THE (5SS PACKAGE
by '

¥ ~ J Strother NMoore

Department. of Computational Logie.

A '
}/
i

. s

A Packasge of POP-2 Programs Implementing
Generalized Structure Sharing for Besolution

Theoren Proving Programs.

DEPARTMENT OF
COMPUTATIONAL LOGIC

M e Tl S | ’
UNIVERSITY OF EDINBURGH

SCHOOL Of
ARTIFICIAL INTELLIGENCE

FREFACE:

.This paper describes a package of POP-2 programs which allows
the user to take full advantage of recent advances in data: representation
for resolution theorem provers. The package dﬁes not include high-level
fuhctions that perform factoring, resolution itself, etc. This is
due to the fact that the package is meant to be incorporated into
efficiently written programs. Fackaging up high-level functions for

general use inevitably slows down the user who has well—defined, task~

. specific operations to perform.

INTRODUCTICN :

| This document consists of six Séctions and an indefinite number of
Appehdices. Despite a rather general desqription of thé Boyer~Hoore
clause représentaﬁion scheme impleménted in this package to be found

at the beginning of the first section, it is felt the reader should
also acquaint himself with the Departmeﬁt of Computétional Logic's
memo: MSharing Structurew= in Resolution Theorem Frovers.t

The reader is also encouraged to study the PCP-2 code of the functicns

herein described. Not only will a more thorough understanding of the
procedures ve acquired, but it is likely the individuwal user will find

ways to recode it to his own benefit.

SECTION I «~ CLAUSE REPRESENTATION

(1) Geperal

The most vasic operation in a resolution thecorem prover is the
formation of a clause from one or mere parent clauses. This operatioe
ueuelly takes the form: delete a literal from'each parent, concatenate
the resulting strings of literals, and appy some substitution to the
result. This is such a.trivial'procedure thet one can actually store
a clause as a description of how to build it, rather than actually
applying the procedure. This ie & very economical way to store clauses
since the descriﬁtion of how to bulld it is quite inderendent of how
-long the clause would be if built. The process of building a clause

given a description of its constituents will be called "reification.n

ks noted in the memo "Sharing Structuras in Resclution Theorem Provers",

Such a description automatically standardizes variables apart. FPFurthermore,
it means that after input, no constructing of new terms or literals is per—
formed; Instead, the original terms and liﬁerals are understodﬁ to be
instantiated in the apprepriateeways. Substitutione play a major role
in this representation. 7

Substitution components must s;ecifj not only the variable bound and
the term to which it is bound, but the branch of the derivation the
variable has come deown, and the branch along which the variables in the
term have become instantiated.

Whenever one encounters a variable (with some associated branch), one
must ask whether it is bound along that branch. Answering this may require

a search up the branch to find a substitution component which binds the

-

fhe given variéble. waever, if one refers té brancheé in the corrsct
way, 1t 1s possible to eliminate this search while dealing with a single
clause (or pair of clauses) by'moﬁing the relevant substitubions into

a direct access area. Such a representation of branches should meet the
fequirements that branches-be mapped ona-to-one ihto integers.and thess
integers be either consecutive or falrly even distributed over sone
fixed intervél.

A re#resentaﬁion of branches that meets these requirements is the
.generalized version discussed in the abo%e mentioned memo. It is possible
to associate with every input clausé in the deriﬁation of any clause N,r
& number that codes exactly one path from N to the input clause., If any.
clause is used more than once in the derivation in distinct places, then
it will have different numbers aséociated with each use. Furthermore, these
~_numbers (calléd "gathsﬂ) are not physically stored with each clause but are
dynamically computed relative to the desired N.

In every tuple.that defines a clause we include two numbers. The first
~is the number of tips in the derivation tree of the clause'(palled the "base
reference number®)}, and the second is an increment (called "deltam) used to
calculate the path numbers to the tips of the tree. It should be kept in
mind that a given clause may have several different paths aégociated with
it.by many other clauses. Any path nu@ber attached to a clauée'is.always
relative to some other clausse.

(2) Represertation of Paths, Variables, Terms, and Literzls

Paths: A path is a non-negative integer between O and 511. The limit of
L 29 is due to bit-racking considerations only. Effectively this restricts

the total number of tirs in any single derivation tree to 29-

Variables: A variable is an integer between O and 15. This again is
| limited only by faéking congidérations. Input clauses must be restricted
to sixteen or fewer variables; no additional restriction is.put on the
number of variables that wnll occur in derived clauses.
Terms: A term 1sV;v$¥i$bleLor ists tThe. HD. of: the list:isian ddertifier which
denotes the function (or predicate) symbol. The TL of the list
contains as many élements as there are arguments for the function symbol.
Each element is & term denoting an argument. Example: f(x,f(y,a))
could be denoted: [F 1 -[F 2 {4117 (depending ohly on the
intEgers assigned to variables x and y). the that constants are
Zero apity functioné.. |
Literals?r A literal is a list. The HD of the list is a signed number
" (real or integer). The sign of the literal is positive if the number
is greater than zero, otherwise the sign is negative. The TL of the
iist is a list defining the term which is the atom of the literal.

