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Abstract

Experience has shown that large or multi-user interactive proof efforts
can benefit significantly from structuring mechanisms, much like those
available in many modern programming languages. Such a mechanism
can allow some lemmas and definitions to be exported, and others not. In
this paper we address two such structuring mechanisms for the ACL2 the-
orem prover: encapsulation and books. After presenting an introduction
to ACL2, this paper justifies the implementation of ACL2’s structuring
mechanisms and, more generally, formulates and proves high-level correct-
ness properties of ACL2. The issues in the present paper are relevant not
only for ACL2 but also for other theorem-proving environments.

1 Overview

Modern programming languages provide convenient features even though in
principle, all computations can be performed using Turing machines. By anal-
ogy, mechanized logics often include convenient features even though conven-
tional mathematical logics, for example first-order logic, provide a firm foun-
dation for formal reasoning. In particular, experience has shown that large
or multi-user interactive proof efforts can benefit significantly from structuring
mechanisms, much like those available in many modern programming languages.
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In this paper we provide structuring mechanisms, implemented in the ACL2!
theorem prover [8, 11, 4, 12]. Similar mechanisms might be appropriate for
other theorem proving systems.

Like its predecessor Nqthm [1, 5, 3], the ACL2 system supports development
of (first-order) theories. Users introduce axioms by way of extension principles,
which are usually definitions, and establish provability of alleged axioms from
those axioms. Unlike Nqthm, the ACL2 theorem prover provides powerful struc-
turing mechanisms that allow the user to designate certain definitions and lem-
mas as “local”, not to be exported from specified scopes. These mechanisms, in
concert with others offered by ACL2, challenge us to formalize what these struc-
turing mechanisms really mean. In fact, unsoundness crept into early versions
of ACL2 because of our failure to understand subtle aspects of such structuring
mechanisms. In this paper, we give a way to understand what an ACL2 session
means in terms of first-order logic.

The rest of this paper proceeds as follows. First, we give a reasonably brief
overview of ACL2 and, in particular, of the structuring mechanisms that are
the subject of this paper. That section provides the ACL2 prerequisites for
the rest of the paper; no prior knowledge of ACL2 is assumed. Next, Section
3 provides an informal introduction without proof of the main result of the
paper, that alleged theorems are indeed theorems. Following a presentation
of logical preliminaries in Section 4, we present a somewhat new treatment of
recursion and induction in Section 5. This treatment is used for explaining why
ACL2’s structuring mechanisms are sound. Section 6 introduces the crucial
notion of history and proves some important properties of histories. Section 7
then introduces the notion of chronology, and demonstrates that the theorems
of a chronology are consequences of its axioms. Finally, we tie things together
in Section 8 by showing that ACL2 sessions correspond to chronologies. In
particular, the session’s theorems are first-order consequences of its axioms,
and as a consequence (modulo an obvious restriction) the session’s first-order
theory is consistent.

There are also two appendices, which address technical points deferred from
the main exposition. Appendix A proves the correctness of functional instanti-
ation against the backdrop of histories. The correctness statement encompasses
an optimization in the ACL2 implementation of its encapsulate structuring
mechanism. Appendix B proves a relevant technical result on Skolemization.

A preliminary work in the direction of this paper is [9]. That work, and the
present paper, stand in contrast to the lower-level presentation provided in [10],
in which we lay out the syntax of ACL2 and present a particular logic suited
to reasoning without quantification. We also consider in [10] important issues
including packages and macros. In this paper we work at a higher level of ab-
straction, assuming familiarity only with classical first-order logic and ignoring
syntactic and extra-logical issues. The issues in the present paper are relevant
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not only for ACL2 but also for other theorem-proving environments.

Prerequisites. We assume no familiarity with ACL2 or Common Lisp,
providing the necessary background in Section 2. We do assume some basic
familiarity with first-order logic.

Conventions. Definitions and introduction of notation, as well as proofs of
lemmas and theorems, conclude with the symbol O. When the proof is obvious,
this symbol appears immediately after the statement of the lemma or theorem.
All sequences in this paper are finite sequences. We use typewriter font to dis-
play actual syntax and we use font such as f both to indicate “meta-variables”
that stand for syntax and for mathematical entities other than syntactic ele-
ments. Example: “f is a function symbol such as CONS appearing in the set S
of sentences.”

Acknowledgments. Bob Boyer played a major role in the development of
ACL2 for its first few years. We gratefully acknowledge his numerous contri-
butions to its design and implementation. Virtually all of the implementation
work related to this paper was done in the friendly environment of Computa-
tional Logic, Inc. EDS graciously provided Kaufmann some time away from its
Year 2000 project to work on this paper.

2 Introduction to ACL2

“ACL2” stands for “A Computational Logic for Applicative Common Lisp.” We
use the name both for a mathematical logic based on applicative Common Lisp
[19] and for a mechanized theorem proving system for that logic. ACL2 is closely
related to the Boyer-Moore logic and system and its interactive enhancement
[1, 5, 3]. The key reason we abandoned the Nqthm logic and adopted applicative
Common Lisp is that the latter can result in extremely efficient runtime code.

2.1 The ACL2 Logic

The kernel of the ACL2 logic consists of a syntax, some rules of inference, and
some axioms. The kernel logic is given precisely in [10]. The logic supported by
the mechanized ACL2 system is an extension of the kernel logic.

The kernel syntax describes terms composed of variables, constants, and
function symbols applied to fixed numbers of argument terms. Thus, (* X
(FACT N)) is a term that might be written as « xn! in more traditional syntactic
systems. After introducing Lisp-like terms, the kernel logic introduces the notion
of “formulas” composed of equalities between terms and the usual propositional
connectives. There are no quantifiers.

The rules of inference are those for propositional calculus with equality,
instantiation, an induction principle and extension principles allowing for the
definition of new total recursive functions, new constant symbols, new “symbol
packages,” and the declaration of the “current package” (used in the resolution



of naming conflicts). Our extension principles specify conditions under which
the proposed extensions are admissible. For example, recursive definitions must
be proved to terminate. The admissibility requirements insure the consistency
of the resulting extensions.

The ACL2 axioms describe the properties of certain Common Lisp primi-
tives. For example,

Axioms.
X =Y — (EQUAL X Y)

Il
—

X #Y — (EQUAL X Y) = NIL

X NIL — (IF X Y Z)

I
N

X#NIL - (IFXYZ) =Y

Using the function symbols EQUAL and IF it is possible to “embed” propositional
calculus and equality into the term language of the logic. When we write a term
p where a formula is expected it is an abbreviation for the formula p # NIL.
Thus, by

Axiom (CAR-CONS).
(EQUAL (CAR (CONS X Y)) X)

we mean

Axiom.
(EQUAL (CAR (CONS X Y)) X) # NIL

which is provably equivalent to

Axiom.
(CAR (CONS X Y)) = X.

We similarly feel free to write =7 to denote the term or formula obtained by
applying the function symbol NOT to the term 7, where formally:

Axiom.
(NOT X) = (IF X NIL T).

The kernel logic includes axioms that characterize the primitive functions
for constructing and manipulating certain Common Lisp numbers, characters,
strings, symbols, and ordered pairs. In the present work, we consider only
theories that extend a certain first-order theory GZ. This theory is assumed
to contain the axioms of the kernel logic mentioned above, together with the
analogous CDR-CONS for CDR in place of CAR, guaranteeing that the ordered-pair
operation CONS is one-to-one. It also contains a few other axioms described in
Section 4, notably a well-founded induction principle. Notice that the axioms
above imply: T # NIL.



The logic supported by the ACL2 system is somewhat richer than the kernel
logic. The full logic is obtained from the kernel by (a) a syntactic extension and
some syntactic restrictions (b) the inclusion of a new extension principle called
“encapsulation” and a derived rule of inference called “functional instantiation,”
and (c) the inclusion of a new extension principle called “defchoose.” The
syntactic extension is provided via the incorporation of Common Lisp’s notion
of macros, whereby new syntactic forms are implemented by functions that
translate those forms into terms in the kernel syntax. The syntactic restrictions
have to do with syntactic limitations on the use of certain primitives so as to
allow efficient execution. For example, functions returning multiple values must
return the correct number, even though in the kernel logic a bundle of values
is just a list and insufficiently long bundles are effectively padded with nils.
Encapsulation and functional instantiation are the subject of the present paper.
The defchoose feature, discussed below, essentially allows the introduction of
universal and existential quantifiers.

2.2 The ACL2 System

The ACL2 system presents itself to the user as a read-eval-print command loop.

The most basic commands are those that define new functions, constants and
packages or designate a package as the current one. These commands correspond
to the extension principles in the kernel logic. Each time such a command is
executed the current first-order theory is extended. Such commands are called
events. A sample event command is shown below. This command defines a
function named APP. Immediately following the command we show the system’s
text output in response. The response is mainly concerned with the admissibility
requirements for recursive definitions.

(defun APP (X Y) ; concatenate lists x and y
(IF (CONSP X)
(CONS (CAR X) (APP (CDR X) Y))
¥))

The admission of APP is trivial, using the relation E0-ORD-< (which
is known to be well-founded on the domain recognized by EO-ORDINALP)
and the measure (ACL2-COUNT X). We observe that the type of APP is
described by the theorem (OR (CONSP (APP X Y)) (EQUAL (APP X Y) Y)).
We used primitive type reasoning.

Another event command directs the ACL2 system to prove a theorem, and,
when successful, to build the theorem into the system’s data base. Below is a
command to prove that APP is associative. The proof, not shown, is successful
and the theorem is built-in as a left-to-right rewrite rule.

(defthm ASSOCIATIVITY-OF-APP
(EQUAL (APP (APP A B) C)



(APP A (APP B ()))
:rule-classes :rewrite)

Loosely speaking, the record of all successful event commands is called the
“chronology” of a session. Other commands allow the user to display parts of
the chronology and to “undo” commands so as to roll-back the chronology to
some prior setting. For example, the cryptic command

:ubt! 1

undoes back through the first command and thus restores the system to its
initial state.

The ACL2 system also supports the constrained introduction of new function
symbols. That is, it is possible to introduce a new symbol that is constrained to
satisfy certain axioms, without providing a definition that uniquely determines
the function’s behavior. To insure that the constraints are satisfiable, the user
must provide a “witness,” i.e., an existing function that can be proved to have
the required properties. The mechanism by which all this is accomplished in
ACL2 is called encapsulation. In a certain sense, this paper is about the logical
underpinnings of encapsulation — underpinnings that are sufficiently subtle to
have caused us to introduce soundness bugs into versions of ACL2 prior to
construction of the careful arguments in this paper.

Here is an example encapsulation. Suppose the chronology at the time this
command is executed is called a.

(encapsulate

((EXECUTE (S) T) ; Signatures for execute
(STATEP (S) T)) ; and statep

(local (defun EXECUTE (S) S)) ; Witness for execute

(local (defun STATEP (S) (NULL S))) ; Witness for statep

(defthm STATEP-EXECUTE ; Constraint: execute
(IMPLIES (STATEP S) ; preserves statep

(STATEP (EXECUTE S)))))

The signatures declare that the encapsulate command will introduce two
function symbols, EXECUTE and STATEP, each of which takes one argument and
returns one result. The next two forms are “local defuns” that define EXECUTE to
be the identity function and STATEP to be NULL, i.e., to return T or NIL according
to whether its argument is NIL. These two events are “local” in the sense that
the axioms added by them are relevant only during the admissibility analysis
for the encapsulate; these axioms provide alleged witnesses for the constraints
to be placed on the new symbols. The last event in the encapsulate above is a
defthm event that asserts that EXECUTE preserves STATEP. Locally, this event is
admissible provided it can be proved. The proof is trivial given the witnesses.
This theorem will become the constraint on the new symbols.

