place of h, with fs0 in place of fs, and with h0 and ' unchanged:for if Anfs is a theorem of h, then it is also a theorem of h0 and hence so is itsinstance Anfs0. (Why is Anfs0 an instance of Anfs? This is left to the reader,but we note that here is where the hypothesis is used about free variables of fs.)Application of the theorem in this case would allow us to conclude that 'nfs0is a theorem of h0. The preceding lemma then allows us to conclude that 'nfs35

is a theorem of h.So, let us assume that fs has no free variables. For each pair hf; (LAMBDAvars term)i in fs, extend h by a de�nition g(vars) = term, where g is a newfunction symbol. Let us call the resulting history h1, and let us write fs1 forthe functional substitution obtained by replacing each expression (LAMBDA varsterm) as above by the corresponding new function symbol g. We claim thatthe hypotheses of the theorem hold for h1 and fs1 in place of h and fs (andwith h0 and ' unchanged); and for this claim, we only need show that for A asbefore, Anfs1 is a theorem of h1; given that Anfs is a theorem of h. But thisis clear since Anfs1 and Anfs are logically equivalent in h1. The theorem inthe preceding subsection now applies: 'nfs1 is a theorem of h1. But 'nfs1 islogically equivalent in h1 to 'nfs, so 'nfs is a theorem of h1. By the HistoryConservativity Theorem, 'nfs is a theorem of h. 2A.4 Correctness in the Presence of OptimizationsThe following documentation for topic \CONSTRAINT" from [8] discusses certainoptimizations performed by the ACL2 implementation when generating proofobligations for a use of functional instantiation. Below, we argue the correctnessof these optimizations.First, we focus only on non-trivial encapsulations [those thathave non-empty signatures] that neither contain nor are containedin non-trivial encapsulations. (Nested non-trivial encapsulations arenot rearranged at all: do not put anything in such a nest unless youmean for it to become part of the constraints generated.) Second,in what follows we only consider the non-local events of such anencapsulate, assuming that they satisfy the restriction of using nolocally de�ned function symbols other than the signature functions.Given such an encapsulate event, move, to just in front of it andin the same order, all de�nitions and theorems for which none ofthe signature functions is ancestral. Now collect up all formulas(theorems) introduced in the encapsulate other than de�nitionalaxioms. Add to this set any of those de�nitional equations thatis either subversive [non-tight, in the terminology of this paper] orde�nes a function used in a formula in the set. The conjunctionof the resulting set of formulas is called the \constraint" and theset of all the signature functions of the encapsulate together withall function symbols de�ned in the encapsulate and mentioned inthe constraint is called the \constrained functions." Assign the con-straint to each of the constrained functions. Move, to just after theencapsulate, the de�nitions of all function symbols de�ned in theencapsulate that have been omitted from the constraint.36

We now demonstrate correctness of these optimizations by de�ning two cor-responding transformations and showing that they preserve chronologies. Thatis, each transformation maps any suitable chronology to a sequence of labeledand unlabeled formulas, and our task will be to prove that the result is a chronol-ogy. It should then be clear that we have justi�ed the optimizations describedin the documentation quoted above.Each of our two transformation rules is intended to transform chronologiesconstructed by successfully executing an encapsulate event. The rules areparameterized as follows.� Let s1; s2 be a chronology.� Let A be �rst-order derivable from s1; s2 together with associated induc-tion schemes. Label A by <constraint, H(s2)>, and abuse notation bycalling this labeled formula \A" as well. Note that by Part (3) of the MainLemma for Chronologies (Section 7), s1; A is a history.� Let B 2 s2.� Let s3 be the result of deleting B from s2.� Let A0 be the result of replacing the formula of A with any �rst-orderconsequence of A in the language of s1; s3, and replacing the label of Aby <constraint, H(s3)>.Given the parameters just de�ned, the rules are as follows. The notion oftight is introduced in Section 5 in the de�nition there of \Tight De�nability."The proposition following that de�nition allows us to claim for rule [Back] belowthat the canonical measure for B is de�nable over H(s1).� [Front] Suppose that every ancestor of B is introduced either in B (henceB is labeled) or in H(s1). Then the new sequence is s1; B;A0.� [Back] Suppose that B is the last labeled formula in s2 that introducesno ancestor of the labeled formula A0. Moreover, suppose B is labeledby defun or defchoose and that if B is a recursive de�nition, then B istight with respect to the union of PR with the set of function symbolsintroduced in H(s1). Then the new sequence is s1; A0; B.Proposition. The [Front] rule preserves chronologies.Proof. Fix the parameters de�ned above, and suppose that every ancestorof B is introduced either in B or in H(s1).First suppose that B is a labeled formula. By the Ancestors Preserve HistoryLemma (Section 7), the sequence H(s1); B is a history. It then follows by theHistory Su�ciency Lemma (Section 7) that the sequence H(s1); B;H(s3) is a37