Example: P{g(x),y) ecould be rerrecented as: [-1 P ¢ 1] 2} .

Since literals are néver constructed after input the list defining a
literal in a derived clause is EQ to the list that the literal descended
ffom_in.an input clause. If ons wants to atbtach some item of informstion
to literals in such a way that the information is to be inherited from
ancestors, it may be but into the HD of the iist definingwthe input literals —-
thﬁt is, in the location reserved for thg sign. All routines which access
the sign of a literal do so through the function LITSIGN which takes a list
(defining a literal) and returns TRUE if the literal is positive, and FALSE
otherwise. The user may redefine this function if he wishes to replace the

sign item by an item other than a number.

(3) Clauges
o For the purposes of this paper it will be assuned throughout that
8 clause will be a five component record with the following definition:
REGORDFNS ("WCLAUSEY, [0 000 0]) > BINDINGS — IENLIT12 > FARENT2
-' 'QPARENM —>EBRNDELTA —>DESICREG ~s CCNSCREC;

The user is fres to define the clause record to contain more components
for his own implementation specific-information -~ in fact, the user is
responsible for defining a clause record in his code. However,:the
‘record class must have DATAWORD "CIAUSE® and the five selector/urdater
.fuﬁctibns defined ebove must be given the names above.

Let DATAWORD (CL) be NGLAUSEM. Then the contents of the above five
componénts are as follows:

BRNDELTA (CL) = a packed word whose top four bits are available as
marker bits to the user, whose next 9 bits specify
the base reference number of the node, and whose low-
order 9 bits specify the increment to be added to the
nodes of the first parent.

PARENTL(CL) = a pointer to the first parent of CL. If this parent has

k literals, then the first k-1 literals of CL are from
this parent. :
FARENT2(CL) = a pointer to the second parent of CL. If thié parent has

m literals, then the last m-l literals of CL are from
this parent.

LENLIT12(CL) = a packed word whose top bit is used as a marker bit for output,
the next 7 bits specify the number of literals in CL

(ie., k +m - 2}, the next 7 bits specify the number of the

literal resolved upon (and thus to be deleted from) the
first parent, and the low—ordef 7 bits spécify the number
of the literal resolved upen in the second parent.
BINDINGS(CL) = a strip of 2n full words specifying the n substitution
.cﬁmponents to be applied to the éarénts of CL to build

CL.

Clearly ‘three!. .pieces mai-information in thevabove clause definition
are redundant: the base reference number, delta and the number of literals
in CL are 'all recursively computable from the two parents. As a matter
~of fact, so is the substitution in BINDING{CL). These items are include&
to speed up processing.

To free the user from packing and unpacking the BRNDELTA and IENLIT12
components of the clause, the following functions are provided:

MARKBITS: clause ~» integer denoting the four marker bits,

BREFNUMEER: clause > base reference number of clause,

DELTAFl: clause -»delta for first parent,

' CLIENGTH: clause —p» number of literals in clause,

MLITl: clause _5-1iteral resolved upon (and missing) from first garent, -
MLIT2: clause —> literal resolved upon from second parent. |

These fuhctions select and update the proper bits in the appropriate components
of the clause record concerned.

There are two special cases to be recognized: input clauses, and factors.
Input clauses have NIL in FARENTI(CL) and & list of the literals in the
clause in PARENT2(CL). CLLENGTH{CL) is the number of literals in the list.

- BINDINGS(CL) is the NILSTRIP (a full word sﬁrip of DATALENGTH zero). All

other components are zero.

Factors ars unique sincé they have onlj one rarent, from which a
literal must be deleted. In order to carry this out neatly in this
frameword, a speéiél clause exists called UNITDUMMY. This clause appears
as a unit input clause with a single (dummy) literal. A factor thus
has UNITDUMMY in PARENT1(CL) and the aétuallg parent in PARENTZ.
MLITL{CL)} is set to 1 and MLIT2(CL) is set to the number of the literal
to be deleted from the parent. The BINDINGS componen{ contains the
unifying substitution and éll other components are defined as uéual.

There are two fundtion to.recognize input clauses and factors, ISINPUT

and ISFACTOR. Both take clauses and return truthvalues.