This encapsulation command is admissible because the constrained symbols
are new, the local and non-local events of the body of the encapsulate are



admissible (so the witnesses satisfy the constraint), and the non-local events
use no locally defined symbols other than the constrained ones. During the
admission analysis an extension of «, containing the local and non-local events,
is produced. Once the admissibility requirements have been met, this extension
is of no further interest.

The effect of the above encapsulate is to produce an extension of « in which
EXECUTE and STATEP have the syntactic signatures given and are axiomatized
to satisfy the formula named STATEP-EXECUTE. Very roughly speaking, the con-
straints of an encapsulate are all of the non-local events. In this example, the
only constraint is STATEP-EXECUTE and the two new functions have no other
constraints on them.

Because local events are not “exported” by the encapsulate, we sometimes
use encapsulate simply to structure proofs. For example, one might declare no
function signatures and then prove a series of local lemmas leading to a desired
theorem. The effect of such an encapsulation is to add the desired theorem as
a consistent axiom without cluttering the ACL2 data base with the lemmas
necessary to prove it.

We now return to the example encapsulate above. Once this event has been
admitted, the user might issue the following additional commands. The first of
these commands defines a function, CYCLE, which iteratively applies EXECUTE a
certain number of times. The next two commands prove theorems about CYCLE.
Here, ZP is true of all but the positive integers.

(defun CYCLE (S N)
(IF (ZP N)
S
(CYCLE (EXECUTE S) (- N 1))))

(defthm STATEP-CYCLE
(IMPLIES (STATEP S)
(STATEP (CYCLE S N))))

(defthm CYCLE-COMPOSITION
(IMPLIES (AND (INTEGERP I)

(k= 0 I)
(INTEGERP J)
(<=0 J))

(EQUAL (CYCLE S (+ I J))
(CYCLE (CYCLE S I) 1))))

The first theorem says that CYCLE preserves states. The second shows how
to decompose a long run into two shorter ones. These theorems are proved
inductively (and fully automatically).

Recall that STATEP and EXECUTE are merely constrained, not defined. They
may be thought of as “generic.” The defined function CYCLE and the theorems



proved are generic in the same sense. ACL2 provides a means by which such
generic function symbols can be instantiated.

Suppose we define some concrete notion of a “machine state” and some
concrete “execution step” that we prove preserves the concrete notion of state.
Then any theorem about the generic functions gives rise to an analogous theorem
about the concrete ones. In particular, if we define a concrete notion of a cyclic
execution engine we could appeal to STATEP-CYCLE and CYCLE-COMPOSITION to
obtain two important properties of the concrete cyclic engine. Such an appeal is
made by stating the desired concrete theorem and noting that it is a “functional
instantiation” of the appropriate generic one, given the functional substitution
that maps generic symbols to concrete ones. Such a functional instance is ad-
missible provided the concrete symbols satisfy the constraints on the generic
ones. It is not necessary to reconstruct the arguments necessary to prove the
generic theorems in the first place.

Thus the development of the generic functions and theorems constitute a use-
ful body of knowledge. This knowledge can be codified in the form of an ACL2
“book.” A book is just a file of admissible events, starting with a designation
of the current symbol package. The user could thus create a suitable book by
putting the text for the encapsulate, defun CYCLE and the two defthms above
into a file and adding (in-package "ACL2") at the top. Let us name that file
"generic-cycle.lisp".

The command (certify-book "generic-cycle") will “certify” the book
by checking the admissibility of every event in it. Once certified, the com-
mand (include-book "generic-cycle") will extend the existing chronology
by events in the book, provided certain syntactic requirements are met that
insure that names are not redefined.

Books are like encapsulations in that they may contain local events. When
a book is certified its local events are processed. But when a book is included in
a session, its local events are skipped. Thus, we often mark some of the lemmas
in a book as local. They are proved and used during the certification of the
book, but do not clutter the ACL2 data base when the book is included in a
user session.

The provision of such structuring mechanisms, especially books and encapsu-
lations, is one of the reasons ACL2 has been successfully applied to “industrial-
strength” verification problems such as the verification of floating-point division
microcode on the AMD K5 [14] and floating-point square root microcode on the
AMD K5 and floating-point square root hardware on the K7 [15, 16], the veri-
fication of microcode on the Motorola CAP digital signal processor [4, 6], and
the verification of certain aspects of the Rockwell-Collins JEM1 (a silicon Java
Virtual Machine) [7]. Structured proofs produce smaller and simpler contexts,
making it easier for the user to control the theorem prover while exploiting its
automatic features. In addition, books allow users to combine and build on the
work of others or their own past work. For example, if an existing book contains
a thousand theorems, ten of which are needed in a new project, the user can



create a new book which provides just the ten useful theorems: the new book
locally includes the old one and then non-locally states the desired ten theorems.
Including this new book imports the desired ten without importing the others.

This paper demonstrates a notion of correctness that encompasses both
encapsulate and include-book events. However, the attention in this paper is
turned more toward the treatment of encapsulate rather than include-book,
because only the former events can directly introduce constrained functions. Of
course, a book may include encapsulate events among its events.

From the brief description given so far it may appear that encapsulate is
too simple to warrant a paper like this. But suppose an encapsulation introduces
the new, constrained function symbol FN. Suppose the events in the encapsu-
lation include a local definition of FN (as it must) and a non-local theorem
about FN. That theorem will clearly be part of the constraint on FN. But what
if the encapsulate contains some other non-local theorems, not mentioning
FN? Are they part of the constraints on FN or can they be “moved out” of the
encapsulate altogether? What if they mention function symbols that use FN?
Can non-local function definitions that do not call FN be moved out? What if
the termination argument for such a function symbol involves FN? Finally, what
should be done with theorems about the local witness for FN that are deduced
implicitly by ACL2, e.g., theorems that characterize its type and link it to sug-
gested induction schemes? Should such theorems be part of the constraint?
These and related issues are considered carefully in this paper. As noted, we
uncovered soundness bugs in ACL2 via this careful consideration. One such bug
was involved with the use of a constrained function in the termination argument
of a recursive function defined non-locally within the same encapsulation. The
failure to include the definition of that other function among the constraints
of the encapsulate allowed the theorem prover to do unsound inductions after
the encapsulation. The well-foundedness argument for those “inductions” de-
pended on properties of the witness used for the constrained function, but those
properties were not made explicit among the constraints of the encapsulation.

The following additional events are especially relevant to this paper because
of their interactions with encapsulate.

The ACL2 user may introduce a new axiom with an event of the form
(defaxiom name term ...), where term is a term to added as a new axiom
with the name name. We generally discourage the use of defaxiom because it al-
lows the introduction of inconsistency by over constraining already-axiomatized
function symbols. If a new (i.e., previously unaxiomatized) function symbol is
to be constrained it is recommended that the introduction of the symbol and of
all the constraints on it be done at once, via encapsulate.

The ACL2 user may introduce n mutually recursive function definitions with
an event of the form (mutual-recursion defun; ... defun,). Mutual recur-
sion is otherwise prohibited by the syntactic restrictions on the defun event:
every function symbol used in a definition, other than the one being defined,
must have been already introduced. Here is a simple example of mutual recur-



sion.

(mutual-recursion
(defun EVEN-NATP (N)
(IF (ZP N)
T
(ODD-NATP (- N 1))))

(defun ODD-NATP (N)
(IF (ZP M)
NIL
(EVEN-NATP (- N 1)))))

The first recognizes the even natural numbers and the second recognizes the odd
natural numbers. The measure theorems for a mutually recursive clique estab-
lish termination of all the functions in the clique. ACL2 supports explicit mu-
tually recursive definitions even though, as above, singly recursive alternatives
are often possible. Indeed, in a certain sense, all mutually recursive definitions
are eliminable in favor of a singly recursive definition.

Finally, the user can introduce a conservative “choice” function satisfying a
given proposition. For example,

(defchoose AN-EVEN-ELEMENT (E) (X)
(AND (MEMBER E X)
(EVEN-NATP E)))

introduces the function AN-EVEN-ELEMENT and axiomatizes it so that when ap-
plied to X it returns a member of the list X that is an even natural number,
provided there is such an object. The defchoose event is very similar to a
stylized use of encapsulate in which the new function is constrained to satisfy
the axiom described, except that defchoose frees the user from exhibiting the
witness that would be required by encapsulate.

3 Introduction to Main Result

We have seen in the preceding section that a session with ACL2 may be viewed
as the extension of a built-in ground-zero theory by a sequence of events. These
events may be classified into two groups. The aziomatic events are those that
introduce new facts: definitions (especially defun events, possibly in the con-
text of mutual-recursion), constrained axioms (via encapsulate events), and
“pure” axioms (defaxiom events). The other events are theorems that are, at
least allegedly, proved from those facts.

The claim below is probably the first property one would require of a theorem
prover: When the prover asserts provability of a formula, then that formula
really is provable from the appropriate axioms.

10



Informal Claim: Provability of ACL2-checked formulas. Every alleged
theorem of an ACL2 session is in fact a theorem first-order derivable from the
extension of the built-in logic (with induction) by the axiomatic events of that
session.

This claim is perhaps stronger than it appears. The ACL2 user typically
defines some function symbols of interest but must also introduce extra defini-
tions and lemmas before leading ACL2 to a proof of a conjecture involving those
function symbols of interest. The claim above implies that the theorem really is
first-order derivable from the original definitions and axioms, i.e., that the extra
definitions are at most heuristically useful, not logically necessary. To see this,
recall that books may have local events, so one can presumably certify the
book obtained by marking the auxiliary functions and lemmas as local. A new
session could start with an include-book command, which would import into
the session only the non-local events. The application of the claim to the new
session allows us to conclude that the theorem is first-order provable without
the auxiliary definitions.

The remainder of the paper will justify the informal claim above in two steps.
Up through Section 7 we will introduce notions that allow us to state a theorem
that formalizes the claim above and to prove that theorem. Then, in Section 8 we
will tie that theorem to the informal claim above. We will not consider “extra-
logical” correctness issues, such as the correctness of the ACL2 theorem prover’s
term-manipulation procedures (e.g., rewriter and decision procedures), ACL2’s
handling of syntax (e.g., packages and macros), and the capability provided for
slipping into a “program-only” mode.

4 Logical Preliminaries

In this section we review some notions of first-order logic, a subject with which
we assume some familiarity on the part of the reader. We also introduce some
logical conventions and some ACL2-specific definitions important for what fol-
lows.

The logic considered in this paper is first-order logic with equality, as de-
scribed for example in [18], with the restriction that there are no relation sym-
bols other than equality. The set of function symbols occurring in a set S of
formulas is called the language of S. As usual, a theory is the set T' of first-order
consequences of a given set S of azioms, that is, the set of formulas first-order
derivable from S whose extra-logical symbols all occur in S. These formulas
(the elements of T') are sometimes called theorems of S, or of T'. Recall that a
theory 11 is a conservative extension of a theory Ty if 17 is a superset of T and
for every theorem ¢ of T; in the language of Ty, ¢ is a theorem of Tj.

