
How To Prove Theorems FormallyMatt Kaufmann1 and J Strother Moore21 Advaned Miro Devies, In., 5900 East Ben White Blvd., Austin, TX 78741,matt.kaufmann�amd.om2 Department of Computer Sienes, University of Texas at Austin,Taylor Hall 2.124, Austin, Texas 78712,moore�s.utexas.eduAugust 5, 20051 AbstratToday it is impratial to prove { formally and mehanially { the orretnessof entire omputing systems of ommerial interest. There are many reasonsfor this, both tehnial and eonomi. Mehanized theorem proving is never-theless relevant in ommerial hardware and software prodution. But pratialonsiderations require that we fous our attention on problems that are bothtehnially feasible within the time limits available and of interest to systemdesigners.Why might designers turn to a mehanial theorem prover? Beause theproblems { even the little ones { are so ompliated they do not have on�denethat their reasoning is sound. Formal, mehanized reasoning is ruial.In this paper we briey will desribe several suh \little theorems," that is,theorems that address issues of onern to designers without trying to addressthe omplete orretness of the system. The theorems have all been formalizedand proved with the ACL2 theorem prover. \ACL2" stands for A ComputationalLogi for Appliative Common Lisp. It is a theorem prover in the Boyer-Mooretradition that uses rewriting, deision proedures, mathematial indution andmany other proof tehniques to prove theorems in a �rst-order mathematialtheory of reursively de�ned funtions and indutively onstruted objets [6℄.However, these desriptions are just motivational. The real purpose of thispaper is to answer the question how does one onstrut and manage large me-hanially heked proofs (in ACL2)? After mention of the big industrial exam-ples, we turn our attention to truly simple formal theorems about list proessingand develop some advie to the reader. Most of this advie is meant to be helpfulno matter what mehanized system or mathematial logi you are using.The paper ontains exerises. To learn how to do proofs, it is ruial that youwork the exerises. The ACL2 system is available without harge on the net; seethe ACL2 home page [8℄.However, it is not neessary to use the ACL2 system to do the exerises. Theyan be done with penil and paper or with other mehanial theorem provingsystems with whih you might be familiar. But the only way to learn how to doproofs is to do proofs!



Answers to the exerises are available on the web. See http://www.s-.utexas.edu/users/moore/publiations/how-to-prove-thms/index.html.Early exerises ask the reader to de�ne some funtions used in hallengetheorems in later exerises. To ensure those hallenges are understood, we haveinluded in Appendix A our de�nitions of all funtions mentioned in any hal-lenge theorem.Keywords: ACL2, hardware veri�ation, software veri�ation, formal veri�a-tion, theorem proving, automated reasoning.2 Bakground\ACL2" is the name of a funtional programming language (based on CommonLisp), a �rst-order mathematial logi, and a mehanial theorem prover. ACL2,whih is sometimes alled an \industrial strength version of the Boyer-Mooresystem," is the produt of Kaufmann and Moore, with many early design on-tributions by Boyer. It has been used for a variety of important formal methodsprojets of industrial and ommerial interest, inluding:{ veri�ation that the register-transfer level desription of the AMD AthlonTMproessor's elementary oating point arithmeti iruitry implements theIEEE oating point standard [14, 15℄; similar work has been done for om-ponents of the AMD-K5 proessor [13℄, the IBM Power 4 [16℄, and the AMDOpteronTM proessor.1{ veri�ation that a miroarhitetural model of a Motorola digital signal pro-essor (DSP) implements a given miroode engine [1℄ and veri�ation thatspei� miroode extrated from the ROM implements ertain DSP algo-rithms [2℄;{ veri�ation that miroode for the Rokwell Collins AAMP7 implements agiven seurity poliy having to do with proess separation [3℄;{ veri�ation that the JVM byteode produed by the Sun ompiler javaon ertain simple Java lasses implements the laimed funtionality [12℄ andthe veri�ation of properties of importane to the Sun byteode veri�er asdesribed in JSR-139 for J2ME JVMs [10℄;{ veri�ation of the soundness and ompleteness of a Lisp implementation ofa BDD pakage that has ahieved runtime speeds of about 60% those ofthe CUDD pakage (however, unlike CUDD, the veri�ed pakage does notsupport dynami variable reordering and is thus more limited in sope) [17℄;{ veri�ation of the soundness of a Lisp program that heks the proofs pro-dued by the Ivy theorem prover from Argonne National Labs; Ivy proofsmay thus be generated by unveri�ed ode but on�rmed to be proofs by averi�ed Lisp funtion [11℄.1 AMD, the AMD logo, AMD Athlon, AMD Opteron, and ombinations thereof, aretrademarks of Advaned Miro Devies, In.



Other appliations are desribed in [5℄ and in the papers distributed as part ofthe periodi ACL2 workshops, the proeedings of whih may be found via theWorkshops link on the ACL2 home page [8℄.As these examples demonstrate, it is possible to onstrut mehaniallyheked proofs of properties of great interest in industrial hardware and softwaredesigners. The properties proved are typially not omplete haraterizations ofthe orretness of the systems studied. For example, the proofs about the AMDmiroproessors { the AMD-K5 proessor, the AMD Athlon proessor, and theAMD Opteron proessor { just deal with the IEEE ompliane of ertain oat-ing point operations modeled at the register transfer level. The miroproessorsontain many unveri�ed omponents and the veri�ed ones ould fail due to vio-lations of their input onditions.Nevertheless, these theorems were proved for good reason: the designers wereonerned about their designs. Aspets of these designs are quite subtle or om-pliated and formal spei�ation and mehanized proof o�er the most ompleteway to relieve the onerns that something ritial to orret funtionality hadbeen overlooked in the designs.In addition to being interesting, these theorems are hard to prove. That isa relative judgment of ourse. Compared to longstanding open problems, thesetheorems are all trivial. But by many measures eah of these proofs is muh moreompliated than any proof ever enountered by most readers. For example, theIEEE ompliane proof for the oating point division miroode for the AMD-K5 proessor (in 1995) required the formal statement and proof of approximately1,200 lemmas. Subsequent AMD oating-point proofs are harder to measure be-ause they build on libraries of lemmas that have been aumulating sine 1995.The orrespondene result between the Motorola DSP miroarhiteture and itsmiroode engine involved intermediate formulas that, when printed, onsumed25 megabytes (approximately 5000 pages of densely paked text) per formula.And the proof involved hundreds of suh formulas. The orretness argumentfor one partiular DSP miroode program required an extremely subtle gener-alization that took many days for the author to raft. The formal model of theConneted Limited Devie Con�guration (CLDC) JVM and byteode veri�er isalmost 700 pages of densely paked text. The proof that a simple Java lass,whih spawns an unbounded number of threads, produes a monotoni inreasein the value of a ertain shared ounter produes about 19,000 subgoals andrequires about 84 megabytes to print.In these senses, the theorems in whih we are interested are little (but hard)theorems about big systems, or put another way, they are valuable and non-trivial theorems about parts of very ompliated systems.How do we prove theorems like this? There is no mystery. We prove theo-rems like this the same way we prove simple theorems: by properly de�ning theonepts and arefully stating the theorem, by separating onerns, by appropri-ate deomposition of the proof into more general lemmas, and by the reursiveappliation of the same methodology. But to do it on a grand sale takes morethan the usual attention to detail and good taste. Minor misjudgments that are