{4) Substitutidhs
Tt should bg ﬁoted that since substitﬁtions are never physically
applied, one always binds variablés to the original input terms
instantiated along some branch. Since the variables occuring in these
tefms have come down the same branch as the term, the branches of all
the variables are the same.-.: Of course, it ié possible (and quite likely)
that a variable within some instantiated input term is bound to a term from
some other branéh. |
Variables are four bit integers, and paths are nine bit Integers to
allow a variable and two paths to be packed into a single word. A term
must occupy é full word. Since a substitution component specifies a variable,
its path, a term, and its path, two wor&s ars thus sufficient.
If there are n components in a substitution then the substitution is a
strip of 2n full wofds. Positions 1 and 2 are devoted to the first component,
3 and 4 to the next, etc. Position 1 holds a packed word with the variable

bound in the top four bits, its path in the next nine bits, &nd the term's

path in the low-order nine. Position 2 holds a pointer to the (list
defining the) term.

(5) Constructing Clauses .

Since the user actually defines the clause record, this package takes
no responsibility for constructing clauses. However, the following two
functions are provided to computdthe five compbnents reqguired by the
representation.

CONSCOMP takes four arguments: GLl, LITNO1, CL2, LITRC2. It legves
five components on the stack (from topmost to bottommost):
the current binding strip (as returned.by GETBINDS -~ see Section V),
the packed IENLIT12 compdhentzwith the CLIENGTH being LIENGTH(CLL) +
CLIENGTH(CLR) - 2, and the MLITS being LITNOL and LITNO2 respectively,
€12, CLl, and the packed BRNDELTA component with CL2 treated as the
second parent. (The marker bits of the final component are zera) If
the BREFNUMBER of the clause cannot be packed into 9 biis, error 33 occurs.

CONSINQOMP takes a list of literals and returns the five record components |
sufficient to define that list as an input clause. They are rsturned in |
the saﬁe order és CONSCOMP.

Thus, if CONSCREC is as defined on page five, then to build an

: input record for P(x,y) G(A), it is sufficient to call:

“ conscrec(consIncoMP(L{+1 P 1 2] [0 q "LAll1]));

To build the clause resulting from resolving literal number LITNCL of clause
CLl with 1literal LITNCZ of CL2, it would be sufficient to call:

CONSCREC (CCNSCOMP (CLL, LITNOL1,CL2, LITNCR));
subject to the definition of GETBINDS in Section V. Factors are built if

CLl is set to UNITDUMMY and LITNOL is set to 1.

Since the ﬁser defines the form of the clause record it is not
possible for this package to automatically define UNITDUMLMY. This
must be done by the user's code after the package has been compiled.
- The following eodke would be sufficient if CONSCREC is defined as
- above:

CONSCREC (CONSINCOMP{ [{+1 DUMMY 1})) = UNITDUMMY;

SECTICN II -— DYNAMIC HANDLING OF CLAUSES

(1) Dynamically Determining Variable Bindings

Since each clause is also a node in the derivation tree of other
ciauses,'ﬁe can-use the words "clause® and "node" to refer to the
same objects in different contexts. In order to determine if a
variable, v, of some path, p, is bound as of node N, it is necessary
to trace the branch specified by p through the derivation of N.
The following procedure is used:
(l) if N is an input node, return FALSE, otherwise, go to step (2).
(2) if v of p is bound by the substitution in BINDINGS{N}, get the
term and its path from the component and go to step (3),

otherwise, go to step (5).

(3) increment the term's path by the total amount of decrementing
of p that has occurred since the original node N, go to step (4).

(4) return the incremented path, the term, and TRUE.

() if p is greater than or egual to DELTAPL(N) then go to step (6),
otherwise, go to step (7).

(6) decrement p by DELTAFL(N) and replace N by PARENT1(N), then
go'to step (1).

(7) replace N by FARENT2(N) and go to step (1).

10

‘The following two functions are available to the user fdr dynamically
interpreting substitutions.

 BOUNDAT (Bound At) takes three arguments: a variable, a path, and a node.
It returns FALSE if the variable of that path is not bound in the substi-
tution at the node. It returns TRIE, the term to ﬁhich the variable is
bound, and the path of the term, if the variable of the rath is bound in
the substitution at the node.

DYNISBOUWND (Dynamic Is Bound) takes a variable and a path as argumeﬁts.
It assumes that the global DYNSNODE {Dynamic Start Node) has been set to
the clause whose derivation tree is to be partially traced. (DYNSNODE is
the initial value of N in the above procedure.) If the variable of the path
is.not.bound in'the tree of DYNSNODE, it returns FALSE. If it is bound, it
returns TRUE, the term to which it is bound, and the path of the term

(relative to DYNSNODE).