The Completeness Theorem for first-order logic is of use on occasion in this
paper: if a first-order theory T is consistent then it has a model. We also use
implicitly its converse, the Soundness Theorem for first-order logic.

11



We only consider (consistent) theories that extend the first-order ground-
zero theory GZ first discussed in Section 2. It is easy to see that GZ itself is
consistent, even when extended as described below.

We write PR to denote the language of GZ.2 In this paper we typically write
“IF z then y else z” instead of the more formal “IF(z,y,z)”.

We also assume that GZ contains the binary function symbol <. Intuitively,
< is a well-founded relation on the ACL2 universe. For each set of function
symbols there is a corresponding set of induction axioms, which are the universal
closures of all formulas of the following form, called the induction axioms for ¢
(with respect to the variable y).

(Vy)((Vz < y)ply :=z]) = )
_>

(Vy)p

Definition. The set of induction arioms in a given language L is defined
to be the set of all induction axioms for ¢ with respect to y (as defined above),
where ¢ ranges over the set of formulas of L and y ranges over the set of free
variables of . O

Definition. A first-order theory T is inductively complete if it contains
GZtogether with every induction axiom in the language of T'. O

Assumptions. We use make the following additional assumptions about
GZ. (1) The ordering < on nonnegative integers is inherited from <. (2) The
predicate ZP returns NIL on the positive integers and T on all other arguments.
(3) The Peano axioms are contained in GZ. This last assumption permits
the carrying out of standard arguments guaranteeing definability of primitive
recursive functions on the natural numbers, and allows us to apply certain known
theorems and techniques in Appendix B.

All of the above requirements for GZ are honored in the ACL2 implementa-
tion.

Convention. We consider only consistent, inductively complete first-order
theories (which therefore extend GZ). Henceforth, the term “theory” will be
understood to mean: “consistent and inductively complete theory”. O

Definition. The inductive completion of a set S of first-order formulas with
respect to a language L is the theory whose axioms are S together with the set
of induction axioms in the language L. When L is omitted, it is understood to
be the language of SU GZ. O

Definition. Let T be a theory. A definitional aziom over T is a (finite)
conjunction D of equations each of the form

flze,...,z,) = term

2The notations “PR” and “GZ” are intended to suggest “Primitive Recursive” and
“Ground-Zero”, respectively.
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where: term is a term in the union of the language of 7' with the set of left-hand
side function symbols of D; z1, ..., x, are distinct variables that include all
variables occurring in term; and each left-hand-side function symbol is distinct
from the others and from all function symbols in the language of T'. Both D
and the conjunct above are said to define f, with list of formal parameters
(z1,...,25). We may also say in this case that f(z1,...,x,) is defined by D.

When the theory T' is understood or is not important for the discussion, we
may talk simply about a definitional aziom. O

Notation. We sometimes write f(Z) as an abbreviation for a term of the
form f(z1,...,z,). We also feel free to extend this abbreviation in obvious
ways, for example writing (Z,y) to abbreviate (z1,...,Z,,y).

Convention. We will use the standard notion of first-order definable func-
tion with respect to a theory T'. This notion applies to a formula ¢ together with
a list (Z,y) enumerating the free variables of ¢, with the following property: it
is a theorem of T" that for all Z there is a unique y such that ¢ holds. In this
case, the arity of the implicitly defined function is n. When the theory T is
implicit or not important for the discussion, we may omit it and just talk about
a first-order definable function. O

Finally, we introduce a basic logical notion underlying the defchoose event.

Definition. For any first-order formula ¢ with free variables contained in
the sequence v, x1, ..,z of distinct variables, and any function symbol f of arity
k, the Skolem axiom introducing f for ¢ with respect to v is defined to be the
following formula.

o — letv=f(z1,...,2) inp

We also allow more than one bound variable: if ¢ has free variables among the
distinct variables vy, ..., U, 1, ..., € (n > 1) and f is a function symbol
of arity k, the Skolem aziom introducing f for ¢ with respect to (vy,...,v,) is
defined to be the following formula.

¢ — let (LIST vy...v,) = f(z1,...,2%) in @

In any context where we use this definition, it will be provable that f returns a
list of length n. O

5 Recursion and Induction

In this section we introduce two notions of admissibility for recursive defini-
tions. One notion, measure admissibility, is similar to the definitional principle
for Nqthm explained in [1, 5], and is used by the ACL2 implementation. How-
ever, for our treatment of histories and chronologies below we need a different
notion, which we call interpreter admissibility. The following properties are
demonstrated below.

13



e If a definitional axiom is measure admissible, then it is interpreter admis-
sible.

e If a definitional axiom is interpreter admissible, then it yields a conserva-
tive extension.

o If a definitional axiom is interpreter admissible, then the associated in-
duction rule of inference is a derived (sound) rule.

5.1 Measure Admissibility

Section III.I of [1] argues that if a recursive definition satisfies a certain defini-
tional principle, then this definitional axiom defines a unique function. Here we
present a self-contained explication of essentially the same principle, which like
the Nqgthm version is based a notion of measure that can be viewed informally
as guaranteeing that the function (or set of functions) being defined terminates
on all inputs. The idea is to imagine that each recursive call is ruled by certain
conditions that guarantee that a given measure of the arguments is smaller for
that recursive call than for the top-level call.

We first illustrate with an example. Consider the following definition of a
pair of functions defining the notions of odd and even natural numbers. Here
we assume that ZIP (“zero-integer-property”) is defined so that it is true of 0
and of all non-integers. Recall that T conventionally represents “true” and NIL
conventionally represents “false”. Following a usual convention of ACL2 and
Nqgthm, we write these functions so that they treat non-integers as 0.

ODDP(z) = IF ZIP(z) then NIL else
IF z <0 then EVENP(z + 1) else EVENP(z — 1)
EVENP(z) = 1IF ZIP(z) then T else

IF 2 <0 then ODDP(z + 1) else ODDP(z — 1)

It’s clear that execution of functions satisfying these definitions will terminate,
because the absolute value of = decreases in each recursive call. The absolute
value function is what we call a measure for the definition above; clearly it is
first-order definable if ‘<’ and ‘-’ are. In general, each function defined in a
given definitional axiom may have its own measure function.

The example above may be viewed as generating the following proof obliga-
tions for the definition of ODDP, when we use |z| as the measure function for both
0DDP and EVENP. The same proof obligations are generated for the definition of
EVENP. Note that there is one proof obligation for each recursive call, and in
each case the “tests” (negated when appropriate) from the if-then-else tree are
antecedents for the implication.

(7ZIP(z) Az <0) — |z +1| <]|z|
(mZIP(z) A=(z < 0)) — |z—1| <]z
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We now make precise the notion of measure.
Definition. Let D be a definitional axiom over a theory T'. A measure for
D (over T') associates with each conjunct

f(@& = term

of D a first-order definable function m¢ (&) with respect to T. O

Roughly speaking, the measure should decrease for the arguments of each
recursive call, subject to the conditions ruling that call; see the example above
involving EVENP and ODDP. We now define recursively a notion of rules. A more
generous notion is found in [10], which for example would say that both P and
—Q govern the call of £ in the following term:

IF P then g(IF Q then O else f(x)) else 1

But here, only P rules the calls of £. That is: we only consider the top-level
if-then-else structure of the term. This decision is in accord with the ACL2 im-
plementation, which makes this choice for heuristic reasons involving induction.
Definition. We say that a term t rules an occurrence of a term s in a
term b iff b is of the form IF test then tbr else fbr and one of the following
conditions holds:
(a) the occurrence is in tbr and either ¢ is test or ¢ rules the occurrence of s in
tbr; or
(b) the occurrence is in fbr and either ¢ is —test or t rules the occurrence of s
in for. O
Definition. Let D be a definitional axiom with measure m over a theory
T. The measure theorem for D via m, denoted m(D), is the conjunction of the

implications obtained as follows from each occurrence of a term f(u1,...,us)
in a right-hand side of D, where f is defined by D with formal parameters
Z1,...,%y, and the occurrence is ruled by terms tq,...,tx.

A At = myp (U, Up) < mp(T1,..., T0)
O

Definition. Let T be a theory. A definitional axiom D over T' is measure
admissible over T if for some measure m for D over T', the corresponding measure
theorem m(D) is a theorem of T'. In this case we also say that D is measure
admissible via m over T'. O

5.2 Introduction to Interpreter Admissibility

The handling of recursive definitions in our theory can present an opportunity
for confusion or error if it is not done carefully. If we only require the Nqthm
notion of admissibility presented just above, then when we include a book with
a recursively defined function whose measure is marked local, it is not clear
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that the definitional axiom is still measure admissible, because the measure may
have been defined using some of those local functions.

Below we develop an alternate notion of admissibility, interpreter admissibil-
ity. We will show that this notion follows from measure admissibility, which is
important for verifying (in Section 8) that the implementation is well-behaved.
The main idea of interpreter admissibility is to consider, for a given definitional
axiom, a canonical interpreter that is definable using only function symbols that
are used in the definitional axiom or are built-in (members of PR). This in-
terpreter is first-order definable in the current history because its recursion is
particularly simple: an extra “stack depth” argument decreases on each recur-
sive call. We represent “divergence” — insufficient stack depth for termination —
by a return value of NIL; otherwise, the return value is a pair that is intended to
equal the result of CONSing the “real” value with NIL.3 Interpreter admissibility
is defined to mean that the canonical interpreter is total: for any given argument
list there is a sufficient stack depth for non-divergence (termination).

Conventions. For the rest of this section, fix a definitional axiom D over
a theory T' (which, as always, is assumed to be inductively complete), and let
F be the set of function symbols defined by D. We also assume that a one-one
map associates each f € F with a function symbol f' not in the language of
T U{D}, whose arity exceeds the arity of f by 1. O

5.3 Canonical Interpreters

We turn now to the notion of canonical interpreter that was promised above.
A key idea is embodied in the next definition. We show how to map a term u
to a term ug, which is intended to represent CONS(u,NIL) if the “stack depth”
d is sufficiently large for computing the value of u using definitional axiom
D, otherwise NIL. For technical reasons, we want to categorize occurrences of
terms according to whether or not they are at the top-level of the if-then-else
structure of a right-hand-side of D. The subscript b below is a Boolean flag
used in order to make this distinction; it is set to 1 initially (for the right-hand
side of a conjunct of D), but becomes 0 when we leave the top-level if-then-else
structure.

Definition. For terms ¢ and d, and for value b of 0 or 1, we define the term
tq,p by recursion on t as follows.

If ¢ is a variable or a constant: tq;, = CONS(¢,NIL)
(IF to then t; else t3)g1 =

if (t0)g,0 =NIL
then NIL

3A similar idea is used in the Nqthm “value-and-cost” function V&C$ (see [5]), except that
here we do not care about the “cost”.
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else if CAR((t0)q,0) #NIL
then (tl)d,l

else (t2)a,1

If f ¢ F, where b=0if f is IF:
(f(tr, oo stn))ap =
if (t1)40 = NIL or ...or (t,)g0 = NIL
then NIL
else CONS(f(CAR((t1)a.0), - --,CAR((£n)a0)), NIL)

Iffek:

(f(tla L) tn))d,b =
if (t1)q,0 =NIL or ...or (tn)4,0 =NIL
then NIL

elsef’(d, CAR((t1)d,0); - - -, CAR((tn)d.0))
O

Recall from Section 4 that the function symbol ZP is defined in the ground-
zero theory GZ to return NIL for positive integer arguments and T otherwise.