tolerable in small proofs are blown out of proportion in big ones. Unneessarilyompliated funtion de�nitions or messy, hand-guided proofs are things thatan be tolerated in small projets without endangering suess; but in largeprojets, suh things an doom of the proof e�ort.If you aim to produe big proofs, it pays to learn how to produe small oneswell.3 The Mehanis of Using the SystemYou do not need to use the ACL2 system to learn from this paper. This pa-per is primarily about how to state and prove theorems in a partiular formalmathematial logi. Students do not often do that! Students studying mathe-matial logi mostly read about meta-theorems proved about formal logis, e.g.,ompleteness, undeidability, et. Students studying mathematis and omputersiene see \theorems" stated informally (in a mixture of English and mathe-matial notation) and \prove" them informally.We study theorems and proofs in a rigorous setting. Expressing every laimformally { as a formula in a well-de�ned syntax { takes some getting used to!Proving them rigorously { justifying every step with formulas and appeals torules of inferene { takes even more! Our logi is supported by a mehanizedtheorem prover that prints out its proofs in an informal style that should befamiliar to most mathematially literate readers. But when the theorem proverfails and you are alled upon to help it, that help almost always takes the formof a formula or a hint to use a ertain formula. Thus, to use the theorem provere�etively you must learn to think with formulas.You may read this paper in onjuntion with the ACL2 system to learn bothhow to express your ideas in formulas and how to use the system. We reommendreading this setion even if you do not intend to use the ACL2 system; at leastit will give you a sense of what is involved with produing large mehaniallyheked proofs.If you want to use the system, �rst install it on your mahine (if it is notalready there), following the instrutions in the Obtaining and Installing link ofthe ACL2 home page [8℄.Next, learn to navigate The User's Manual linked to from the home page. Inpartiular, learn to use the Index. For example, �nd and read the doumentationunder STARTUP. Try the SEARCH link near the top of the home page.Throughout the rest of this doument, when we say \see name," we mean�nd and read the doumentation of name in the online doumentation.Most users use ACL2 from within Emas. See Appendix B for a few helpfulnotes. Within Emas, reate a shell bu�er (by typing meta-x shell enter).Typially, the bu�er reated is named *shell*. Lines typed into the bottomof the *shell* are fed as input to a Linux or other operating system \shell"proess running under Emas; output is streamed into the *shell* bu�er. Inthe *shell* bu�er invoke ACL2. Thus, the *shell* bu�er beomes an editableand searhable log of all your transations with ACL2.



ACL2 presents itself as a read-eval-print loop, with the prompt ACL2 !>.Whatever you type after this prompt is read by ACL2, evaluated, and the resultsare printed. Then you are prompted for another input. However, it is rare thatyou will type diretly to the ACL2 loop. Instead, we reate our de�nitions andproof plans in another bu�er and submit ommands from that bu�er to ACL2.So reate another bu�er, whih here we all sript, by typing trl-x bsript enter. In this bu�er you will write down your proposed proof sripts.It will typially onsist of a sequene of de�nitions and lemmas, onluding withyour main theorem. These sripts typially ontain many Lisp omments, pre-eded on eah line by a semi-olon. After typing the initial draft of the problemand its solution, position the Emas ursor at the top of the sript bu�er.We maintain the following invariant between the sript bu�er and the*shell* bu�er: every ommand in the sript preeding the ursor has beensuessfully exeuted in the *shell* (in the same order) and those are the onlyommands that have been exeuted. That is, the ursor of the sript bu�erde�nes a \barrier" between what has been done and what is left to do. Theommand immediately after the ursor is the \next ommand" to try.You should learn how to opy that ommand into the *shell* bu�er, at thebottom, and to advane the sript bu�er ursor past the ommand. This ishow you will submit previously prepared ACL2 forms to ACL2.Before ontinuing we answer two ommonly asked questions. First Question:Why are we bothering to show Emas in a disussion of how to use a mehan-ial theorem prover? Answer: It serves as a warning. Don't aspire to prove bigtheorems mehanially unless you are prepared to use a variety of sophistiatedtext proessing tools. When you have to inspet multi-megabyte formulas, youwill be happy to know of the existene of Emas ommands like meta-1 meta-xompare-windows (whih ompares two windows ontaining s-expressions, ig-noring di�erenes in prettyprinting style).Seond Question: Why don't we implement an Emas/ACL2 interfae insteadof reommending that the user learn Emas? Answer: We have learned that usersevolve their own styles, both for ACL2 and for Emas. Using somebody else'sstyle is often umbersome. We are desribing our style. Use it as a starting pointbut understand how personal it is and how exible Emas is.Having prepared the initial draft of the sript, we submit ommands sues-sively. If a ommand is suessful (i.e., the de�nition is admitted or the theoremis proved) we submit the next ommand. If the ommand is unsuessful, wemove the sript ursor bak in front of the failed ommand and inspet theoutput of ACL2 in the *shell* bu�er.Typially, one of two things must be done. Either the ommand is faulty(e.g., syntatially ill-formed) and must be edited, or additional lemmas mustbe proved before it an be suessfully submitted. Learning how to read ACL2output and determine what to do is the biggest task faing the new user beauseit is usually tantamount to the theorem proving problem: how an this theorembe deomposed into provable lemmas? Ultimately, that is what this paper isabout.



But suppose we have determined, somehow, that the appropriate responseto the failed ommand, , is to prove two new lemmas, say � and �. Then wetype them into the sript bu�er, one after the other, immediately in front of .Then we position the ursor in front of � and resume our iterative submissionproess.Note that if � fails, the proess just desribed will lead us to begin workingon the subtask of how to prove �, by inserting additional lemmas in front of it.When we ultimately sueed in proving them and �, the ursor will have movedjust past � and be in front of �. Only after � is proved will we onfront  again,and by then our proof plan for it, namely � and �, will be in plae. Had we notwritten � and � down when we analyzed the failure of  and used the sriptbu�er in a disiplined way, we might well have forgotten about � and had tore-analyze the failure of  to re-disover the need for �.There is no guarantee here that our plan for proving  will sueed. If itdoesn't, this method will ause us to insert additional lemmas for  just after�. A modular top-down proof development methodology, in whih we hek andguarantee that � and � permit the proof of  before desending to prove them,is desribed in [4℄.We regularly save our work, by saving the sript to a �le, say sript.lisp.This allows us to rereate our state, should we wish to quit for the time beingand resume later. We typially put the ommand (i-am-here) into the sriptbu�er at the ursor, just to mark the urrent loation of the barrier. When(i-am-here) is exeuted it auses an error.When we are ready to resume our work, we start a new ACL2 in the *shell*bu�er (if the old one has been lost) and type:(ld "sript.lisp" :ld-pre-eval-print t)whih will exeute all of the ommands in the �le until the �rst error. Thisrereates the ACL2 state we had when we saved the �le, re-establishing ourinvariant between sript and *shell*. If the proofs take a long time we mightdo(ld "sript.lisp" :ld-pre-eval-print t :ld-skip-proofs t)or, more briey,(rebuild "sript.lisp" t)whih just assumes the proof obligations of eah ommand. Given that we havesuessfully exeuted them in a prior session, this is a reasonable way to re-establish the invariant and leaves us in exatly the same state.When we �nally exeute the last ommand in the sript, we have sueededand sript.lisp is a re-playable proof sript for our main theorem. We usuallytry to ertify it as a book so that it an be easily referened in future proofs. Seeertify-book.So muh for the mehanis of using ACL2. We now get on the with task ofexplaining what it all means, by desribing the ACL2 funtional programminglanguage, the logi, and the theorem prover.