(2) Dynsmically Accessing Literals in a Clause

| The function DYNLITRL takes two arguments: an integer n and é clause.
It feturns the list defining the nth literal of the clause and the path
that literal has come down (to the clause). This is done simply by

. determiniqg if the nth literal has come from the first or second.parent,
' correctly adjusting n and repeating the ancestory check until an input
claﬁse is arrived at. If n is greater than the number of literals in the

clause, error 45 will occur.

(3) Example of the Use of Dynanic Function;

The functioﬁ FSY¥BCNT returns the number of function symbols in a given
TERM of a given PATH. FSYMBLIT counts the number of function symbols
in a lite;al.(not counting the predicate letter)}. The functions are given

as examples &pd are not included in this package.

FUNCTION FSYMBCNT TERM PATH;
VARS CHNT;
LOOP: IF ISNUMBER(TERM)
THEN
IF DYNISBOUND(TERM, PATH)
THEN
->TERM — FATH;
GOTO LOOP;
EISE 0; CLOSE;
ELSE
1l — CNT;
APPLIST(TL(TERM),
LAMBDA T; ONT + FSYMBCNT (T, PATH) — CNT; END;);
CNT;
CLOSE;
-END;
FUNCTION FSYMBLIT N CL;
VARS LIT PATH;
DYNLITRL(N, CL} — LIT —~= PATH;
CL ~> DYNSNODE;
FSYMBCNT {TL(LIT), PATH) - i;
END;

SECTION III ~~ STATIC HANDLING OF CLAUSES

(1) General
If a program must reﬁeatedly deal with variables.and literal from a
given clause, it is advantageous to write the relevant variable bindings
and literals into structures that allow access without requiring searching
through the nodes of a tree. This implementation provides the user with
the two data structures necessary. The first is an array called VALUE
which holds variable bindings, and the second is a list which holds literzls.
Filling these structures with their proper components is called “loading.®

(2) Léading and Unloading VALIE

The VALUE array is a two dimensional array of full words indexed by
variables and paths. If v is a variable and p is & path,. theaVALUE(v,p)

is & pair. The BACK of the pair is either -1 which denotes that

12

v of path p is unbound, or it is the term to which it is bound. If thé
BACK contains a term, then the FRONT is a packed word with v in the top
four bité, p in the next nine, and the path of the term in the low-order
nine (just as in a substitution component).

In order to load VALUE with the bindings of some clause or literal,

8 recursive sweep {called a "zorch") is made through the appropriate tree.
Variable bindings appearing at nodes other than the lowest one must be
transformed so that the paths are accurate relative to the node from

which the zorch was initiated.

The following three functions can be used to load VALUE:

LOADCVIT (Load Clause Variables with Increments to Target) takes four
arguments: CL, DELTA, TARGETCL, and TARGETﬁISE. The function,fefurns no
results. All variables bound in the derivation of clause CL are loaded
into VALUE subject to the following: (i) the paths associated with variables
and their bindings are uniformly incremented by DELTA (in addition to the
required transformation noted in the rrevious paragraph), and (ii) the
- loading operation along a branch terminatss when it arrives at clause
TARGETCL with dispiéceméntzTARGETDISP:{ie., accumulated delta of TARGETDISP).

The DELTA argument of this function is normally used to load & clause
into VALUE even though a second clause already occupies the lower portion
of the.array. Thus, two clauses can be loaded so that their paths appear
to make them rarents of a yet-to-be-formed clause, eg., the paths of the
ﬁfirst rarent" can be incremented by the ncde count of the '“second parent.

.As will be seen, it is possible to unload the "first barent“ without disturbing

the "second so as to allow the loading of a new Mfirst parent!.

13

The TARGET arguments of LCADCVIT are usefull 1f one knows that the
VALUE array already contains a clause (TARGETCL) which is an ancestor
of the one to be loaded (CL). If the paths associated with the ancestor
are accurate relative to CL, then in loading CL it is possible‘to halt
. when TARGETCL is encountered. However, since a clause may be used more
than once in a derivation, it is not enough to encounter TARGETCL alone;
the clause that'causes_the lJoading to terminate must ldve been to e displaced by
?ARGETbISﬁ-ineloading:n 243, TPhe loading of course continues on branches
other than the one containing TARGETCL of TARGETbISE. The primary use
of this capability is to load a factor of the clause just produced bj
resolution.

LOADCGVI (Loz;d Clause Variables with Increments) is the obvious special
case‘éf LOADCGVIT. TIts arguments are CL and DELTA as defined for LOADCVIT
and it loads the entire derivation of CL, incrementing all taths by DELTA.