Definition (Canonical interpreter). The canonical interpreter for D is the
definitional axiom obtained by replacing each conjunct f(Z) = u of D by:

f'(d,Z) = IF ZP(d) then NIL else u4 1.

We say that the canonical interpreter for D is total in a theory T if for each
f(&) defined by D, the following is a theorem of T":

(vVZ)(3d)(f'(d, Z) # NIL) O

Convention (Definability of f'). Standard arguments show that for a given
definition, there are first-order definable functions {f" : f € F'} for which the
equations of its canonical interpreter are in fact theorems of T'. Henceforth,
when we mention f' we will be referring to this first-order definition over T'
(what we have just called f'), rather than to a new function symbol. O

Definition (Interpreter admissibility). A definitional axiom D is said to be
interpreter admissible over a theory T' if the canonical interpreter for D is total
inT. O

The following obvious proposition may be used implicitly.

Proposition (Preservation of Interpreter Admissibility). If D is interpreter
admissible over T, and 17" extends T, then D is interpreter admissible over T".
O
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5.4 Some Lemmas

In this subsection we develop machinery to allow us to prove the main results
on interpreter admissibility.

Lemma (Interpreter Monotonicity). Let D be a definitional axiom over a
theory T', and let w be a term in the language of T U {D}. Let d and d’ be
variables not occurring in w. Then the following is a theorem of 7"

d<d A Ud,b #NIL — Udp = Ud'p N\ Ugrp = CUNS(CAR(udﬁ), NIL) (1)

Proof. We start with three reductions. First of all, it suffices to prove (1)
without the first conjunct in the consequent of the implication, because the
second conjunct gives us a value for ug p that is independent of the choice of
d' > d. Second, it suffices to prove the theorem only for terms u that are right-
hand sides of equations of D. For once that is done, then the theorem follows
by an easy induction using the definition of 4. Third and finally, we assume,
by renaming variables in D if necessary, that variables d and d' do not occur in
D.

Let A4 be the universal closure of the (finite) conjunction of all formulas
of the following form, as u ranges over subterms of D and b is 0 or 1:

d S d’ AN Ud,b ;é NIL — Udr b = CDNS(CAR(ud7b), NIL)

Let ¢ be a sequence of all the variables occurring in D (and hence not d or d').
It suffices to prove the following claim by strong induction on d within 7'

TH(VY) (V') Ag,a

Hence, it suffices to show that the following holds for each subterm u of D and
each value of b in the set {0, 1}.

T + ((Ve<d)(Vy)(Ve')Aeer) —
(d < d Augy # NIL = ug , = CONS(CAR(uq), NIL)) (2)

We show that (2) holds by induction on subterms u of D. So, working inside T,
assume

(Ve < d)(Vy)(Ve')Ae e (3)
as well as d < d' and uq # NIL, to prove the following.
Udr b = CDNS(CAR(ud7b), NIL) (4)

The rest of the proof depends on the choice of . If u is a variable or a constant
then wgp and wug p are both (syntactically) the term CONS(u,NIL), so (4) is
clear. Otherwise u is of the form f(¢1,...,%,). The case where f is IF and b is
1 is similar to an argument below, and is left to the reader. Otherwise, since
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ugp # NIL, (¢;)q,0 # NIL when 1 < ¢ < n. Since (by the inductive hypothesis
on terms) property (2) holds for all subterms of u, then for 1 <4 < n we have

(ti)ao = CONS(CAR((¢i)a,0),NIL). (5)
There are now two cases. If f & F', then by definition ug p is
CONS(f(CAR((t1)ar 0), - - -, CAR((t)ar.0)), NIL),
which by (5) and axiom CAR-CONS (see Subsection 2.1) is equal to
CONS(f(CAR((t1)d.0),- -, CAR((t)a0)), NIL),
which equals ug by definition. Otherwise ug p is
f'(d',CAR((t1)ar 0), - - -, CAR((tn)ar 0))s
so by (5) and axiom CAR-CONS, it suffices, for arbitrary & such that
fd,d) # NIL (6)
to prove the following.
f'(d', Z) = CONS(CAR(f'(d, %)), NIL). (7)

Let u be the body of the definition of f, i.e., so that “f(#) = u” is a conjunct
of D. By definition of the canonical interpreter for D, we know that d > 0 (and
hence d' > 0 as well) and

fd,Z) = wug-1, (8)
f'(d, %) = ug-1, 9)

By (3) we have Ag_1 ¢—1 and hence since ug_1,1 = f'(d, &) # NIL (by (8) and

(6)):

Ugr—1,1 = CONS(CAR(’U,d_Ll),NIL)
= CONS(CAR(f'(d,Z)),NIL).

This, together with (9), implies (7). O

Definition. Fix a variable symbol d that does not occur in D. We define
the theory Tp be the inductive completion of the extension of T by the universal
closures of the following equations, one for each f(Z) defined by D.

NIL if f'(d, @) = NIL for all d
f(Z) = CAR(f'(d,%)) otherwise, where d is least
such that f'(d, &) # NIL
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Lemma (Conservativity of Tp). Tp is a conservative extension of 7.

Proof. This is clear from the Convention on Definability of f', ie., f' is
definable over T' for each function symbol f defined by D. O

Lemma (Interpreter Eliminability). Let w be a term in the language of
TU{D}. Then:

Tpl-udi, # NIL — Ud,p = CONS(U, NIL).

Proof. This is easily established by induction on the term w, using the
definition of ugp. The Interpreter Monotonicity Lemma is used for the case
f(t) where f € F. O

Lemma (Divergence Infectiousness). Let u and d be terms. Then the
following is a theorem of Tp: ug4,0 = NIL if and only if for some subterm f(f) of
u where f € F, f'(d,t) = NIL.

Proof. For given d and f(f) this is easily proved by induction on the term
u, using the definition of uqp and the Interpreter Eliminability Lemma. O

Lemma (Interpreter Correctness) Suppose that D is interpreter admissible
over the theory T, i.e., the canonical interpreter for D is total in T. Then TpFD.

Proof. Fix a conjunct f(Z) = u of D. By totality of the canonical interpreter
for D, then working in Tp we may choose d such that f'(d,¥) # NIL. Pick the
least such d. Then we have:

/(@)

CAR(f'(d,Z)) (by definition of Tp)
= CAR(ug—11) (by definition of the canonical interpreter)
= u (by the Interpreter Eliminability Lemma)

We have shown that T proves that f(Z) = u, as desired. O

Lemma (Interpreter Provability). Let D be an interpreter admissible def-
initional axiom over a theory T. Then Tp is a subtheory of the inductive
completion T” of the extension of T' by D.

Proof. 1t suffices to prove, even without assuming interpreter admissibility
of D, that the conclusion of the Interpreter Eliminability Lemma holds for 7"
in place of Tp:

T'Fugp # NIL — ugp, = CONS(u, NIL).

The proof is an easy induction on u, as in the proof of the Interpreter Elim-
inability Lemma (also mostly omitted). O

5.5 Key Properties of Interpreter Admissibility

Our first goal below is to show that measure admissibility of D implies that its
canonical interpreter is total. The following lemma is key. Its proof shows why
we introduced a flag b in the notion ugp.

Lemma. For every term wu, the following is a theorem of 7'. Suppose that
for every subterm of u of the form f(f) where f € F, if G is the conjunction of
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the terms ruling this subterm in u then:
G — (3d)(f'(d, F) # NIL).

Then:
(3d)(ug,1 # NIL).

Proof. By the lemma on Conservativity of Tp, it suffices to prove theorem-
hood in Tp rather than T'. The proof is by induction on u. If u is not a call of IF
then no subterm of u has any terms ruling it and hence the result is clear from
the Divergence Infectiousness Lemma. Otherwise, suppose u has the following
form: IF u0 then ul else u2. First observe that every subterm of u0 of a
call of a function in F' has no terms ruling it in u, so by the same argument
as in the non-IF case above, we may choose d0 such that u0gg o 7# NIL. It fol-
lows from the Interpreter Monotonicity Lemma that u04 # NIL for all d > d0.
Henceforth restrict to d > d0. Now assume that u0 # NIL; the other case is
similar. By the Interpreter Eliminability Lemma (note that this is where it is
handy to work in Tp rather than in T'), u04,0 = CONS(u0,NIL). It follows that
ug,1 = ulgy. The inductive hypothesis may now be applied to ul in place of u
to obtain d1 for which ulg; 1 7 NIL, and the maximum of d0 and d1 then serves
as the desired value of d, by the Interpreter Monotonicity Lemma. 0O

Theorem (Interpreter Admissibility). Suppose that D is a measure admis-
sible definitional axiom over the theory T'. Then D is interpreter admissible
over T'.

Proof. By definition of measure admissibility, there exists a measure m for
D over T such that the corresponding measure theorem m(D) is a theorem of
T. Suppose for a contradiction that the canonical interpreter for D is not total
in T. By well-foundedness of < (more precisely, inductive completeness of T')
we may choose a conjunct f(Z) = u of D such that

=(3d)(f'(d, ) # NIL) (10)

and yet for all g(¢) defined by D (renaming ¥ if necessary so as to be disjoint
from &),

my(§) < my (&) — (3d)(g'(d, ) # NIL)

It now follows immediately from the measure theorem m(D) and the preceding
lemma that for some d, ug1 # NIL. But the canonical interpreter yields f'(d +
1,&) = ug,1, so f'(d+ 1,%) # NIL, contradicting (10). O

Our development of the theory of histories in the next section requires that
definitional events provide conservative extensions. The following lemma is thus
crucial.

Lemma (Conservativity of Definitions). Suppose that the definitional axiom
D is interpreter admissible over the theory 7. Then the inductive completion
of the extension of 7" by D is a conservative extension of 7.
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Proof. The indicated extension of T is a subtheory of Tp, by the Interpreter
Correctness Lemma. So, we are done by the Conservativity of Tp Lemma. O

Finally, we consider the use of induction schemes by the ACL2 implemen-
tation. One of the reasons that the measure-based notion of admissibility has
worked successfully in Nqthm is that it has been used to justify corresponding
uses of induction. A similar justification applies for ACL2. At the root of the
justification is the measure admissibility of the given definition. In order to
regain that justification in the present setting, we need to show that interpreter
admissibility implies the existence of an appropriate measure. Below, the re-
sulting measure is defined in the inductive completion of the extension of T by
D, rather than in T as is traditional. However, this does not present a problem
for justifying inductions. What ¢s important, however, is that the measure is
defined using only function symbols from D and from PR, so that its definition
still exists in appropriate subtheories containing D.

Definition (Canonical Measure). For D an interpreter admissible defini-
tional axiom over an inductively complete theory T', the canonical measure m
for D is defined as follows in T

mys(Z) = least d such that f'(d, %) # NIL

The following technical definition and proposition will be used only in Ap-
pendix A. Briefly put, it identifies definitions whose recursive calls only involve
functions belonging to a given set S, and furthermore, whose top-level IF tests
only involve functions in §.