4 Programming in ACL2ACL2 is Lisp. A typial term or expression is (ons (ar x) (len a)). Inthis expression, x and a are variable symbols, and ons, ar, and len are fun-tion symbols. In more traditional mathematial syntax, this expression would bewritten ons(ar(x); len(a)). For the purposes of this paper, it is suÆient tounderstand only the expressions of Figure 4. ACL2 is muh riher than thesefew primitives would suggest, but throughout this paper we limit ourselves to atiny subset so we an disuss in detail how to develop proofs.Full ACL2 desribes �ve kinds of data objets in detail { numbers, haraters,strings, symbols, and (ordered) pairs { and eah an be written as a onstant andused in expressions. The most ommonly used numeri onstants are integers;rationals and omplex onstants are allowed, but we will not have oasion touse them in early exerises. We will not use harater onstants here. Stringsare enlosed in single-harater double-quotation marks, "Hello world!". Thespeial symbol onstants nil and t { whih have the apparent syntax of variablesymbols { are written as shown, but all other symbol onstants are preeded by asingle quotation mark, 'ok and 'quik-sort. The onstant nil is used both asthe \false" truth value and the \empty list" (or, more aurately, as the standardterminator of a nest of pairs used as a list). Pairs, or \onses," are written in listnotation, e.g., h1,h2,h3,niliii is written '(1 2 3) and nests not right-terminatedwith nil are written using \dot notation," e.g., h1,h2,3ii is written '(1 2 . 3).Indeed, '(1 2 3) may also be written '(1 2 3 . nil).Newomers are often onfused by when to use the single-quote mark. '(1 23) is a term that evaluates to the list onstant (1 2 3). Why not write (1 2 3)?Well, onsider the two terms (ar x) and '(ar x). The �rst is how we writethe appliation of the funtion symbol ar to the variable symbol x. The seondis a term that evaluates to the list onstant (ar x), i.e., list whose �rst elementis the symbol ar. If � is a parenthesized expression or a symbol, like ar or x,and you are writing a term, write '� if you mean the term that evaluates to �,and write � if you mean the term (funtion appliation or variable symbol) �.Eah of the �ve data types an be reated and deomposed by various fun-tions. But in this paper we omit all mention of the strutural properties ofnumbers, haraters, strings and symbols and deal only with pairs. By limitingourselves to pairs, we an quikly dispense with their basi properties and get onwith the task of learning how to de�ne reursive funtions and prove theorems.(ons x y) onstrut the ordered pair hx; yi(ar x) left omponent of x, if x is a pair; nil otherwise(dr x) right omponent of x, if x is a pair; nil otherwise(onsp x) t if x is a pair; nil otherwise(if x y z) z if x is nil; y otherwise(equal x y) t if x is y; nil otherwiseFig. 1. The Primitives for This Paper



To de�ne a funtion, we use the form (defun f (v1 : : : vn) �) where f isthe funtion symbol being de�ned, the vi are the distint formal variables, and� is the body of the funtion.Here are the Lisp de�nitions of the standard propositional logi onnetives:(defun not (p) (if p nil t))(defun and (p q) (if p q nil))(defun or (p q) (if p p q))(defun implies (p q) (if p (if q t nil) t))(defun iff (p q) (and (implies p q) (implies q p)))Note that in Lisp, and and or are not Boolean valued. E.g., (and t 3) and (ornil 3) both return 3. This is unimportant if they are only used propositionally,e.g., (and t 3) $ (and 3 t) $ t, if \$" means iff. By onvention, thesetwo funtions are allowed to take more than two arguments and when so usedabbreviate right-assoiated nests, e.g., (and p q r s) is an abbreviation for(and p (and q (and r s))). Tehnially, they are de�ned as \maros."Most often we make de�nitions that are reursive, beause ACL2 has noiterative ontrol strutures or higher-order funtions, and has only primitivereasoning support for quanti�ers. Here is a funtion that \opies" a list replaingeah element ourrene by two adjaent ourrenes.(defun dup (x)(if (onsp x)(ons (ar x)(ons (ar x)(dup (dr x))))nil))For example, the term (dup '(1 2 3)) has value (1 1 2 2 3 3) and the term(dup '(hello)) evaluates to (hello hello).Here is a funtion that onatenates two lists.(defun app (x y)(if (onsp x)(ons (ar x) (app (dr x) y))y))For example, (app '(1 2 3) '(4 5 6)) has value (1 2 3 4 5 6) and (app'(A B C . D) '(E F)) has value (A B C E F).Here is a funtion that determines whether e is an element of list x.(defun memp (e x)(if (onsp x)(if (equal e (ar x))t(memp e (dr x)))nil))For example, (memp 1 '(0 1 2 3)) is t and (memp 5 '(0 1 2 3)) is nil.Here is a funtion that reverses a list, e.g., (rev '(1 2 3)) is (3 2 1).



(defun rev (x)(if (onsp x)(app (rev (dr x)) (ons (ar x) nil))nil))Note that (rev '(1 2 3 . ABC)) is (3 2 1), i.e., the terminal marker of theinput is not preserved (unless it happened to be nil), given the way we de�nedrev.Here is a \tail-reursive" version of rev that uses its seond argument as an\aumulator" to onstrut the answer more eÆiently.(defun rev1 (x a)(if (onsp x)(rev1 (dr x) (ons (ar x) a))a))For example, (rev1 '(1 2 3) nil) is (3 2 1).ExerisesYou may wish to de�ne auxiliary funtions to solve some of the exerisesbelow. If you are using the ACL2 system to experiment with your answers andyou try to re-de�ne an existing ACL2 funtion you will get an error (unlessyour de�nition is syntatially the same as ours). To see how to inspet the pre-existing de�nition, see pe (\print event") and pf (\print formula"). When usingthe ACL2 system, be aware that it insists that all funtions terminate. Thus,reursion on the list struture x should be ontrolled by a (onsp x) test, not(equal x nil).Problem 4.1 De�ne the funtion properp to determine whether a list \endsin nil," i.e., whether the dr of the right-most ons is nil. (In Lisp, funtionsthat are used as prediates are ommonly given names that onlude with theletter \p". Lists satisfying properp are sometimes alled \proper lists" or \truelists.")Problem 4.2 De�ne mapnil to \opy" a list, replaing eah element by nil.Problem 4.3 The result of \swapping" the pair hx; yi is the pair hy; xi. De�neswaptree to swap every ons in the binary tree x.Problem 4.4 De�ne ziplists to take two lists and return a list as long as the�rst whose suessive elements are the pairs of orresponding elements from thetwo lists. If the seond list is too short, extend it with nils.Problem 4.5 A proper list of pairs is alled an \assoiation list" or \alist". Thestandard funtion alistp reognizes them. Assoiation lists are frequently usedas tables. The value assoiated with the key key in alist a is the dr of the �rst