. LOADIVI (load Literal Variables with Increments) takes three arguments:
LITNO, CL, and bELEA. It loads all bindihgs of all variables involved -in
literal number LITHO of clause CL. Paths are incremented by DELTA.

No results are returned. Note that variable bindings of all depths are loaded.
Thus, if x of path 1 is bound to £{z) of path 3, then the bindings of x-of 1
and 2z of 3 are loaded.

There are three unloading commands which are the counterparts of the above
functions. Unloading is accomblished by again zorching up the appropriate
part of tﬁe tree, but upon finding a variable binding it removes it from the
value array by assigning -1 to the BACK of the appropriate cell.

UNLDCVIT (Unloasd Clause Variables with Increments to Target) takes the

same four arguments as LOADCGVIT. For each binding in the derivation of

14

clause CL, it transforms the paths by DELTA and then removes the appropriate
entry from VALUE. The pfocess halts when the TARGET conditions are met as
before.

. UNLDCVI (Unlbéd Clause Variables with Increments) and UNLDIVI (Unload
Literal Variables with Incrementg) take the same type of arguments as their
LOAD counterparts and perform the obvious deletion of entries.

(2) Ioading and Unloading Literals

It is felt that the most natural structure into which to load literals
is a list, since the only time one wishes to deal with a string.of literals
(rather than a single one) is dqring operatioﬁs like factoring and subsunption
whera.the programs must be able to cycle through pairs of literals.

LITSIOOP is a circular list of pairs. It is possible to load literals
and their timeé into the loop at any specified location. It is ecircular
to sl easy "appending" of one "list" of literals to another withou£
'cbunting l}terals. The following function loads LITSLOOP.or any other list
‘of pairs. ; |
| _ LOADCLI‘(Load Clauée Literals wiﬁh Inprements) takes five arguments:
LITNOl,.LiTNoz, CL, DELTA, and FTRH. it ié assuned that ¥TR is a (pointer
into a) list of pairs. The function retrieves litefal nuinber ﬁITNOl through
LITNO2 of clause CL and their pafhs, increments the patns by DELTA, and stores
the-literals and paths .in-sucéessive pairs of the list, starting at PTR.
The list defining the literal:sis. : put into the BACK of the pairy. and the
associated path is put into the bottom nine bits of the FRONT of the rpair.
The-functionrreturns a pointer to the last elément of the list loaded.

Thus, after execution of:

LoADGLI(Y, 4, CL, 0, LITSLOOP) —> PTR;

the first four literals of clause CL and their paths are found in the first

15

four elements of LITSLOOP. PTR will be the list whose HD is the fourth
element of LITSLOCP and whose TL is the rest of LITSLOOF.
No mechanism is provided for unloading such lists since the usser

directly controls access and can overwrite old entries upon reloading.

SECTION IV -- HANDLING OF STATIC STRUCTURES

IEVIPE

(l) Accessing and Updating VALUE

The VALUE array can be accessed to determine whether a variaEle, v,
of pathk, p; is bound in the currently loaded clause or literal. Furthermore,
the user can cause additional bindings to be inserted into VALIE in a way
that allows sophisticated recursive coding.

. The following function determines if variable v of path p is bound
by accessing VALUE.

- STCISBOUND (Static Is Bound) takes two argurenis, v and p. It returns
FALSE if BCK(VATUE{v,p))=-1. Tt returns TRUE, the term to which v of p is bound,
"and the rath of the term, if VALUE (v,p) éontains a term in its BACK.

In order to keep track of entries to VALUE after a 1oad-operation is
completed, there is a global list of 40 elements called BINDSLIST. Associlated
'Qith_this list are two global pointers into it, called BINDPFT1l, and BINDPFTR2.
Igitially the two BINDFTs are set to BINDSLIST. There use becomes clear
after the following tw§ functions are described:

BIND takes four arguments: VAR, PATH1, TERM, and FATH2. It returns no
results. It constructs a racked word out of VAR, PATEL, and FATH2, and
inserts this word into FRONT(VALME(VAR,PArﬁl))._ The TERM is inserted into
BACK(VALUE (VAR,FATH1)). 1In addition, the pair VALUE(VAR,PATHL) is put into

the HD of BINDPTR and the TL of BINDFTR2 replaces BINDFIZ.

16

This has the effect of binding VAR of PATH1 to TERM cf PATH2 for subse-
quent calls of STGISBOUKD. In addition, a note of this binding is put
onto the BINDSLIST (at BINDPTZ). | | ‘

UNBIKD takes no argunents and returns no results. It deletes all
bindings made bétween the curreht BINDPT1 and the current BINDPYZ.

It then resets BINDPT2 to BINDPTI.