Definition (Tight Definability). Let D be a definitional axiom, and let S
be a set of function symbols containing GZ. We say that D is tight with respect
to S if every function symbol of a term u belongs to S provided that u is a
subterm of a right-hand side r of D and wu belongs to either of the following
sets. (1) u is a proper subterm of a call of a member of D. (2) u is a subterm of
(or equal to) a term ¢ such that ¢ or its negation rules some subterm of r that
is a call of a function introduced by D. O

Proposition (Tight Definability of Canonical Measure). Let D be an in-
terpreter admissible definitional axiom over a theory T' (inductively complete),
and let S be a set of function symbols containing GZthat is disjoint from the set
of function symbols introduced by D. Suppose that D is tight with respect to
S. Then the canonical measure for D is first-order definable in T" by a definition
using only function symbols in S. O

Theorem (Canonical Measure Theorem). For D an interpreter admissible
definitional axiom over a theory T with canonical measure m, the measure
theorem holds for D via m in the inductive completion of the extension of T' by
D.

Proof. Let m be the canonical measure for D. It suffices to prove that m is a
measure for D over the theory Tp, by the Interpreter Provability Lemma. Thus,
fix a conjunct f(Z) = u of D and suppose that g € F and g(f) is a subterm of
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u ruled by the set G of terms. We need to prove the following (noting that <
extends <, by Assumption (1) in Section 4).

ToH(\ G) = my (f) < ms (@)
By definition of my, it then suffices to prove that for d > 0:
TpH(\G) A f/(d+1,&) #NIL — ¢'(d, f) # NIL
By definition of f’ (i.e., of the canonical interpreter), this reduces to:
Tpk(/\ G) Auay # NIL — g'(d, ) # NIL (11)

We establish (11) for all terms u, nonnegative integers d, and subterm occur-
rences g'(d, t) of u ruled by a set G of terms, by induction on . If u is not a call
of IF then ug; is the same term as ugyp, so (11) is immediate from the Diver-
gence Infectiousness Lemma (since we are working in Tp). Otherwise write u as
IF up then u; else uy. If the occurrence ¢'(d, t_j is in ug then the argument
is analogous to the case just handled. Otherwise the occurrence is in u; or us.
Assume that it is in u;; the other case is completely analogous. Then G is the
result of adding up to the set G’ of terms ruling the occurrence in u;. By the
inductive hypothesis,

TpH(\ G') A (u1)a # NIL = g'(d, £) # NIL (12)
If we can show
Tptuo ANugy # NIL = ugy = (u1)d,1 (13)

then (12) and (13) together imply (11) and we are done. By definition of ug4 1,
(13) follows from:

TDl_(UO)d,O 75 NIL — CAR((U())(L()) = Ug.
But this is immediate from the Interpreter Eliminability Lemma, since we are
working in Tp. O
6 Histories

We now introduce the notion of an ACL2 history. This notion formalizes the
axiomatic content of an ACL2 session. Histories do not record the proved the-
orems and local function definitions of a session — aspects of a session which
we must formalize in order to reach our ultimate goal of logically characterizing
the result of a user’s interaction with ACL2. We extend our attention to proved
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theorems and other aspects of a session when we consider chronologies in the
next section.

We begin by defining the kinds of objects that we will allow in histories.
Each object corresponds to one of the primitive kinds of axiomatic acts of an
ACL2 session. At this point, we merely describe the syntax of these objects;
we’ll consider semantic issues shortly.

Definition. A labeled formula is a pair consisting of a label and a formula,
where the label has one of the following four forms.

e <defuns, D, F>, where F is the finite set of function symbols defined
by the definitional axiom D.

e <defchoose, ¢, ¥, f>, where f is a function symbol, ¢ is a formula,
and ¢ is a nonempty (and finite) sequence of variables.

o <defaxiom>
e <constraint, s>, where s is a sequence of labeled formulas.

When the meaning is clear, we will feel free to confuse a labeled formula
with its formula, the second component of the (label, formula) pair. We will
also feel free to call the universal closure of its formula an aziom of or axiom
introduced by any sequence in which it appears. We may refer to a formula ¢
as being labeled by defuns, defchoose, defaxiom, or constraint, when there is a
labeled formula in the present context that has the corresponding label and has
formula . O

Notation. We write h, A to denote the result of extending a sequence h by
a new element A; we write h, A, h' to denote the result of extending a sequence
h by the new element A and then by the sequence hA'; and so on. It will be clear
from the context which objects being concatenated are elements and which are
sequences. O

Definition. The (set of) function symbols introduced by a labeled formula
or a sequence of labeled formulas is defined by recursion as follows. A formula
labeled by <defuns, D, F>introduces the set F of function symbols; similarly
<defchoose, ..., f> introduces the singleton set {f}. A formula labeled by
<defaxiom> introduces the empty set of function symbols. A formula labeled by
<constraint, s> introduces the set of function symbols that s introduces. A
sequence of labeled formulas introduces the union of the sets of function symbols
introduced by each labeled formula in the sequence. O

Definition. Let h be a sequence of labeled formulas. A function symbol of
h is a function symbol that is either introduced by h or is a member of PR.
The language of h is the set of all function symbols of A. The theory of h is the
inductive closure of the union of GZ with the universal closures of the formulas
of h and the induction axioms in the language of h. O

Convention. When our meaning is clear, we will feel free to confuse a
sequence of labeled formulas with its theory. We will also feel free to talk about
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one sequence h; of labeled formulas conservatively extending another sequence
ho of labeled formulas, to indicate that the theory of h; conservatively extends
the theory of hg. Of course, the order of elements in the sequences hy and h; is
irrelevant for this notion. O

Definition. The notion of defaziom-free is defined by recursion, as follows.
A labeled formula is defaziom-free if its label is not <defaxiom> and moreover,
if its label is <constraint, s> then s is defaxiom-free. A sequence of labeled
formulas is defaziom-free if each of its members is defaxiom-free. O

The following is obvious (and well-known in the case of theories).

Lemma (Transitivity of Conservative Extension). If hg, h;, and hy are
theories or sequences of labeled formulas such that ks conservatively extends hy
and h; conservatively extends hg, then hs conservatively extends hg. O

Next, we prepare for the introduction of the notion of history by starting
with the syntactic requirements only, ignoring proof obligations.

Definition (Weak history). A weak history is a finite sequence h of labeled
formulas meeting the following requirements.

(1) For each labeled formula in A whose label is not a defaxiom label, the
set of function symbols introduced is non-empty.

(2) Every function symbol occurring in the formula of a labeled formula
A of h must either be introduced by A or be a function symbol of the set of
predecessors of A in h.

(3) The family of all sets of function symbols introduced by labeled formulas
in h is pairwise disjoint. Moreover, each such set of function symbols is also
disjoint from PR; thus, no introduced function symbol can occur in GZ.

(4) For each labeled formula A of h whose label has the form <defchoose,
@, ¥, f>, the formula of A is the Skolem aziom introducing f for formula ¢,
with respect to the sequence § of variables. (See Section 4 for the definition.)
Furthermore, if A is hg, A, h1, then ¢ is a formula in the language of hg.

(5) If h is hg, A, h;, where A has label <constraint, s>, then: s is a
defaxiom-free sequence of labeled formulas; hg,s is a weak history; and the
formula of A is in the language of hg, s.

(6) If h is hg, B, h; where B is a labeled formula with label <defuns, D,
F>, then D is an definitional axiom over the theory of hy. O

Definition. A history is a weak history A that meets the following require-
ments in addition to those above.

(5’) Extending (5): ho, s is a history and A is a theorem of the theory hyg, s.

(6’) Extending (6): D is an interpreter admissible definition of F' over the
theory of hg. O

Remark. We will do a number of proofs by induction on sequences of
labeled formulas. Invariably these recursions are justified by considering first
the number of constraint labels and then the length of the sequence. We leave
this justification implicit in arguments below. O

Proposition. If h is a weak history, then the language of h includes the
language of the theory of h. O
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It is possible for the language of h to be a proper superset of the language
of the theory of h. Consider for example what happens if we add a constrained
function symbol with no axioms.

Implementation note. When an encapsulate event in ACL2 does not
introduce any local functions, it is viewed simply as the sequence of non-local
events contained within. This allows us to satisfy Property (1) above. That
property could probably be safely omitted, but at any rate, ACL2 does not
introduce “constraints” (non-definitional axioms) when there are no local func-
tions in an encapsulate. This choice can reduce the proof obligations arising
from functional instantiation, and can allow induction schemes that would oth-
erwise not be used. We will say more about such details of the implementation
of encapsulate in Appendix A.

We will use the following obvious lemma implicitly.

Lemma. (i) Every initial segment of a weak history is a weak history.

(ii) Every initial segment of a history is a history. O

Lemma (History Monotonicity). Suppose that hg, h1, kg is a history, and
that ho, h} is a history whose theory contains that of hg, h1, such that h; and

| introduce the same function symbols. Then hg, h{, hs is a history.

Proof. An easy induction on hy. The key idea is that the proof obligations
introduced during the processing of hy are still provable if we replace hy by the
larger history h}. In particular, the Proposition on Preservation of Interpreter
Admissibility (Subsection 5.3) justifies property (6’) of a history. O

Next, we introduce an operation on sequences of labeled formulas that is
motivated by the idea of replacing each constrained formula by the sequence of
events justifying it.

Definition. The expansion of a sequence of labeled formulas is defined
by recursion, as follows. The expansion of the empty sequence is the empty
sequence. The expansion of h, A where A is labeled by <constraint,s> is the
expansion of h,s. Finally, the expansion of h, A for any other labeled formula
Ais h', A where h' is the expansion of h. O

Remark (for readers familiar with ACL2). This notion of “expansion”
formalizes the ACL2 :puff command in the case that there are no local events.

Lemma (Expansion). Let h; be the expansion of the sequence hg of la-
beled formulas. Then h; is a sequence of labeled formulas having the following
properties.

(a) hy and hg introduce the same function symbols.

(b) The theory of hg is a subset of the theory of h;, and hence for all
sequences h and h' of labeled formulas, the theory of h, hy, h' is a subset of the
theory of h,hi,h'.

(c) For every history h, if h, ho is a history, then h, h; is a history.

(d) If hg is defaxiom-free then h; is defaxiom-free.

(e) hy contains no constraint labels.

Proof. An easy induction. The History Monotonicity Lemma, (a), and (b)
are used for the proof of (c). O
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Our next goal is to show that histories provide conservative extensions. In
fact, we prove a slightly stronger result that is useful later. The following lemma
will be used in its proof.

Lemma (Conservativity of Defchoose). Suppose that h is a sequence of
labeled formulas. Suppose also that A is a formula with label <defchoose, ¢,
i, f>, where f is not in the language of h and ¢ is a formula in the language
of h. Then h, A conservatively extends h.

Proof Immediate from the conservativity result in Appendix B. O

We are now ready to prove a slight strengthening of a special case of the
theorem concluding this section. Here, we only consider extensions obtained by
adding events to the end of a given history.

Lemma (History Conservativity). If ho, hy is a history and h; is defaxiom-
free, then hg, h; conservatively extends hg. More generally, suppose also that
hy is a sequence of labeled formulas that includes hy as a subsequence, where
no function symbol introduced by hy occurs in the theory of hj. Then hy, by
conservatively extends hy.