pair in a whose ar is key. De�ne lookup to take a key and an alist and toreturn the value of the key in the alist or else nil if no pair is found.Problem 4.6 De�ne foundp to determine whether a given key is found in agiven alist.Problem 4.7 De�ne the list analogue of subset, i.e., (subp x y) returns t ornil aording to whether every element of x is an element of y.Problem 4.8 De�ne int to take two proper lists and to return the proper listof elements that appear in both.Problem 4.9 Consider the leaves of a binary tree. We say a leaf is \lonesome"if it ours only one. De�ne lonesomes to take a tree and return its lonesomeleaves.5 Elementary Proofs in the ACL2 LogiSome axioms orresponding to the six primitives in Figure 4 are shown in Figure5. The atual axioms used by ACL2 are somewhat di�erent beause they inludeaxioms for all the data types. For example, Axiom 1 of the �gure an be provedfrom ACL2's axioms onerning the struture of symbols. Axiom 8 of the �gure,stating that nil is not a ons pair, an be inferred from ACL2's axioms statingthat nil is a symbol and that symbols are disjoint from pairs. For our purposes,Axiom 8 is just an example of an in�nite number of axioms stating onsp is nilon eah symbol, on eah number, et., (onsp nil) = (onsp t) = (onsp'ok) = (onsp 0) = (onsp 1) = (onsp 2) = : : : = nil.1. t 6= nil2. x 6= nil ! (if x y z) = y3. x = nil ! (if x y z) = z4. (equal x y) = nil _ (equal x y) = t5. x = y $ (equal x y) = t6. (onsp x) = nil _ (onsp x) = t7. (onsp (ons x y)) = t8. (onsp nil) = nil9. (ar (ons x y)) = x10. (dr (ons x y)) = y11. (onsp x) = t ! (ons (ar x) (dr x)) = xFig. 2. The Primitive Axioms for This PaperImpliit in this axiomatization is the logial infrastruture to do propositionalalulus and equality. That is, we take for granted the axioms and rules ofinferene allowing us to prove propositional tautologies, perform substitution ofequals for equals, et.We also give ourselves the ability to do indution on well-founded orderings.This involves some additional logial infrastruture, inluding an Indution Prin-iple, the introdution of the ordinals up to �0 = !!!::: , a well-founded relation



o< on suh ordinals, and axioms de�ning the size (measured with the funtional2-ount) of ACL2 objets. The most ommon use of o< is on natural num-bers, where it redues to the ordinary < relation.The indutive arguments required in this paper all use strutural indutionson lists and binary trees. With the infrastruture desribed above it an beshown that the sizes of (ar x) and (dr x) are eah smaller than the size ofx when (onsp x) is true. We an then use the Indution Priniple to prove anarbitrary formula, ( x y), where x and y are variable symbols, by proving aBase Case:(implies (not (onsp x)) ( x y))and anIndution Step:(implies (and (onsp x) ; test( (ar x) �1) ; indution hypothesis 1( (dr x) �2)) ; indution hypothesis 2( x y)) ; indution onlusionwhere the �i are arbitrary terms replaing the non-indution variable y. Ofourse, we often need only one of the two indution hypotheses; we an provideas many di�erent \opies" of a hypothesis we wish, using di�erent hoies of �ifor y; and we an use nests of ars and drs in the x position. Indeed, we mayprovide as an indution hypothesis any ( Æ �) suh that we an prove (implies(onsp x) (o< (al2-ount Æ) (al2-ount x))).It must be emphasized that ACL2's Indution Priniple is muh more generalthan the sheme above suggests. Below we state the Indution Priniple arefully,for those readers who are urious about it. In general in this doument we takethe position that you an learn to do muh with ACL2 by example and byelaboration, and in that spirit we shy away from the preise details. They maybe found, however, in [7℄.The Indution Priniple allows one to derive an arbitrary formula,  , from{ Base Case:(implies (and (not q1) : : : (not qk))  ), and{ Indution Step(s): For eah 1 � i � k,(implies (and qi  =�i;1 : : :  =�i;hi) ) ,provided that for terms m, q1; :::qk, and variable substitutions �i;j (1 � i �k; 1 � j � hi), the following are theorems:{ Ordinal Condition:(o-p m) , and{ Measure Condition(s): For eah 1 � i � k, and 1 � j � hi,(implies qi (o< m=�i;j m)) .



In the above, \�=�" represents the term or formula obtained by applying thevariable substitution � to the term or formula � , uniformly replaing all freeourrenes of the variables as indiated by the substitution.In other words, to prove  by indution, you may assume as many arbitraryinstanes of  as you want, as long as they make some ordinal-valued measureof the variables in  derease. The key to indution is well-foundedness and thekey to well-foundedness in ACL2 is the notion of the ordinals. The ordinals (upto �0 = !!!::: ) in ACL2 are reognized by the funtion o-p and ompared withthe relation o<. To learn more, see ordinals.ACL2 also has a De�nitional Priniple, implemented by defun. When a fun-tion de�nition is submitted, ACL2 must prove \measure onjetures" establish-ing that some measure of the arguments is dereasing in a well-founded wayunder the tests governing the reursion. Operationally, the validity of the mea-sure onjetures ensures that the reursion terminates; logially, it ensures thatthere exists a funtion satisfying the de�nitional equation. Only after these on-jetures are proved is the de�nitional equation \admitted" as a new axiom. Wedo not deal with termination further in this paper.So let's prove some theorems! Here is a funtion that \opies" a tree. Proveit is the identity funtion.(defun treeopy (x)(if (onsp x)(ons (treeopy (ar x))(treeopy (dr x)))x))Theorem (equal (treeopy x) x).Proof.Name the formula above *1.We prove *1 by indution. One indution sheme is suggested by this on-jeture { namely the one that unwinds the reursion in treeopy.If we let ( x) denote *1 above then the indution sheme we'll use is(and (implies (not (onsp x)) ( x))(implies (and (onsp x)( (ar x))( (dr x)))( x))).This indution is justi�ed by the same argument used to \admit" treeopy,namely, the size of x is dereasing aording a ertain well-founded relation.When applied to the goal at hand the above indution sheme produes thefollowing two nontautologial subgoals.Subgoal *1/2(implies (not (onsp x))(equal (treeopy x) x)).



But simpli�ation redues this to t, using the de�nition of treeopy and theprimitive axioms.Subgoal *1/1(implies (and (onsp x)(equal (treeopy (ar x)) (ar x))(equal (treeopy (dr x)) (dr x)))(equal (treeopy x) x)).But simpli�ation redues this to t, using the de�nition of treeopy and theprimitive axioms.That ompletes the proof of *1.Q.E.D.Let us look more losely at the redution of Subgoal *1/1. Consider the left-hand side of the onluding equality. Here is how it redues to the right-handside under the hypotheses.(treeopy x)= fdef treeopyg(if (onsp x)(ons (treeopy (ar x))(treeopy (dr x)))x)= fhypothesis 1 and Axiom 6g(if t(ons (treeopy (ar x))(treeopy (dr x)))x)= fAxioms 2 and 1g(ons (treeopy (ar x))(treeopy (dr x)))= fhypothesis 2g(ons (ar x)(treeopy (dr x)))= fhypothesis 3g(ons (ar x)(dr x))= fAxiom 11 and hypothesis 1gx