(2) Accessing and Updating LITSLOOF

it is often convenient to be eble to temporarily delete a literal
from LITSLOOP. It is aléo‘cohvenient to rearrahge sub-lists ﬁf LITSLOCP
“with reépect to_eachother. We will deal with the second problem first.
Let the clause CLl have the literals F,Q, and R, of paths 1, 2, and 3.
Let CL2 be a clause with 7 nodes in its derivation and having literals
.A, B and-Cg of paths 1, 2, and 3. Consider the following sequence of
statements:
LOADCLI(1, CLIENGTH(CL2), CL2, O, TL(PTR1)) -+ FTR2;
LOADCLI(1, CLIENGTH(CLl), ¢Ll1, 7, TL(PTR2)) —2> FTR3;
Then if one were to call the EIEMENT function for the integers 1 through 6
on TL(FTRL), the result would be pairs of the formél 1. 7)), (2 . Q),
(3.. R), (8 . &), (9 . B), and (10 . C). 1In particular, note that
the literals of CLl follow those of GL2. Since it is usual to load the
literals ;f the second parent first,.and then repeatedly load literals
" of successive first pareﬁts, it would be nice to reverse the two sub-lists
to get the literals of CLl to precede those of CL2. This can be done by
E the.statemgnt:
TWIST (FTRL, PTRZ, FTR3);

which rearranges the circular list involved in the obvious way.

e e

17

The followlng table explains the function of TWIST:

_ before TWIST after TWIST
first lit of CL2 TL{FTR1) TL(PTRB)
last lit of CL2 PTR2 . PIR2
first lit'of CL1 ' 7TL(PTR2) TL(FTRL)
last lit of CLL _ PIR3 | . rTR3
first free position TL(PTRB) o TL(PTRz)V
last free position TR - FTRL

Thus it is possible to load a Seébnd'parent, tﬁen‘load a first parent
behind it and perform a TWIST to Haﬁe the literals in LITSLOOF be in the
orderlthey are found in a resolvent of the two. Iater, & new first parent
could be loaded behind the second (ie., startirg in TL{FTR2), the first
free position}) and a new TWIST performed. - .

In order to delete a literal from LITSLOOP temporarlly the followlng
mechanism exists., It is possible to turn on the HIGHONE bit of the

'FRONT of a pair defining a literal and path by calling the function
DEIETELIT, which takes such a pair as its single argument and retufns

no results. The function RESTORELIT takes a pair and turns the HIGHCNE bit
of the FRONT off. By ignoring pairs sd'marked one can effecfively delete
literals.

Two functions are available to.make use of this mechanism..

NX (Next) takes two arguments, FTR, and NILFTR, both of which are pointers
into a list of pairs (ie., LITSLCOP). It repeatedly takes the TL of FIR
until it finds an vhmarked pair. If such a pair is found before NILrTR is

' encountered, the list containing that pair as its HD is returned, otherwise
NILFTR is returned. Thﬁs NX behaves like TL'except‘one must specify whers

its first argument ends {or will be considered to end).

18

1f one uses NX in conjunction with DEIETELIT and RESTORELIT, literals.
cén easily be deleted and replaced fo#'récursive coding. |

- SICLITRL (Static Literai) takes two argusents, an integer N and & list
of pairs, FIR. It returns the Noh unmarked literal and its path, starting
from PTR. |

_'For examyle, if LITSLOOP were in the configuration left after the
TWIST stateieﬁt on page 16, the statement: |

E STCLITRL(B,' TL(PTR3)} —> LIT > FATH;
‘would set LIT to C and PATH to 10. Iflwe-thsn executed:

DELETELIT{HD (TL(PTR3))); |

and repeated the STCLITRL statement abmvé, LIT would be éet to P éﬁd
PATH to 1. RES.TORELIT(}H)(TL(PTRU)); would return us to the above
cdnfiguration.-‘The statement UNTWIST(PTﬁl,PTRZ,PTRB) restores LITSLOOP
-to its pointer arrangement prior to the TWIST on ﬁage 16.

SECTION V ~- UNIFICATICN AND ASSOCIATED FUNCTIONS

_‘The following foﬁr functions exist. The first three require that

the bindirigs of variablés be detsrminéd and call the function ISBOUND
for this reason. ISBOUND.is initialized by this rackage to be STCISBOUND;
- The uSer may redefine it a will provided that when_itS;definitidn=involves
DYNISBOUND, the global variable DYNSNODE is appropriately set. When
ISBOUND is STCISBOUND, the proper clauses or literais must be loaded into
VALUE.