history. By de�nition of history, it follows that H(s1); B;A0 is a history. There-fore s1; B;A0 is a chronology, by two applications of the [Labeled extension]rule.Now suppose that B is an unlabeled formula. By the Correctness of Chrono-logies Theorem, B is a theorem of H(s1); H(s2). By the History ConservativityTheorem (Section 6), B is a theorem of H(s1). Thus, s1; B is a chronology bythe [Unlabeled extension] rule. Since H(s1); A is a history by the Main Lemmafor Chronologies, and since s3 is equal to s2, then clearly H(s1); A0 is a history,and hence s1; B;A0 is a chronology by the [Labeled extension] rule. 2Proposition. The [Back] rule preserves chronologies.Proof. Fix the parameters de�ned above, and suppose that B is the lastlabeled formula in s2 that introduces no ancestor of the labeled formulaA0. Sinces1; s2 is a chronology, then H(s1); H(s2) is a history by the Main Lemma forChronologies. As mentioned above, if B is a recursive de�nition then tightnessallows us to assert that its canonical measure is de�nable over H(s1); and henceby History Conservativity Lemma (Section 6), the measure theorem for B isprovable in H(s1). Thus it su�ces to prove that s1; A0 is a chronology, sincethen by the [Labeled extension] rule, s1; A0; B is a chronology. (Notice thatwe could not guarantee that [Labeled extension] applies if B were labeled byconstraint.)We claim that H(s3) is closed under ancestors. It su�ces to check thatlabeled formulas B0 occurring after B in H(s3) do not have as an ancestor anyfunction symbol introduced by B. By choice of B, we know that any later B0 ofH(s3) introduces an ancestor of A0; thus by de�nition of ancestor, all functionsintroduced by B0 are ancestors of A0. Hence no function introduced by B canbe an ancestor of B0, since otherwise that function would be an ancestor of A0.It follows that H(s3) is closed under ancestors.As already noted above, H(s1); H(s2) is a history; hence by the AncestorsPreserve History Lemma (Section 7), H(s1); H(s3) is a history. Now (the for-mula of) A0 is a theorem of the historyH(s1); H(s2) because A is such a theoremand A0 is a �rst-order consequence of A, by hypothesis. The formula of A0 isin the language of H(s1); H(s3), since no function symbol of the formula ofA0 is introduced by B. Hence the formula of A0 is a theorem of the historyH(s1); H(s3) by the History Conservativity Lemma. It follows that H(s1); A0is a history, by de�nition of history. Therefore s1; A0 is a chronology, by the[Labeled extension] rule, and we have met the �nal proof obligation. 2B Conservativity of SkolemizationWe wish to check the conservativity of Skolemization in our context, where eachtime a function symbol is introduced, so are all the induction axioms about thesymbol (and the existing function symbols). If we were dealing with a logicthat precluded non-standard numbers, we could manage more simply, because38