Proof. By parts (a), (c), and (d) of the Expansion Lemma, the hypotheses
continue to hold if we replace h; by its expansion, which we temporarily call H;.
By part (b) of the Expansion Lemma, the theory of h{, H; includes the theory
of h{, hy. Hence it suffices to prove the theorem for H; in place of hy, which by
parts (d) and (e) of the Expansion Lemma consists entirely of formulas labeled
by defun and defchoose. Without loss of generality, then, we assume that every
formula of h; is labeled by defun or defchoose.

We proceed by induction on the length of h;. The case that hy is empty is
clear. Otherwise let us write hy as A, h}. We can apply the inductive hypothesis
using: hg, A for hg; hy, A for h{; and h} for h;. Then, we may conclude that

0, A, by (which is h{), h1) conservatively extends h{, A. Thus it remains only
to show that hy, A conservatively extends hy, since then we are done by the
transitivity of conservative extension. But since we have assumed that every
formula of h; is labeled by defun or defchoose, this is immediate from the
Conservativity of Definitions Lemma (Subsection 5.5) and the Conservativity of
Defchoose Lemma (above). For the defun case we are using the hypothesis that
hy extends hg, together with the fact that the proof obligation for interpreter
admissibility of A is provable in hy (because hg, by is a history). O

Corollary (History Consistency). Every defaxiom-free history is consistent.

Proof. This is immediate from the History Conservativity Lemma, where
ho is the empty history and h; is the given defaxiom-free history, since GZ has
been assumed to be consistent (see Section 4). O

Definition. Fix a weak history h. We define the set of ancestors of a
function symbol of h or a labeled formula of A as follows. Every function symbol
in PR has the empty set of ancestors. Now fix a history and let A be a labeled
formula in that history that introduces a function symbol f (perhaps among
others). The set of ancestors of f (with respect to this history) is defined
to be the set of ancestors of A, which is defined to be the union of the set
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of function symbols introduced by A with the set of ancestors of all function
symbols occurring in the formula of A that are not introduced by A.

The set of proper ancestors of a labeled formula, or of a function symbol in-
troduced by the labeled formula, is defined to be the result of removing function
symbols introduced by the labeled formula from the set of ancestors. O

Note that the recursion above is justifiable by part (2) of the definition of
weak history.

Definition. Suppose h is a sequence of labeled formulas, and suppose h' is
a subsequence of h. We say that h' is closed under ancestors (with respect to h)
provided the following two conditions hold.

(1) Every ancestor in h of every function symbol occurring in a formula of
k' is a function symbol of A'.

(2) Every element of h labeled by defaxiom is a member of A'. O

The following proposition follows easily from the definition above and the
definition of ancestors.

Proposition. If &’ is closed under ancestors with respect to a weak history
h, then every function symbol occurring in a formula of A’ is a function symbol
of h', i.e., is in PR or is introduced by A'. O

The following simple lemma is a key ingredient of the argument required for
the History Conservativity Theorem that follows.

Lemma (Restriction). Suppose that hg, s, h; is a sequence of labeled for-
mulas such that hg, s is a history, where s is defaxiom-free, and suppose that
the function symbols introduced by s do not occur in the formulas of hA;. Then
ho, s, h1 conservatively extends hg, h1.

Proof. Since hg, s is a history and s is defaxiom-free, then by the History
Conservativity Lemma, h{, s conservatively extends hy for every sequence h{, of
labeled formulas that extends hg such that no function symbol introduced by s
occurs in the theory of hy. In particular, hg, h1, s conservatively extends hg, by,
and this is just another way of stating the conclusion above. O

Theorem (History Conservativity). Suppose h is a history and A’ is a sub-
sequence of h that is closed under ancestors. Then h is a conservative extension
of h'.

Proof: by induction on the number of labeled formulas in h that are not in
h'. If that number is 0, then we are done. Otherwise, let A be the first labeled
formula in A that is not in A'. Let A" be the result of inserting A into A’ so
that the result is a subsequence of h; thus we may write h'" as hg, A4, h; where
h' is hg, h1, and hg, A is an initial subsequence of h. Clearly A" is closed under
ancestors, since h' is. By the inductive hypothesis, h is a conservative extension
of A”. Since the relation of conservative extension is transitive, it suffices to
show that A’ is conservative over h', i.e., that hg, A, h; is conservative over
ho, h1. Since h' is closed under ancestors, A is not labeled by a defaxiom label.
Hence we are done by the Restriction Lemma, provided we can show that the
function symbols introduced by A do not occur in the formulas of h;. But this
is clear from the Proposition above, since hg, h; is closed under ancestors. O
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7 Chronologies and Formal Results

As suggested in Section 1, we wish to formulate a well-behaved notion of chronol-
ogy that formalizes the result of a user’s interaction with ACL2. Chronologies
will be defined to consist of axiomatic acts — which is the part forming a history
as defined in the preceding section — and formulas allegedly first-order deriv-
able from those axioms. Thus, we would like a chronology to be a sequence
of labeled and unlabeled formulas such that its restriction to labeled formulas
is a history, and such that every unlabeled formula is a theorem of the la-
beled formulas. However, users interact with ACL2 in more complex ways than
simply introducing axioms (including definitions) and proving theorems: they
may also use the structuring mechanisms provided by local, encapsulate, and
include-book. In this section we formalize user interaction with ACL2 and key
properties of it. The next (final) section connects this formalization with the
implementation.

Definitions. Let s be a finite sequence of labeled and unlabeled formulas.

(i) H(s) is the subsequence of s consisting of labeled formulas. Intuitively,
we think of H(s) as the history part of s, i.e., the axiomatic acts in s.

(ii) THM (s) is the set of universal closures of unlabeled formulas of s. In-
tuitively, we think of THM (s) as the proved theorems of s.

(iii) s is a weak chronology if H(s) is a weak history and for every initial
subsequence of s of the form sy, A where A is an unlabeled formula, every
function symbol occurring in A is a function symbol of H(sg). O

Definition. The class of chronologies is the least class of sequences that
contains the empty sequence and is closed under the four operations given below.

e [Labeled extension]
If s is a chronology and A is a labeled formula such that H(s),A is a
history, then s, A is a chronology.

e [Unlabeled extension]
If s is a chronology and ¢ is a formula in the language of H(s) that is
provable from the union of the theory of H(s) with THM/(s), then s,p is
a chronology.

e [Delete]
If s is a chronology and s’ is a weak chronology, where s’ is a subsequence
of s that contains all labeled formulas of s with label <defaxiom>, then s’
is a chronology.

¢ [Include]
Suppose that sy and s; are chronologies, that so is the subsequence of s;
obtained by deleting members of s; that belong to sg, and that sg, s is a
weak chronology. Then sy, s3 is a chronology.
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O

Proposition. Every history is a chronology.

Proof: By an easy induction on length, using the [Labeled extension] rule.
O

Implementation note. ACL2 lays down certain “command markers” that
indicate the initial segments of a given chronology that it will accept as chronolo-
gies. However, this restriction is not necessary for correctness, so we do not
model it here.

The following three lemmas are all that remain before we are ready to prove
the main results about chronologies.

Lemma (History Sufficiency). Suppose that h is a weak history. Assume
that for every initial segment h', A of h, there exists A" such that h” A is a
history and the set of elements of A" is a subset of the set of elements of A'.
Then h is a history.

Proof: by induction on h. If h is empty then this is trivial. Otherwise, write
h as h', A. By the inductive hypothesis, A’ is a history. And, we are given that
h is a weak history. Using the assumption of the theorem we may choose b’
such that h”, A is a history, where the set of elements of A" is a subset of the
set of elements of h'. Now clauses (5’) and (6’) from the definition of history
follow easily, using the inductive hypothesis in order to guarantee satisfaction
of the requirement of (5’) that h', s be a history. O

Lemma (Combining). Suppose that hy and h; are histories, that hs is the
subsequence of h; obtained by removing all elements of hg from h;, and that
ho, h2 is a weak history. Then hyg, h2 is a history.

Proof. This is an an immediate consequence of the History Sufficiency
Lemma. O

Lemma (Ancestors Preserve History). Suppose h is a history and A’ is a
subsequence of h that is a weak history and contains all elements of h labeled
by defaxiom. Then A’ is a history.

Proof. An easy argument, omitted here, uses (2) from the definition of weak
history to show that A’ is closed under ancestors with respect to h. Then the
theorem follows by an easy induction on A/, using the History Conservativity
Theorem to guarantee that the proof obligations are met. Notice that it is
critical here that we are using interpreter admissibility rather than measure
admissibility, in order to guarantee that the proof obligations for definitional
axioms are expressed in the sub-history. O

Main Lemma for Chronologies. Let s be a chronology. Then (1) H(s) is
a history, (2) s is a weak chronology, and (3) THM (s) is a subset of the theory
of H(s).

Proof: by induction on the construction of the class of chronologies. The
Ancestors Preserve History Lemma guarantees that the [Delete] rule preserves
(1), while the History Conservativity Theorem guarantees that it preserves (3).
The only other step requiring a bit of thought is the justification that H (s, s2)
is a history in the application of the [Include] rule. But it is a weak history
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because sg, s2 is assumed to be a weak chronology, so this follows from the
Combining Lemma. O

The following theorem is a consequence of the preceding lemma together
with the History Conservativity Theorem of the preceding section. It captures
what we really want to claim about chronologies.

Theorem (Correctness of Chronologies). Let s be a chronology. Then
every theorem of s is a first-order consequence of the history of s. Furthermore,
suppose that ¢ is proved in s, and suppose that h is any history contained in s
that contains every labeled formula of s that is labeled by defaxiom or mentions
a function symbol occurring in h. Then ¢ is provable in A. O

Corollary. Let s be a chronology such that H(s) is defaxiom-free. Then the
set of (universal closures of) formulas (labeled and unlabeled) of s is consistent.

Proof. By the Correctness of Chronologies Theorem, it suffices to show that
H(s) is consistent. This follows from the fact that H(s) is a history (part (1)
of the Main Lemma for Chronologies) together with the History Consistency
Corollary. O

8 Implementation Correctness

In this section we give a high-level argument that our notion of “chronology”
adequately models the informal notion of “ACL2 session,” i.e., sequence of ACL2
events. Our goal is certainly not to prove correctness of routines in the ACL2
theorem prover’s code; they are assumed to implement the logic, at the level
of this paper. Rather, our goal in this section is to show that each such weak
chronology is in fact a chronology. For then, the Correctness of Chronologies
Theorem tells us that every alleged theorem is in fact a first-order consequence
of the relevant axioms of the session.

To that end, we consider each event type and show that it preserves chronolo-
gies, that is, successful execution of such an event in a given chronology leads
to a new chronology. Many ACL2 events have nothing to do with extending
the logic, while many of the rest are essentially abbreviations for others; but we
omit consideration of both such types of events from this paper. We turn our
attention now to those that are left.

Defaxiom events preserve chronologies because of the [Labeled extension]
rule, noting that if we are extending a chronology s, then H(s) is a history by
the Main Lemma for Chronologies.