OCCUR takes four arguments:: fAR, FATH1, TERM, and PATH2. It returns
TRUE if the variable VAR of FATHl, occurs anywhere in the PATHZ instantiation

of TERM. Otherwise it returns FALSE.

20

Also assume that CUTOFF is some global initialized to the number of nodes
in the loaded clause (ie., its BREFNUMBER component, plus one). Then
all variables from the loaded clause will have paths lsss than CUTOFF, while
those from the unloaded clause will have paths greater than or equal to it.
The'paths of terms bound to variables from the unloaded clause will have
to be displaced by CUT'OFF to be accurate for further enquiries. The
following function would do:
FUNCTICN SEMISBOUND VAR PATH;
VARS TERMY PATHZ;
IF STCISBOUKD (VAR, PATH)
THEN TRUE}
ELSEIF PATH < CUTOFF
THEN FALSE;
ELSEIF DYNISBOUND(VAR, PATH - CUTOFF)
THEN
«~%» TERM —> PATHZ;
‘PATH2 + CUTOFF;
TERM;
TRUE;
EISE FAISE; CLOSE;
END;
Of course, DYNSNODE would be set to the clause that was not . loaded,
and the initial call to UNIFY to specify the path of the term from
the unloaded clause incremented by GUFOFF. The unifying substitution
would bLe available through the BINDSLIST or GETBINDS as usual, and

could be removed from VALUE via the usual UNBIND.

SECTION VI -~ RECURSIVE CODING

The BINDSLIST, BIND, UNEIND, DEILETELIT, and RESTORELIT features allow
‘very natural recursive coding to be written for loaded clauses.
For example, assume that the user wishes to write a factor routine

which recursively factors factors. Assume that the clause to be factored

21

is known and stored in sbme global, and assune iﬁs values and literals.
have been loaded. The factor routine then behaves in the following way:
Upon entry it saves BINDPTL as a local and redefines it to be BINDFTZ.
Then.using the NX function, it successively tries pairs of iiterals
“until it finds a pair with the same LITSIGN which UNIFY. After férﬁing
and storing the éléuse using GdNSCOMP and UNITDUMMY, it calls DEIETELIT
on the pair representihg the literal to be deleted. It then recursively
calls itself. All subsequent factors producéd automatically respect the
bindings made at this level and the literal deleted. When control is
returned to this level,_RESTOHELIT is called on the pair above %o
restore the literal. UNBIND is called toc remove the bindings made for
the last gnification at fhis level, and the next pair of literals is
triéd. When the routine finally exits from this level, VALUE and
LITSLOOP will be as they were upon entry (sincé BINDFI1l was local wken

- the UNBIND was 'qalled).

Similiarly slick subsumption functions can be written. In general it

is felt that the sophisticated user will find ceding with this implementation

quite easy.

FoE v

22

APPENDIX I ~~ CLAUSE STORAGE FACILITIES

A package of functions is available to implement a simple and
efficient clause storage mechanism. The memory is conmposed of full-
wérd strips, called BLOCKS, each of which is capable of holding 32
' élause records. “The ELOCKS are stored as they are created in another
strip called BLOCKDOCK.

BILOCKES are created only when needed. The first clauseVStored causes
BLOCK 1 fo be built and inserted into position 1 of BLOCKDOCK. The
“clause is put into position 1 of BLOCK 1. When the 33rd clause is
to be stored, BLOCK 2 is built and the clause is entered into position l;
BLCCKDCOCK is expanded when needed (it is iﬁitialized at length 20, allowing
20 blocks, or-640 clauses, before its first expansion). |

‘Holever, the above structure can be tranSPafent to ﬁﬁe user through
the use of the function MAINCL. |

MAINCL is a function which appears as a one dimensional ar}ay to the user.
MAINGL(l) accesses the contents of BLOCK 1, position 1. MAINCL(33) accesses
BLCGK 2, position 1, etc. MAINCL is an updater as well as a selector of
course. Assignment to MAINCL(n) will automatically cause the proper
BLOCK to be built, or an expansion of BLOCKDOCK, if necessary.

The function SAVE takes a clause record as én argument and stores it in
- the next available location in MAINCL, It returhs the integer specifying
_ which MAINCL location was filled.

The global variable MAXNOBIX contains the current size of BLOCKDOCK.
The global varisble BLOCGKCHNT contains the number of blocks currently existing.
The global MAINGNT is always set to the highest position in MAINCL to which.

an'assignment has been made. Thus, MAINCNT 4 1 will always be free.

2%

 APFENDIX II -- INFUT

ﬁ package of functions is available to read items from a specified
:item repeater and return a list éf literals in the format required to
_define.input clauses for the GSS System;' The reader is referred to
SECTION I of this document forISpecifications of the correct format.