This proof is of a very routine nature: indut so as to unwind some partiularfuntion appearing in the onjeture and then use the axioms and de�nitions tosimplify eah ase to t.ExerisesProve eah of the formulas below. Don't use the ACL2 system! Work outthe proofs by hand. We want you to learn two things from these exerises: theimportane of hoosing the right variable to indut upon and what it means tosimplify a formula using de�nitions and axioms.Problem 5.1 (equal (app (app a b) ) (app a (app b ))).Problem 5.2 (equal (dup (app a b)) (app (dup a) (dup b))).Problem 5.3 (equal (dup (mapnil a)) (mapnil (dup a))).Problem 5.4 (properp (app a nil)).Problem 5.5 (equal (swaptree (swaptree x)) x).Problem 5.6 (equal (memp e (app a b)) (or (memp e a) (memp e b))).6 Three Basi Proof TehniquesThe proofs above are very routine { if the right indution argument is hosen.Eah proof has the \indut and simplify" struture mentioned earlier. The ACL2theorem prover uses an elaboration of that same strategy. In this setion webriey disuss three important tehniques used by ACL2: indution, rewriting,and inequality haining (linear arithmeti). The last two are the key parts of theACL2 simpli�er. The reader uninterested in the ACL2 system should read thissetion anyway! We explain why at the end.6.1 IndutionThe indution heuristi hooses an indution sheme based on the reursivelyde�ned funtions used in the onjeture. Sometimes the system synthesizes asheme by ombining two or more reursive shemes used in the formula.Consider Problem 5.6 above,(equal (memp e (app a b))(or (memp e a)(memp e b))).The suessful proof will be by indution on a, i.e., by unwinding the reursionin (memp e a). Why not indution on b? If you did the proof by hand you mighthave disovered that indution on b doesn't work.The basi idea is that if we indut on a, we get our indution hypothesis byreplaing eah a by (dr a). So where the indution onlusion has an a, theindution hypothesis will have a (dr a). In partiular, the terms (memp e a)and (memp e (app a b)), in the onlusion, orrespond to (memp e (dr a))



and (memp e (app (dr a) b)) in the hypothesis. But when we expand thede�nitions of memp and app in the onlusion, those expressions redue to theirorrespondents in the hypothesis!Now try the same indution on b. Where the onlusion has (memp e (appa b)) the hypothesis will have (memp e (app a (dr b))). And there is noway we an use the de�nitions of memp and app to redue the onlusion term tothe hypothesis term. The key observation is that the seond argument of app isheld onstant in the reursion of app, so induting on it is probably a bad idea.We say the indution on b here is \awed."ACL2 uses a variety of heuristis to selet an indution argument. If thesystem's hosen sheme is inappropriate, the user an speify a sheme with ahint; see hints.Choosing the right indution is ruial to a suessful proof. But there is anearlier, muh more subtle step: hoosing the right theorem to try to prove byindution!ExeriseProblem Try to prove the following speial ase of Problem 5.6 diretly byindution: (equal (memp e (app a a)) (mem e a)).If your goal is the above Problem, you will at some point have to provesomething muh more general, e.g., Problem 5.6 �rst.This is a partiularly trivial example of a phenomenon familiar to peopletrying to do indutive proofs. In indution, your main tool is the indutionhypothesis, whih is an instane of the onjeture you're trying to prove. If theonjeture you're trying to prove is not strong enough, your hypothesis will beuseless.Hint on How To Prove Things: Indution must be applied to strong theorems,not weak ones! Always try to invent the strongest theorems you an think of !By understanding the link between reursion and indution you an learn toantiipate many problems. The fat that (app x y) is de�ned to take the dr ofx while holding y onstant in the reursion is a sure sign that if y is the indutionvariable the proof will either fail or you will need a lemma that \moves a drout of the seond argument of app", i.e., a lemma that transforms (app x (dry)) to something involving (app x y) or vie versa.6.2 Simpli�ation via RewritingAs important as indution is, the key to any suessful proof is simpli�ation.Simpli�ation means the redution of the formula to some preferred form bythe use of rules. In ACL2, these rules are derived from axioms, de�nitions andpreviously proved theorems.The previous paragraph is inredibly important if you are going to learn touse the ACL2 system! You essentially program the ACL2 simpli�er by gettingthe system to prove theorems whih are then turned into rules. The preferred



form enfored by the system is largely determined by your rules. All the rulesever produed in a session are available to ACL2's simpli�er, so one you haveadded a rule it may partiipate in any subsequent proof unless you take ativesteps to disable it. To use ACL2, you must understand (a) how theorems areturned into rules, (b) what those rules make the simpli�er do, and () how todisable and enable rules.There are about a dozen kinds of rules in ACL2 and when a theorem isposed, the user spei�es the kind of rule to be produed from the theorem.See rule-lasses. In this doument we see only three spei�ations: make arewrite rule, make a linear arithmeti rule, or make no rule at all. In pratie,these three spei�ations often suÆe. The last is used when we have a theoremthat annot generate a useful rule { the only way suh a theorem an partiipatein a subsequent proof is by a user-spei�ed hint; see hints.By far the most ommon form of rule is the rewrite rule. It auses the sim-pli�er to replae one term by another, if ertain hypotheses an be establishedby rewriting. Rewrite rules are the most diret way to program the simpli�er.The rewrite rule derived from a formula of the form(implies (and hyp1 ... hypn) (equal lhs rhs))makes the simpli�er replae instanes of lhs (the left-hand side) by the orre-sponding instane of rhs, provided the orresponding instanes of eah of thehypi rewrites to true.Equivalent logial forms may give rise to radially di�erent rules and heneradially di�erent programmed behaviors! Consider the e�et of the (rule gener-ated from the) equivalent formula (implies (and hyp1 ...hypn) (equal rhslhs)).Hint on How To Prove Things: Give areful thought to the \preferred" formsyou use in your proofs and provide yourself with lemmas that allow you, insofaras possible, to anonialize terms.Hint on How To Prove Things: When using the ACL2 system, never provea named theorem without understanding its e�et as a rule!Some onventions make it possible to derive rewrite rules from a wide varietyof formulas. The onlusion an be (equal lhs rhs) or (iff lhs rhs). Thelatter kind of rule is used to replae lhs by rhs in \propositional" settings.ACL2 allows user-de�ned equivalene relations in rewrite rules, but we do notdisuss them; see equivalene and ongruene. If the onlusion, say, onl, isnot an equivalene, it is treated as though it were (iff onl t). If there areno hypotheses, it is as though there were just one: t. See rewrite.