there would be no need to worry about the induction axioms introduced whenwe add a new function symbol (a Skolem function). That is: every sort ofinduction scheme is automatically true when the natural numbers of the modelare standard! But we do not want to leave the realm of �rst-order logic if wecan avoid it; for example, that would eliminate the potential for integratingsome non-standard analysis into the system4, and it would require us to re-think our proof theory. Fortunately, we'll see that we can assume that there isa de�nable enumeration of the universe. This enumeration permits the explicitde�nition of Skolem functions, by choosing the least witnesses in the sense ofthis enumeration. The remainder of this Appendix works out this argument.We thank Jim Schmerl for suggesting the key ideas that allow us to carryout the argument allowing for an enumeration of the model.The de�nition of Skolem axiom is given in Subsection 4.Notation. Let F be a set of function and relation symbols that includes theunary relation symbol Nat. We write IND(Nat; F) for the theory containing allinduction axioms in the language of F . 2The following simple lemma is surely well known.Lemma. Suppose that T1 is a subtheory of the �rst-order theory T2 suchthat for every model M of T1, every sentence A true in M , and every �nitesubset T 02 of T2, there is a model of T 02 satisfying A. Then T2 is a conservativeextension of T1.Proof. Suppose for a contradiction that T2 is not a conservative extensionof T1; say, ' is in the language of T1 and is a theorem of T2, but ' is not atheorem of T1. By the Completeness Theorem for �rst-order logic, let M be amodel of T1 that satis�es :'. By hypothesis and the Compactness Theorem of�rst-order logic, we may choose of model of T2 that satis�es :'. Thus T2 hasa model not satisfying ', so ' is not a theorem of T2, which contradicts thechoice of '. 2The next lemma is not at all obvious. If we were not concerned aboutinduction axioms, it would be trivial to conservatively extend a theory by addinga bijection between the universe and its natural numbers, by the downwardLowenheim-Skolem theorem of �rst-order logic. Something fancier is needed,however, if we want to preserve induction.Lemma. Suppose that T is a �rst-order theory in the �nite language Fcontaining PR, which contains GZ as well as IND(Nat; F). Then it is conser-vative to extend T to a theory T 0 by adding an axiom introducing a new unaryfunction symbol g, asserting that g maps the universe 1-1 onto Nat, togetherwith IND(Nat; F [fgg).Proof sketch. We sketch two arguments, both of which are quite technicaland model-theoretic, and both of which were suggested by Jim Schmerl. LetM be a model of T . In each case we show how to expand M (at least for M4The addition of non-standard analysis to ACL2 is a major part of the doctoral researchcurrently being undertaken by Ruben Gamboa.39

countable, which is enough by the downward Lowenheim-Skolem theorem) to amodel of the desired assertion on g together with IND(Nat; F [fgg) (or, in thesecond argument, an arbitrary �nite subset of this set). Thus, the precedinglemma yields the desired conservativity claim, by applying it to T and T 0. The�rst argument requires background in models of arithmetic, while the seconddepends on a much deeper result than any needed for the �rst argument.The more standard and direct argument uses a variant of Cohen's forcingtechnique from set theory, adapted to models of arithmetic. Thus, �x a count-able model M of T . The partial order here consists of 1-1 \�nite" (in the senseof M) functions from an initial segment of the interpretation of Nat in M , thatare coded in M . A standard argument shows that a function through this par-tial order, generic with respect to all dense sets de�nable with parameters inM , gives the desired expansion of M . Details are omitted here. The main ideas(given here only brie
y, for those familiar with forcing) are to prove �rst theusual truth lemma, and then to show that if p forces that '(x) de�nes an in-ductive subset of Nat, and if n is in Nat, then the set of conditions that force allpredecessors of n to satisfy ' is dense below p. Hence if p is in the generic set,then a member of that dense set is also in the generic set, and hence ' holdsfor all predecessors of n in the generic model. Since n is arbitrary, then ' holdsfor all elements of Nat in the generic model, and the induction scheme has beenveri�ed.The second argument uses a theorem of Jim Schmerl [17]. That theorem tellsus that given any sentence ' in the language of Peano Arithmetic extended byF , any model M of IND(Nat; F) that satis�es ', and any �nite subset T 0 of T ,there is a modelM1 of ' satisfying T 0 that is de�nable insideM and is containedin the interpretation in M of Nat, such that the interpretation in M1 of Nat isisomorphic, via an isomorphism j de�nable in M , to the interpretation in M ofNat. (If necessary, it is certainly no problem to make a de�nitional extension ofT before carrying out this argument, allowing the coding up �nite sequences inthe manner required by Schmerl's theorem.) Because M1 is de�nable in M , itfollows follows that M1 is also a model of IND(Nat; F [fgg), for any function gonM1 de�nable inM . Now sinceM1 is contained in the interpretation of Nat inM , there exists a 1-1 enumeration of the elements of M1 that is de�nable in M .By composing it appropriately with the aforementioned de�nable isomorphismj, we have a 1-1 function g fromM1 onto the interpretation of Nat inM1, whichis de�nable in M and thus expands M1 to a model of IND(Nat; F [fgg), asargued above. 2The following theorem implies the Conservativity of Defchoose Lemma fromSection 6, whose proof had been deferred.Theorem. Suppose that T is a �rst-order theory in the language F , and thatT contains the relativization of Peano Arithmetic to Nat as well as IND(Nat; F).Then it is conservative to extend T by adding any Skolem axiom introducing anew function symbol f together with IND(Nat; F [ffg).Proof. The preceding lemma allows us to extend the given theory conserva-40