The argument above for defaxiom also provides justification for definition
events, including defun and mutual-recursion as well as defchoose. The [La-
beled extension] rule justifies the claim that these events preserve chronologies,
with the following four caveats. First, we also need the Correctness of Chronolo-
gies Theorem, which guarantees that it’s sufficient to prove the necessary proof
obligations using THM (s) (as does the ACL2 system) in addition to H(s). Sec-
ond, we need the Interpreter Admissibility Theorem of Subsection 5.5, in order
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to conclude that measure admissibility (which is checked by the implementa-
tion) implies interpreter admissibility (as required by the definitions of history
and chronology). Third, we need the Correctness of Functional Instantiation
Theorem (in Appendix A), which allows us to use functional instantiation in
the proof (as does the ACL2 system). And finally, we need the Canonical Mea-
sure Theorem of Subsection 5.5, together with the argument there, to justify
ACL2’s use of induction schemes in proofs.

That defthm events preserve chronologies follows similarly from the [Unla-
beled extension] rule, again using the Correctness of Chronologies Theorem, the
Correctness of Functional Instantiation Theorem, and the Canonical Measure
Theorem.

Since ACL2 does not permit local defaxiom events, include-book preserve
chronologies by the [Delete] rule (to delete local events) followed by the [Include]
rule.

It remains to see that encapsulate events preserve chronologies. Sup-
pose that s; is a chronology corresponding to an ACL2 session from which an
encapsulate event is executed successfully, where s5 is the sequence of events
(including local events) introduced inside the encapsulate form. Thus we
may assume (inductively) that s1,s2 is a chronology. Let ¢ be the conjunc-
tion of the events to be exported, i.e., those that are not marked local. Then
H (s1, s2)F¢, by the Correctness of Chronologies Theorem. By the Main Lemma
for Chronologies we know that H (s, s2) is a history, i.e., H(s1), H(s2) is a his-
tory. Let A be the labeled formula with label <constraint, s»> and formula
@. Thus H(s1), A is a history, and hence s1, 4 is a chronology by the [Labeled
extension] rule. The implementation checks the requirement for a history that
s2 be defaxiom-free. In fact, ACL2 Version 2.0 allowed encapsulate forms with
embedded defaxiom forms, and this “feature” led to a soundness bug that has
been fixed. The bug was uncovered in the course of writing this paper.

32



APPENDICES

A Correctness of Functional Instantiation

In this appendix we prove the correctness of functional instantiation, in three
stages. After introducing basic notions we prove a simplified version. This ver-
sion is then generalized to a larger class of functional substitutions, and slightly
strengthened in an obvious way to better match the ACL2 implementation.
That second version is then strengthened to a version that accounts for an op-
timization made by the ACL2 implementation in its handling of encapsulate
events.
The Nqthm version of functional instantiation is proved correct in [2].

A.1 Functional Substitutions

Definition. Let h be a history. A pseudo-function of h is either a function
symbol of h, or an expression of the form (LAMBDA vars term) where vars
is a list of distinct variables and every function symbol occurring in term is
a function symbol of h. In the latter case we define the arity of the pseudo-
function to be the length of vars, and variables occurring in term that do not
belong to vars are called free variables of the pseudo-function. 0O

Definition. A functional substitution is a finite, arity-preserving function
fs from function symbols to pseudo-functions. If in addition the range of fs
consists entirely of function symbols, we call it a simple functional substitution.
Otherwise, the set of free variables of fs is the union of the sets of free variables
of the pseudo-functions in the range of fs.

If h is a (possibly weak) history and fs is a functional substitution that maps
function symbols of A to pseudo-functions of h, then we may say that fs is a
functional substitution with respect to h. O

Recall that PR is the set of function symbols occurring in GZ. The following
proposition follows immediately from the definition above together with part (3)
of the definition of weak history (Section 6).

Proposition. The domain of a functional substitution fs is disjoint from
PR. O

Notation. z\ fs is the functional instance of the term or formula z by the
functional substitution fs. We may call this a simple functional instance when
fs is simple. We omit details of this definition, which may be carried out by
recursion in a straightforward manner as in [2]. O

A.2 Correctness for Simple Functional Substitutions

Our first lemma makes rigorous the following key idea. If a theorem is proved
that involves function symbols not mentioned in the axioms from which it is
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proved, then the meanings of those functions symbols are irrelevant to its prov-
ability. Hence, it remains a theorem when those function symbols are replaced.

Lemma. Suppose that ¢ is a theorem of a given first-order theory 7" and
that fs is a simple functional substitution whose domain is disjoint from the set
of function symbols of T'. Then ¢\ fs is a theorem of T'.

Proof. A proof-theoretic argument can presumably be made, since A\ fs
= A for every axiom A of T, and the rules of inference remain valid when
applying fs to each of their applications. Here, however, we give a model-
theoretic argument. First, note that it suffices to assume that the domain
and range of fs are disjoint, since we may write fs as the composition of two
appropriate functional substitutions with that property. (Briefly: First map the
symbols in the domain to distinct symbols occurring nowhere in sight, and then
map those to the final values.) Now given any model of T' (which also interprets
the symbols in the range of fs, but not in the domain of fs) that satisfies the
negation of ¢\ fs, we may expand this to a model of the negation of ¥ by
interpreting every function symbol in the domain of fs to be the interpretation
of the corresponding function symbol in the range of fs. O

Theorem. Suppose that fs is a simple functional substitution with respect
to a history h and that ¢ is a theorem of h. Suppose further that A’ is a
subsequence of h that is closed under ancestors, such that ¢ is a formula of the
language of h'. Finally, suppose that for every labeled formula A of A', A\ fs is
a theorem of h. Then ¢\ fs is a theorem of h.

Proof. Since ¢ is (by assumption) a theorem of A, it is also a theorem of
k', by the History Conservativity Theorem. Fix a proof of ¢ from the theory
of A" (which includes induction axioms). Thus, letting A be the conjunction of
the axioms and induction axioms of A’ used in the proof, we have that (4 — @)
is a first-order theorem of GZ. By the immediately preceding proposition and
lemma, it follows that (A — ¢)\fs is a first-order theorem of GZ, i.e., that
(A\fs = ¢\fs) is a theorem of GZ, hence of h. Hence ¢\ fs is a theorem of
h, because each conjunct of A\ fs is a theorem of h by hypothesis — except, a
separate argument needs to be made for induction axioms. That is, we claim
that the simple functional instance of an induction axiom of A' is an induction
axiom of A. This is clear from the form of induction axioms, since every simple
functional instance by fs of such a formula is of that form as well. O

A.3 Correctness for Functional Substitutions

In the ACL2 implementation of functional instantiation, a functional substitu-
tions is permitted to map a function symbol f to a pseudo-function (LAMBDA
vars term), where the length of vars is the arity of f. Moreover, this pseudo-
function may include free variables. So, we need to remove the restriction to
simple functional substitutions from the theorem above. The theorem below
also restricts the proof obligations in an obvious way, to functional instances
of theorems that contain at least one function symbol bound in the functional
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substitution.

But first we state a simple lemma that is used in the proof.

Lemma. let 77 be an inductively complete theory and let C' be a set of
zero-ary function symbols (i.e., constants) that is disjoint from the language of
T:. Let T3 be the inductive completion of T; with respect to the union of C
with the language of T7. Then for any formula ¢; in the language of 77 and
formula @9 resulting from substituting constants from C' for some free variables
of @1, if o is a theorem of T5 then ¢ is a theorem of 77.

Proof. Suppose that ¢; is not a theorem of T7. Thus by the Completeness
Theorem, there is a model of T; that satisfies the negation of ¢; for some
assignment s of values to its variables. An expansion of that model to the
language of T may be obtained by interpreting members of C' occurring in @2
by the values of the variables under s that they replace, and interpreting the
rest of C' arbitrarily. That expanded model with assignment s satisfies T and
the negation of ¢o. Hence, @5 is not a theorem of Tp. O

The following theorem justifies ACL2’s generation of proof obligations for
uses of functional instantiation, other than the optimizations discussed in the
next subsection. The subsequence A’ in the theorem below is taken in the
implementation to include all ancestors of all function symbols occurring in ¢
or any defaxiom; see the ACL2 documentation [8] for “CONSTRAINT”.

Theorem (Correctness of Functional Instantiation). Suppose that fs is a
functional substitution with respect to a history h and that ¢ is a theorem of
h. Suppose further that A’ is a subsequence of h that is closed under ancestors,
such that ¢ is a formula of the language of A'. Finally, suppose that for every
labeled formula A of A’ such that some function symbol in the domain of fs
occurs in A, A\ fs is a theorem of h and no free variable of fs occurs in A. Then
©\ fs is a theorem of h.

Proof. First, observe that if no function symbol in the domain of fs occurs
in a formula A, then A\fs is just A. Therefore, we can remove the restriction
to formulas A for which some function symbol in the domain of fs occurs in A.

Next, we reduce this theorem to the case that there are no free variables of
fs. For if there are, first extend h to a new history hg that introduces, without
extending the theory, a distinct zero-ary function symbol for each variable free
in fs. Technically, hg is the extension of A by the formula T (true) with label
<constraint, s>, where (say) s defines each new zero-ary function to have
value 0. Now consider the functional substitution fsy obtained from fs by
replacing each variable free in fs by the corresponding new constant (i.e., call of
a new zero-ary function). Note that the hypotheses of the theorem are satisfied
with hg in place of h, with fsg in place of fs, and with A’ and ¢ unchanged:
for if A\ fs is a theorem of h, then it is also a theorem of kg and hence so is its
instance A\ fsg. (Why is A\ fso an instance of A\ fs? This is left to the reader,
but we note that here is where the hypothesis is used about free variables of fs.)
Application of the theorem in this case would allow us to conclude that ¢\ fso
is a theorem of hg. The preceding lemma then allows us to conclude that ¢\ fs
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is a theorem of h.

So, let us assume that fs has no free variables. For each pair (f, (LAMBDA
vars term)) in fs, extend h by a definition g(vars) = term, where g is a new
function symbol. Let us call the resulting history hi, and let us write fs; for
the functional substitution obtained by replacing each expression (LAMBDA vars
term) as above by the corresponding new function symbol g. We claim that
the hypotheses of the theorem hold for h; and fs; in place of h and fs (and
with A’ and ¢ unchanged); and for this claim, we only need show that for A as
before, A\ fs; is a theorem of hy, given that A\ fs is a theorem of h. But this
is clear since A\ fs; and A\ fs are logically equivalent in h;. The theorem in
the preceding subsection now applies: ¢\ fs; is a theorem of hy. But ¢\ fs; is
logically equivalent in h; to ¢\ fs, so ¢\ fs is a theorem of h;. By the History
Conservativity Theorem, ¢\ fs is a theorem of h. O

A.4 Correctness in the Presence of Optimizations

The following documentation for topic “CONSTRAINT” from [8] discusses certain
optimizations performed by the ACL2 implementation when generating proof
obligations for a use of functional instantiation. Below, we argue the correctness
of these optimizations.