Items-are read from a global item repeatsr calléd’ ITEMREP, which
must be defined by the user. All functions access this repeater through
the function NEXTITEM. NEXTITEM appears to be an item repeater with an
sccessable buffer. Thus, NEXTITEM()“returns.an item but also sels an
input buffer (IB) to the next item it will return. Thus, if ITEMREP
is reading from a stream of the form AAA BEB CCC, then when NEXTITEM()
returns AAA, IB will be eguael to BBB. The next call of NEXTITEM() will
return BEB and set IB to ccc. | -

The function SKIP tekes no arguments and returns no results. It advances
NEXTITEM by cne step.

The user must initiate this'process-by assigning the desired item
repeater to ITEMREP, and then calling SKIP() to initialize the buffer.
Thereafter, both he and this package can read from the item repeater
NEXTITEM with the advantage of being able to access the buffer IB.

The basic function, READCLIST (Read Clause List) takgs no arguments and
returns a: list of literals. It is assumed that the first item returned by
NEXTITEM will be the beginning of a clause. (The user may wish to follow
or precede clauses with special merkers or other information. If so, he
.is responsible for processing it and correctly positicning the repeater
before calling READCLIST. Of course, NEXTITEi, SKIP, and IB may be used

in his processing.)

24

The stream of items defining a clause must coﬁform to the following:
Variables, constants, functions, and predicate symbols may be any FPOP~2
identifisr, Identifiers beginming with the characters "u" through hat
are classéd as variables unless they are previously declared to be

non-variables (ie., functions, constants, or predicate symbols) by being

- made eleuwents of the list SFCLFSYM (Special Function Symbols). An identifier

not beginnirg with the above characters may be classed as a variable only
if it‘is an element of the list SPCIVSYM (Special Variable Symbols).

An identifier is Qlassadlas a gero arity functiqﬁ (ie., a constant or
groupd atom) if it is not a variable but not immediately followed by

an open parenthesis ("(®#}). Functions of arity greater than zero, and

‘non-ground atoms, must be fully parenthesized. Thus, FX Y is an un-

acceptable notation for F(X Y), or F(X,Y). (Note: NEXTITEM ignores

- commas.) A symbol is classed as a predicate letter if it is not enclosed

in the parentheses of another expression. Positive literals are Just atoms.
Negative literals are atoms preceded by the minus sign ("="), Clauses
are strings of literals, followed by & semi-colon (";").

In the lists returned by READCLIST, variables have been replaced by

f integers. The first variable of a clause is assigned the integer 1, the

second, 2, etc. Positive literals are lists with 1 in the HD. Negative
literals have O in the HD. Upon completing a clause, NEXTITEM will ber
rositioned immediately after the semi-colen,

EXAMPIE: Assume NEXTITEM was positioned so as begin on the string
P (zero, élpha, £(3,y)) ~= @ = R{algha,y); foo . . .
Also assume that SPCLFSYd = [zero] , and SPCIVSYM = [alpha | .

Then READCLIST({) would return the list:

ol

25
(e » [exd] 1 [1 21 [0 o] [0 x 1 2]]

and the next call of NEXTITEM{) would return "foom,
In addition, READCLIST builds three lists that may be of use to the
user. They are:

PREDLIST: a list of pairs wlose FRONTs are predicate symbols
and whose BACKs are the arities of the symbols,

~-FNLIST: & list of rairs similar to the PREDLIST but containing
function symbols and theiordeftinswhich they were encountered.

VLIST: a list similar to the PREDLIST but containing varieble
identifiers and the integers which replaced them.

The VLIST is automatically set to NIL upon each call to READCLIST;
if.the user Qishes tolinspect it he must therefore do it for each clauss
read. - 'i‘he FREDLIST and FNLIST are reset only by the user (other than
being initialized to NIL upon compilation of the file) and are not actually
used by the input package. However, by initializing them to.NIL before
each new problem get is réad, one may collect the felevant symbols and
their arities if required.

In tﬁe above example, if the PREDLIST and FNLIST were both NIL before

the call to READCLIST, the three lists would be as follows after the calls

PREDLIST = f[R.2)(@.0) (®.3)]
FELIST = [(3.3) (8.?) (RO . 1)]
VLIST - = [(v . 2) (arrms . 1)]

Readers interested should note that clauses are actually built by an
extremely simple ten state finite state machine, whose states are PCP-2
fuﬁctions named S1 through 810. Each functicn inspects IB or NEXTITEM(),
‘defines,theﬂnext;staten(by*assigning the proper function to a global RI),
and leaves a single item on the stack. The list is constructed by the single

statement: POPVAL(FNTOLIST (LAxbDA; RI(); END;)).