tively to include a function g mapping the universe 1-1 onto N, together withIND(Nat; F [fgg). Thus, by transitivity of conservativity it su�ces to extendthis new theory in the manner indicated. But this is easy because in the indi-cated theory with g, we may explicitly de�ne the desired Skolem function f . Wedo so in simply by picking the least witness, i.e., among all appropriate valuesg(n) the one chosen is that for which n is least (if any witness exists; else, 0,say). 2References[1] R. S. Boyer and J S. Moore. A Computational Logic, Academic Press:New York, 1979.[2] R. S. Boyer, D. Goldschlag, M. Kaufmann, and J S. Moore. FunctionalInstantiation in First Order Logic. In Arti�cial Intelligence and Math-ematical Theory of Computation: Papers in Honor of John McCarthy,Academic Press, 1991, pp. 7{26.[3] R. S. Boyer, M. Kaufmann, and J S. Moore. The Boyer-Moore Theo-rem Prover and Its Interactive Enhancement, Computers and Mathe-matics with Applications, 5(2) (1995) 27{62.[4] B. Brock, M. Kaufmann, and J S. Moore. ACL2 Theorems aboutCommercial Microprocessors. In Proceedings of Formal Methods inComputer-Aided Design (FMCAD'96), M. Srivas and A. Camilleri(eds.), Springer-Verlag, November, 1996, pp. 275{293.[5] R. S. Boyer and J S. Moore. A Computational Logic Handbook, SecondEdition, Academic Press: London, 1997.[6] B. Brock and J S. Moore. A Mechanically Checked Proof of a Com-parator Sort Algorithm, URL http://www.cs.utexas.edu/users/-moore/publications/csort/index.html (submitted for publication)1999.[7] D. A. Greve, D. S. Hardin and M. M. Wilding, E�cient SimulationUsing a Simple Formal Processor Model, Technical Report, AdvancedTechnology Center, Rockwell Collins Avionics and Communications,Cedar Rapids, IA 52498, April, 1998.[8] M. Kaufmann and J S. Moore. ACL2: A Computational Logicfor Applicative Common Lisp, The User's Manual. URL: http://-www.cs.utexas.edu/users/moore/acl2/acl2-doc.html#User's-Manual.[9] M. Kaufmann and J S. Moore. High-Level Correctness of ACL2:A Story. URL http://www.cs.utexas.edu/users/moore/acl2/reports/-story.txt, October, 1995. 41

[10] M. Kaufmann and J S. Moore. A Precise Description of the ACL2Logic. URL http://www.cs.utexas.edu/users/moore/acl2/reports/-km97a.ps.[11] M. Kaufmann and J Moore. An Industrial Strength Theorem Proverfor a Logic Based on Common Lisp. In IEEE Transactions on SoftwareEngineering 23(4), April, 1997, pp. 203{213.[12] M. Kaufmann. ACL2 Support for Veri�cation Projects. In Proceedings15th Int'l Conf. Automated Deduction, C. Kirchner and H. Kirchner(eds.), LNAI 1421, Springer-Verlag, July, 1998, pp. 220{238.[13] J S. Moore. Piton: A Mechanically Veri�ed Assembly-Level Language,Automated Reasoning Series, Kluwer Academic Publishers, 1996.[14] J Moore, T. Lynch, and M. Kaufmann. A Mechanically CheckedProof of the AMD5K86 Floating-Point Division Program. IEEETrans. Comp. 47(9), Sept. 1998, pp. 913{926. See also URL http://-devil.ece.utexas.edu/~lynch/divide/divide.html.[15] D. Russino�, \A Mechanically Checked Proof of Correctness of theAMD5K86 Floating-Point Square Root Microcode," Formal Methodsin System Design Special Issue on Arithmetic Circuits, 1997.[16] D. M. Russino�. A Mechanically Checked Proof of IEEE Complianceof the Floating Point Multiplication, Division, and Square Root Al-gorithms of the AMD-K7TM Processor URL http://www.onr.com/-user/russ/david/k7-div-sqrt.html.[17] J. Schmerl. A re
ection principle and its applications to nonstandardmodels. J. Symbolic Logic 60, 1137{1152, December 1995.[18] J. R. Shoen�eld. Mathematical Logic. Addison-Wesley, Reading, MA,1967.[19] G. L. Steele, Jr. Common Lisp The Language, Second Edition. DigitalPress, 30 North Avenue, Burlington, MA 01803, 1990.[20] Y. Yu. Automated Proofs of Object Code for a Widely used Micropro-cessor, Technical Report 92, Computational Logic, Inc., 1717 W. 6th,Austin, TX 78703, May, 1993. See URL http://www.cli.com/reports/.
42