First, we focus only on non-trivial encapsulations [those that
have non-empty signatures] that neither contain nor are contained
in non-trivial encapsulations. (Nested non-trivial encapsulations are
not rearranged at all: do not put anything in such a nest unless you
mean for it to become part of the constraints generated.) Second,
in what follows we only consider the non-local events of such an
encapsulate, assuming that they satisfy the restriction of using no
locally defined function symbols other than the signature functions.
Given such an encapsulate event, move, to just in front of it and
in the same order, all definitions and theorems for which none of
the signature functions is ancestral. Now collect up all formulas
(theorems) introduced in the encapsulate other than definitional
axioms. Add to this set any of those definitional equations that
is either subversive [non-tight, in the terminology of this paper] or
defines a function used in a formula in the set. The conjunction
of the resulting set of formulas is called the “constraint” and the
set of all the signature functions of the encapsulate together with
all function symbols defined in the encapsulate and mentioned in
the constraint is called the “constrained functions.” Assign the con-
straint to each of the constrained functions. Move, to just after the
encapsulate, the definitions of all function symbols defined in the
encapsulate that have been omitted from the constraint.
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We now demonstrate correctness of these optimizations by defining two cor-
responding transformations and showing that they preserve chronologies. That
is, each transformation maps any suitable chronology to a sequence of labeled
and unlabeled formulas, and our task will be to prove that the result is a chronol-
ogy. It should then be clear that we have justified the optimizations described
in the documentation quoted above.

Each of our two transformation rules is intended to transform chronologies
constructed by successfully executing an encapsulate event. The rules are
parameterized as follows.

e Let s1,s2 be a chronology.

e Let A be first-order derivable from s;, s5 together with associated induc-
tion schemes. Label A by <constraint, H(sz2)>, and abuse notation by
calling this labeled formula “A” as well. Note that by Part (3) of the Main
Lemma for Chronologies (Section 7), s1, A is a history.

o Let B € ss.
e Let s3 be the result of deleting B from s,.

e Let A’ be the result of replacing the formula of A with any first-order
consequence of A in the language of sy, s3, and replacing the label of A
by <constraint, H(s3)>.

Given the parameters just defined, the rules are as follows. The notion of
tight is introduced in Section 5 in the definition there of “Tight Definability.”
The proposition following that definition allows us to claim for rule [Back] below
that the canonical measure for B is definable over H(s7).

e [Front] Suppose that every ancestor of B is introduced either in B (hence
B is labeled) or in H(s1). Then the new sequence is s1, B, A'.

e [Back] Suppose that B is the last labeled formula in s, that introduces
no ancestor of the labeled formula A’. Moreover, suppose B is labeled
by defun or defchoose and that if B is a recursive definition, then B is
tight with respect to the union of PR with the set of function symbols
introduced in H(s1). Then the new sequence is s1, A', B.

Proposition. The [Front] rule preserves chronologies.

Proof. Fix the parameters defined above, and suppose that every ancestor
of B is introduced either in B or in H(sy).

First suppose that B is a labeled formula. By the Ancestors Preserve History
Lemma (Section 7), the sequence H(s;), B is a history. It then follows by the
History Sufficiency Lemma (Section 7) that the sequence H(s1), B, H(s3) is a
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history. By definition of history, it follows that H(s1), B, A’ is a history. There-
fore s1,B, A’ is a chronology, by two applications of the [Labeled extension]
rule.

Now suppose that B is an unlabeled formula. By the Correctness of Chrono-
logies Theorem, B is a theorem of H(s;), H(s2). By the History Conservativity
Theorem (Section 6), B is a theorem of H(s1). Thus, s1, B is a chronology by
the [Unlabeled extension] rule. Since H(s1), A is a history by the Main Lemma
for Chronologies, and since s3 is equal to sz, then clearly H(s1), A’ is a history,
and hence s;, B, A" is a chronology by the [Labeled extension] rule. O

Proposition. The [Back] rule preserves chronologies.

Proof. Fix the parameters defined above, and suppose that B is the last
labeled formula in sy that introduces no ancestor of the labeled formula A’. Since
s1, 82 is a chronology, then H(s1), H(s2) is a history by the Main Lemma for
Chronologies. As mentioned above, if B is a recursive definition then tightness
allows us to assert that its canonical measure is definable over H (s;); and hence
by History Conservativity Lemma (Section 6), the measure theorem for B is
provable in H(s;). Thus it suffices to prove that s;, A’ is a chronology, since
then by the [Labeled extension] rule, si, A’, B is a chronology. (Notice that
we could not guarantee that [Labeled extension] applies if B were labeled by
constraint.)

We claim that H(s3) is closed under ancestors. It suffices to check that
labeled formulas B’ occurring after B in H(s3) do not have as an ancestor any
function symbol introduced by B. By choice of B, we know that any later B of
H (s3) introduces an ancestor of A’; thus by definition of ancestor, all functions
introduced by B’ are ancestors of A’. Hence no function introduced by B can
be an ancestor of B’, since otherwise that function would be an ancestor of A’.
It follows that H(s3) is closed under ancestors.

As already noted above, H(s1), H(s2) is a history; hence by the Ancestors
Preserve History Lemma (Section 7), H(s1), H(s3) is a history. Now (the for-
mula of) A’ is a theorem of the history H(sy), H(s2) because A is such a theorem
and A’ is a first-order consequence of A, by hypothesis. The formula of A’ is
in the language of H(s1), H(s3), since no function symbol of the formula of
A’ is introduced by B. Hence the formula of A’ is a theorem of the history
H(sy),H(s3) by the History Conservativity Lemma. It follows that H(s1), A’
is a history, by definition of history. Therefore s1, A’ is a chronology, by the
[Labeled extension] rule, and we have met the final proof obligation. O

B Conservativity of Skolemization
We wish to check the conservativity of Skolemization in our context, where each
time a function symbol is introduced, so are all the induction axioms about the

symbol (and the existing function symbols). If we were dealing with a logic
that precluded non-standard numbers, we could manage more simply, because
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there would be no need to worry about the induction axioms introduced when
we add a new function symbol (a Skolem function). That is: every sort of
induction scheme is automatically true when the natural numbers of the model
are standard! But we do not want to leave the realm of first-order logic if we
can avoid it; for example, that would eliminate the potential for integrating
some non-standard analysis into the system?, and it would require us to re-
think our proof theory. Fortunately, we’ll see that we can assume that there is
a definable enumeration of the universe. This enumeration permits the explicit
definition of Skolem functions, by choosing the least witnesses in the sense of
this enumeration. The remainder of this Appendix works out this argument.

We thank Jim Schmerl for suggesting the key ideas that allow us to carry
out the argument allowing for an enumeration of the model.

The definition of Skolem aziom is given in Subsection 4.

Notation. Let F' be a set of function and relation symbols that includes the
unary relation symbol Nat. We write IND(Nat, F') for the theory containing all
induction axioms in the language of F'. O

The following simple lemma is surely well known.

Lemma. Suppose that 77 is a subtheory of the first-order theory 7> such
that for every model M of Ti, every sentence A true in M, and every finite
subset Ty of T5, there is a model of T, satisfying A. Then T5 is a conservative
extension of T7.

Proof. Suppose for a contradiction that T3 is not a conservative extension
of T1; say, ¢ is in the language of 771 and is a theorem of T3, but ¢ is not a
theorem of 77. By the Completeness Theorem for first-order logic, let M be a
model of T} that satisfies ~¢. By hypothesis and the Compactness Theorem of
first-order logic, we may choose of model of T5 that satisfies . Thus T has
a model not satisfying ¢, so ¢ is not a theorem of T3, which contradicts the
choice of . O

The next lemma is not at all obvious. If we were not concerned about
induction axioms, it would be trivial to conservatively extend a theory by adding
a bijection between the universe and its natural numbers, by the downward
Lowenheim-Skolem theorem of first-order logic. Something fancier is needed,
however, if we want to preserve induction.

Lemma. Suppose that 7' is a first-order theory in the finite language F
containing PR, which contains GZ as well as IND(Nat, F'). Then it is conser-
vative to extend T' to a theory T' by adding an axiom introducing a new unary
function symbol g, asserting that g maps the universe 1-1 onto Nat, together
with IND(Nat, F'U {g}).

Proof sketch. We sketch two arguments, both of which are quite technical
and model-theoretic, and both of which were suggested by Jim Schmerl. Let
M be a model of T. In each case we show how to expand M (at least for M

4The addition of non-standard analysis to ACL2 is a major part of the doctoral research
currently being undertaken by Ruben Gamboa.
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countable, which is enough by the downward Lowenheim-Skolem theorem) to a
model of the desired assertion on g together with IND(Nat, F'U {g}) (or, in the
second argument, an arbitrary finite subset of this set). Thus, the preceding
lemma yields the desired conservativity claim, by applying it to T and T". The
first argument requires background in models of arithmetic, while the second
depends on a much deeper result than any needed for the first argument.

The more standard and direct argument uses a variant of Cohen’s forcing
technique from set theory, adapted to models of arithmetic. Thus, fix a count-
able model M of T'. The partial order here consists of 1-1 “finite” (in the sense
of M) functions from an initial segment of the interpretation of Nat in M, that
are coded in M. A standard argument shows that a function through this par-
tial order, generic with respect to all dense sets definable with parameters in
M, gives the desired expansion of M. Details are omitted here. The main ideas
(given here only briefly, for those familiar with forcing) are to prove first the
usual truth lemma, and then to show that if p forces that ¢(x) defines an in-
ductive subset of Nat, and if n is in Nat, then the set of conditions that force all
predecessors of n to satisfy ¢ is dense below p. Hence if p is in the generic set,
then a member of that dense set is also in the generic set, and hence ¢ holds
for all predecessors of n in the generic model. Since n is arbitrary, then ¢ holds
for all elements of Nat in the generic model, and the induction scheme has been
verified.

The second argument uses a theorem of Jim Schmerl [17]. That theorem tells
us that given any sentence ¢ in the language of Peano Arithmetic extended by
F, any model M of IND(Nat, F') that satisfies ¢, and any finite subset 7" of T,
there is a model M; of ¢ satisfying 7" that is definable inside M and is contained
in the interpretation in M of Nat, such that the interpretation in M; of Nat is
isomorphic, via an isomorphism j definable in M, to the interpretation in M of
Nat. (If necessary, it is certainly no problem to make a definitional extension of
T before carrying out this argument, allowing the coding up finite sequences in
the manner required by Schmerl’s theorem.) Because M; is definable in M, it
follows follows that M; is also a model of IND(Nat, F'U{g}), for any function g
on M; definable in M. Now since M; is contained in the interpretation of Nat in
M, there exists a 1-1 enumeration of the elements of M; that is definable in M.
By composing it appropriately with the aforementioned definable isomorphism
7, we have a 1-1 function g from M; onto the interpretation of Nat in M;, which
is definable in M and thus expands M; to a model of IND(Nat, F' U {g}), as
argued above. O

The following theorem implies the Conservativity of Defchoose Lemma from
Section 6, whose proof had been deferred.

Theorem. Suppose that T is a first-order theory in the language F', and that
T contains the relativization of Peano Arithmetic to Nat as well as IND(Nat, F').
Then it is conservative to extend T' by adding any Skolem axiom introducing a
new function symbol f together with IND(Nat, F U {f}).

Proof. The preceding lemma, allows us to extend the given theory conserva-

40



tively to include a function g mapping the universe 1-1 onto N, together with
IND(Nat, F U {g}). Thus, by transitivity of conservativity it suffices to extend
this new theory in the manner indicated. But this is easy because in the indi-
cated theory with g, we may explicitly define the desired Skolem function f. We
do so in simply by picking the least witness, i.e., among all appropriate values
g(n) the one chosen is that for which n is least (if any witness exists; else, 0,

say). O
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