6.3 Simpli�ation via Inequality ChainingWe have not disussed arithmeti { and we will not in this doument, exept fora few important observations in this setion.Hint on How To Prove Things: Realize that when you are dealing witharithmeti, your sense of what is \straightforward" has been honed by manyyears of drill-and-pratie with manipulating algebrai properties of numbers. Beprepared to \explain" formally why some arithmeti relations hold!Most of that drill-and-pratie is, tehnially speaking, the appliation of alarge set of rewrite rules to put arithmeti expressions into a preferred form.ACL2 does not ome pre-on�gured with those rules. But they are available inseveral di�erent olletions. In ACL2 a olletion of rules in a �le is alled a\book." The ACL2 distribution omes with several arithmeti books and theommunity is onstantly working on improving them. That is one of the reasonswe have several suh books now. Another is that di�erent books are designed fordi�erent kinds of problems: elementary algebrai properties of numbers, moduloarithmeti, oating point arithmeti. See the README.html �le in the bookssubdiretory of your ACL2 soure diretory, or else visit the Mathematial Toolslink on the ACL2 home page.Hint on How To Prove Things: If you are doing arithmeti proofs withACL2, start by inluding one of the arithmeti books into your sript. Themost ommonly used book is inluded by adding the ommand (inlude-book"arithmeti/top-with-meta" :dir :system).Finally, you should be aware that often in arithmeti reasoning you do a kinda inequality haining that \feels" like rewriting but is not.Consider a theorem that onludes with an arithmeti inequality, suh as (<=0 (* x x)). This says \x squared is nonnegative." 2 If it is used to generate arewrite rule, the rule will replae ertain instanes of (<= 0 (* x x)) by t. Thisdoes not help us muh if we are trying to prove that (+ a (* b b)) is positivewhen a is positive. But ACL2 maintains a graph of terms involved in the urrentonjeture and relates the terms in this graph with inequalities. It ontains a de-ision proedure for answering questions about linear arithmeti { the fragmentof arithmeti onsisting of inequalities, addition, and multipliation by onstants{ based on the property that inequalities an be added. People sometimes allthis \inequality haining." Suh haining an be used to derive (<= 0 (+ a (*b b))) from (<= 0 a) and (<= 0 (* b b)). But if we are trying to prove(implies (and (<= 0 a) (rationalp b)) (<= 0 (+ a (* b b))))the graph ontains no node for (* b b) { beause that term is not omparedto any other term { and no haining is possible. However, if the rule aboveabout (<= 0 (* x x)) is available as a linear arithmeti rule instead of as a2 This is not always true: x may be omplex. But we're imagining this inequality asthe onlusion of a suitable impliation.



rewrite rule it auses the following behavior: whenever an instane of (* x x)enters the problem, the inequality graph is extended with a node for the orre-sponding instane and it is linked to other nodes as desribed by the onlusionof the linear rule. This extends range of the haining deision proedure. Seelinear-arithmeti.Hint on How To Prove Things: Realize that when you are dealing witharithmeti you may be doing inequality haining, not replaement of equals byequals, and make that form of reasoning expliit in your notation.This disussion of rewrite versus linear rules is of general interest beausemost mathematial fats have impliit operational import. This disussion illus-trates that. When you disover a new fat, what do you do with it? Do youstore it, unanalyzed, in a long list of things you know and revisit them all everytime you are asked to prove something? Or do you see ways you an use andremember the new fat? This is a diÆult introspetive question to answer {and the answer is probably \some of eah" { but it is important to rememberthat many years of seondary shool and ollege mathematis have taught youhow to use ertain forms of fats, e.g., assoiativity, ommutativity, identities,idempotene, inequality haining, anellation, et.Hint on How To Prove Things: Every time you enounter a new theoremyou should give thought to how it is to be used in subsequent proofs.6.4 Some ACL2-Spei� DetailsThe rest of this setion is mainly of interest to potential ACL2 users, but ontainsa few useful hints of more general interest.To prove a named theorem with ACL2, use (defthm name term) if youwant term used as a rewrite rule. Use (defthm name term :rule-lasses:linear) if you want term used to extend the linear arithmeti inequalitygraph. This is possible only if term is an arithmeti inequality, i.e., (< lhsrhs), (<= lhs rhs), (>= lhs rhs), (> lhs rhs), (equal lhs rhs), or (not(equal lhs rhs)), where, for the last two, lhs and rhs are numerially val-ued expressions. If you want no rule generated from term, use (defthm nameterm :rule-lasses nil).Note arefully: if you just use the simple form of defthm to prove a namedtheorem, you are telling ACL2 to use it as a rewrite rule!If you need to supply hints to the theorem prover, use the optional :hints\keyword argument," e.g., write(defthm name term :hints hints)or(defthm name term:hints hints:rule-lasses lasses).



. See hints.Finally, if you have proved a rule named name and want to disable it so thatACL2 no longer onsiders applying it, use (in-theory (disable name)). Toundo that, use (in-theory (enable name)). It is possible to ollet groups ofnames together so as to enable and disable them in onert. Eah suh grouprepresents a strategy. See theories.The ommand(defthm app-right-identity(implies (properp x) (equal (app x nil) x)))ommands ACL2 to prove the formula named app-right-identity and store itas a rewrite rule if the proof is suessful. The rule generated rewrites instanesof (app x nil). After app-right-identity has been proved, if the simpli�erenounters a target term like (app (rev (app a b)) nil) it will try the rule,beause the target mathes (is an instane of) (app x nil). The substitutionprodued by the mathing proess binds the variable symbol x, from the rule, to(rev (app a b)), from the target. To apply the rule, the simpli�er onsidersthe \orresponding instane" of (properp x), namely (properp (rev (app ab))). It tries to rewrite this to true. If it an, it will replae the target bythe \orresponding instane" of the right-hand side from the rule. Thus, it willreplae the target by (rev (app a b)).Consider what would happen if you proved a rule that rewrites lhs to rhs andanother rule that rewrites rhs to lhs. More ompliated yles are more likely,of ourse. ACL2 has speial heuristis for handling ommutativity and similarlysimple permutative rules. But in general ACL2's simpli�er an be made to loopforever by programming it with irular rules. Suh behavior will generally bereported by the simpli�er together with instrutions for how to debug the failure.Hint on How To Prove Things: Ensure that your rules do not loop! One wayto do this is to keep in mind some ordering on your preferred terms and be surethat the right-hand side of eah rule is lower in this ordering than the left-handside.You may sometimes wish to interrupt the theorem prover, e.g., beause ofa \runaway proof." To interrupt the ACL2 prover while using it under Emas,type trl- trl-. This will leave you in a Common Lisp (not ACL2!) read-eval-print break. To this break you should type the ommand that aborts aninterrupted Common Lisp omputation. That ommand varies aording to yourhost Lisp. If you are running GCL, type :q followed by enter; if you are runningAllegro, type :reset followed by enter; if you are running CMU CL, type q,followed by enter; if you are running MCL, type :pop.Hint on How To Prove Things: De�nitions are (generally) used as expansionrules, i.e., funtion alls are replaed by their instantiated bodies. This imposesa restrition on your hoie of preferred forms: funtion bodies are preferable



to funtion alls. If you want to override that built-in preferene in ACL2, youshould disable the funtions after proving the rules you need about them.You might wonder how ACL2 an replae funtion alls by their bodies andnot loop inde�nitely on reursive de�nitions. The answer is that ACL2 ontainsheuristis for ontrolling the expansion of reursive de�nitions. These heuristisgenerally do a good job and most users �nd it better to arrange their rewriterules to be ompatible with these heuristis than to �ght the heuristis.To simplify a formula, the ACL2 simpli�er rewrites the formula from left-to-right and inside-out. Thus, a rule with the left-hand side (foo (ar (ons xy))) will never be applied! Why? The only possible target term for this prob-lemati rule is of the form (foo (ar (ons � �))). But the ACL2 simpli�ersweeps inside-out, so the problemati rule is not tried until the interior termsof the target have been rewritten. Given the rule that redues (ar (ons xy)) to x (whih is derived from primitive Axiom 9 of Figure 5), the target willhave been transformed to (foo �) before the problemati rule is tried. It willtherefore fail to math.Hint on How To Prove Things: When designing your rewrite rules, be surethe left-hand sides are in your preferred form!7 ACL2's Proof StrategyRather than \indut and simplify," ACL2's strategy is \simplify (and some otherthings), indut and repeat." The reason ACL2's strategy looks like \indut andsimplify" is that, often, the initial simpli�ation does not hange the goal formulaso it looks like ACL2 immediately went to indution. Some theorems are provedby the initial simpli�ation and no indution is used. It is possible to programACL2's simpli�er so that almost every proof that ACL2 an do an be put intothe \simplify, indut and simplify" form, by proving appropriate lemmas �rst.We reommend that new users onentrate on produing proofs in that form.Hint on How To Prove Things: Keep your proofs in the \simplify, indut,simplify" form. That is, identify eah indutively proved lemma you need in aproof, write it down, and give it a name. Do not get into the habit of letting theACL2 prover invent and indutively prove lemmas \on the y" in the middle ofother proofs. It is better that you understand and ontrol the lemma deomposi-tion of your theorems.ExeriseProblem 7.1 Run the ACL2 theorem prover on eah of Problems 5.1 { 5.6.You will �nd that ACL2's strategy �nds proofs for eah of these automatially{ at least if you de�ned the various funtions the way we did. See Appendix A.Here is the output produed by ACL2 Version 2.8 on Problem 4.6. The �rstform is our input, typed as a defthm ommand at the ACL2 prompt. Note that



ACL2's initial simpli�ation splits the onjeture into two parts, Subgoal 2 andSubgoal 1, aording to whether (memp e a). Upon exploring the proof spaea little further, ACL2 learns it will have to takle both by indution. It thendisards the simpli�ation work, baks up to the original theorem, and sets upan indution argument on that instead.3It uses :p to represent the theorem shematially, where we used  above. Itsindution argument has two base ases; Subgoal *1/3 handles the ase when ais not a onsp; Subgoal *1/1 handles the ase when a is a onsp but its �rstelement is e. This is the indution sheme neessary to unwind (mem e a).ACL2 prints terms in upperase. We have lowered the ase below to keepthe typography onsistent with this paper. In the subset of ACL2 used in thispaper, Lisp is ase insensitive exept for string onstants.ACL2 !>(defthm memp-app(equal (memp e (app a b))(or (memp e a) (memp e b))))This simplifies, using the :type-presription rule memp,to the following two onjetures.Subgoal 2(implies (memp e a)(equal (memp e (app a b)) t)).This simplifies, using primitive type reasoning and the:type-presription rule memp, toSubgoal 2'(implies (memp e a) (memp e (app a b))).Name the formula above *1.Subgoal 1(implies (not (memp e a))(equal (memp e (app a b)) (memp e b))).Normally we would attempt to prove this formula by indution.However, we prefer in this instane to fous on the originalinput onjeture rather than this simplified speial ase.We therefore abandon our previous work on this onjetureand reassign the name *1 to the original onjeture.(See :DOC otf-flg.)Perhaps we an prove *1 by indution. Four indutionshemes are suggested by this onjeture. Subsumption3 In general, the original theorem is stronger than any single speial ase of it and isoften the better theorem to try by indution. In this partiular ase, the two subgoalsare eah strong enough to be indutively provable.



redues that number to three. These merge into two derivedindution shemes. However, one of these is flawed andso we are left with one viable andidate.We will indut aording to a sheme suggested by (memp e a),but modified to aommodate (app a b). These suggestionswere produed using the :indution rules app and memp.If we let (:p a b e) denote *1 above then the indutionsheme we'll use is(and (implies (not (onsp a)) (:p a b e))(implies (and (onsp a)(not (equal e (ar a)))(:p (dr a) b e))(:p a b e))(implies (and (onsp a) (equal e (ar a)))(:p a b e))).This indution is justified by the same argument usedto admit memp, namely, the measure (al2-ount a) is dereasingaording to the relation o< (whih is known to be well-founded on the domain reognized by o-p). When appliedto the goal at hand the above indution sheme produesthe following three nontautologial subgoals.Subgoal *1/3(implies (not (onsp a))(equal (memp e (app a b))(or (memp e a) (memp e b)))).But simplifiation redues this to t, using the :definitionsapp and memp and primitive type reasoning.Subgoal *1/2(implies (and (onsp a)(not (equal e (ar a)))(equal (memp e (app (dr a) b))(or (memp e (dr a)) (memp e b))))(equal (memp e (app a b))(or (memp e a) (memp e b)))).But simplifiation redues this to t, using the :definitionsapp and memp, the :exeutable-ounterpart of equal, primitivetype reasoning, the :rewrite rules ar-ons and dr-onsand the :type-presription rule memp.Subgoal *1/1(implies (and (onsp a) (equal e (ar a)))(equal (memp e (app a b))(or (memp e a) (memp e b)))).But simplifiation redues this to t, using the :definitions



app and memp, the :exeutable-ounterpart of equal, primitivetype reasoning and the :rewrite rule ar-ons.That ompletes the proof of *1.Q.E.D.SummaryForm: ( defthm memp-app ...)Rules: ((:definition app)(:definition memp)(:exeutable-ounterpart equal)(:fake-rune-for-type-set nil)(:indution app)(:indution memp)(:rewrite ar-ons)(:rewrite dr-ons)(:type-presription memp))Warnings: NoneTime: 0.01 seonds (prove: 0.00, print: 0.01, other: 0.00)memp-appACL2 !>8 Deomposition into Lemmas { The MethodHint on How To Prove Things:When onsidering a new onjeture to prove,look for general theorems that an be used to prove it by simpli�ation { rewritingand haining { before you onsider proving it by indution.This is probably the most important, and most vague, advie we have. Weillustrate it below by proving a little theorem. In our illustration, we use theACL2 theorem prover to do a lot of the work for us, but the general priniplesapply whenever you are doing an \indut and simplify" proof. The spei� outputwe display was produed by ACL2 Version 2.8 after de�ning the funtions andproving the theorems in the exerises above.Let us prove (equal (rev (rev (rev x))) (rev x)). We all this theorem\triple rev." What more general fat does it suggest?Hint on How To Prove Things: Look for pairs of adjaent funtion symbolsand try to think of rules that simplify those expressions.You have probably thought of the onjeture (equal (rev (rev z)) z).But is (equal (rev (rev z)) z) a theorem? Is it always true? Consider thepossibility that z is 7. The left-hand side omputes to nil but the right-handside is 7. So this is not a theorem. We might then restrit z to satisfy onsp. But



would that be a theorem? Consider the ase when z is '(1 . 7). The left-handside is (1) and the right-hand side is (1 . 7).Hint on How To Prove Things: When forming new onjetures, test themon onstants.Sine ACL2 is a programming language, you an usually run your onje-tures on a few examples. One ould type (let ((x '(1 . 7))) (equal (rev(rev x)) x)) to run the seond test above; the result is nil. We often do:set-guard-heking nil when we are running tests, so that ACL2 does notrejet the test simply beause it violates the impliit type onstraints on Lispprimitives. See set-guard-heking.Consider for a moment the expeted input to rev. Rev drs down its argu-ment until it is no longer a onsp and then laims its reverse is nil. Impliitlythen, rev \expets" its argument to be a proper list. Thus, the �rst part of ourattak on the triple rev problem is to prove:(defthm rev-rev(implies (properp z)(equal (rev (rev z)) z)))In a fully-typed language, we might not need the expliit hypothesis that z is aproper list. But we are in an untyped language and must make these restritionsexpliit.Hint on How To Prove Things: Often you will have to invent new onepts{ onepts not involved in your main theorem { to state the lemmas you need.It is surprising how often people resist adding a new de�nition, even of aonept they learly have in mind. If you restrit your prediates to things likeonsp, there is no way you an state an indutively provable version of (equal(rev (rev x)) x). You have to introdue the new onept of \proper list" tostate the theorem.Suppose we had proved rev-rev. Could we prove the triple rev theorem?Answer: Not unless we knew the following.(defthm properp-rev(properp (rev x)))Hint on How To Prove Things: If you have introdued hypotheses in yourlemmas, be sure you prove that the appropriate terms satisfy those hypotheses.Is the properp-rev onjeture true? Does rev always return a proper list,even when its input is improper? Yes! Beause it either returns nil or a listit produes by appending a proper list (a singleton list) to the right of thereursively produed answer. So here is a theorem, properp-rev, that is strongerthan we might have produed in a strongly typed language, i.e., there is norestrition that x be proper.Thus, we have designed the following proof sript:



; --- Sript for proving triple-rev ---(defthm rev-rev(implies (properp z)(equal (rev (rev z)) z)))(defthm properp-rev(properp (rev x)))(defthm triple-rev(equal (rev (rev (rev a))) (rev a))); --- The End ---This plan illustrates an important adage:Hint on How To Prove Things: Separate your onerns!In the triple rev problem, the onept of properp neatly divides the problem.We �rst prove that the omposition of two revs is the identity on proper lists.We then prove that (rev a) is a proper list. To separate the two parts of theproblem we had to think of the idea of a proper list. Notie that this is not onlya nie plan for proving the triple rev theorem but it leaves us in exellent shapeto prove other theorems, like (equal (rev (rev (dup a))) (dup a)), whereall we have to do is prove that dup returns a proper list.No further deomposition of our plan omes to mind, so now let us prove the�rst one indutively. What we are doing is following our method of using thesript bu�er, with the \ursor" positioned just before the rev-rev theorem.When we submit the rev-rev event, a suessful proof desription ashes by.We annot read it as it ashes by, but the �nal two lines are:Time: 0.03 seonds (prove: 0.02, print: 0.01, other: 0.00)REV-REVwhereas the �nal line in a failed proof is always*** FAILED *** See :DOC failure *** FAILED ***This suess may appear to be good news, but a few lines above the suessfulonlusion are the linesThat ompletes the proofs of *1.1 and *1.Q.E.D.whih tell the informed reader that ACL2 did (at least) a seond indution (toprove *1.1) and so the proof is at least of the form \indut, simplify, indut,simplify."We don't know what intermediate lemmaACL2 disovered and proved,but we know it used indution twie in this proof! Sine we reommend thatnovies stik to the \simplify, indut, simplify" strategy, you should undo thenewly proved theorem { remember, it has just added a rule to ACL2 database!



{ with :u (see u, ubt, pbt) and then read the generated proof sript from thetop down.Hint on How To Prove Things: We reommend that the novie ACL2 usernot rely on ACL2's reative ontributions in the beginning. As the problems be-ome harder, ACL2's reative ontributions ount for less and less { and itsability to arry out massive automati simpli�ations using user-spei�ed rulesounts for more and more. So the novie is enouraged to learn to spot the needfor rules and to program ACL2 to use them.Here is the �rst part of ACL2's proof attempt on rev-rev. Read it, just asyou would a human-generated proof sketh.ACL2 !>(defthm rev-rev(implies (properp z)(equal (rev (rev z)) z)))Name the formula above *1.Perhaps we an prove *1 by indution. Two indution shemesare suggested by this onjeture. Subsumption reduesthat number to one.We will indut aording to a sheme suggested by (rev z).This suggestion was produed using the :indution rulesproperp and rev. If we let (:p z) denote *1 above thenthe indution sheme we'll use is(and (implies (not (onsp z)) (:p z))(implies (and (onsp z) (:p (dr z)))(:p z))).This indution is justified by the same argument usedto admit rev, namely, the measure (al2-ount z) is dereasingaording to the relation o< (whih is known to be well-founded on the domain reognized by o-p). When appliedto the goal at hand the above indution sheme produesthe following three nontautologial subgoals.Subgoal *1/3(implies (and (not (onsp z)) (properp z))(equal (rev (rev z)) z)).But simplifiation redues this to t, using the :definitionproperp, the :exeutable-ounterparts of onsp, equaland rev and primitive type reasoning.Subgoal *1/2(implies (and (onsp z)(equal (rev (rev (dr z))) (dr z))(properp z))(equal (rev (rev z)) z)).



This simplifies, using the :definitions properp and rev,toSubgoal *1/2'(implies (and (onsp z)(equal (rev (rev (dr z))) (dr z))(properp (dr z)))(equal (rev (app (rev (dr z)) (list (ar z))))z)).The destrutor terms (ar z) and (dr z) an be eliminatedby using ar-dr-elim to replae z by (ons z1 z2), (ar z)by z1 and (dr z) by z2. This produes the followinggoal.The step after Subgoal *1/2' is not a simpli�ation, so the proof does nothave the \simplify, indut, simplify" form we reommend for novies. In parti-ular, Subgoal *1/2' is the �rst formula after the indution that was not provedby simpli�ation. We all this formula a hekpoint. Learn to reognize them!There are two main kinds of hekpoint formulas. The �rst is any formulaproved by indution. In reading ACL2 output, we avoid reading past an indutionwithout asking ourselves whether the formula being proved \needs" to be provedby indution and whether the seleted indution is appropriate for it.The other kind of hekpoint formula is the �rst formula after an indutionthat is not proved by repeated simpli�ation. That is the ase for Subgoal *1/2'above.There is an Emas utility that will automatially take you to the hekpointsof a proof attempt; see proof-tree.Hint on How To Prove Things:Whenever a proof fails (or you want to reduea proof to the reommended form), read the formula at the �rst hekpoint andlook for a lemma deomposition. Sometimes, it helps to read a few formulas pastthe �rst hekpoint { often ACL2's heuristis ome fairly lose to generating theneeded lemma, or at least reating a term that will suggest the lemma to you. Soif the hekpoint does not suggest anything, read on.What lemma is suggested by the hekpoint formula?Subgoal *1/2'(implies (and (onsp z)(equal (rev (rev (dr z))) (dr z))(properp (dr z)))(equal (rev (app (rev (dr z)) (list (ar z))))z)).Reall an earlier Hint on How To Prove Things: Look for pairs of adjaentfuntion symbols and try to think of rules that simplify those expressions. We



see a subterm of the above hekpoint formula that has the form (rev (app...)). Note that in the hekpoint formula, if we ould move that outer revpast the app so that it nestles around the inner rev, we will have reprodued theindution hypothesis term, (rev (rev (dr z))) and ould use our indutionhypothesis!So what is a lemma that simpli�es (rev (app a b))? And, if you are to usethe \Note" just above, you ould ask yourself: What is a lemma that relates (rev(app a b)) to (rev a)? Some thought, and perhaps some testing, produes thebeautiful lemma:(defthm rev-app(equal (rev (app a b)) (app (rev b) (rev a))))Add this form to the sript bu�er, just in front of rev-rev, and repeat.This proof fails, and the hekpoint formula isSubgoal *1/2'(implies (not (onsp a))(equal (rev b) (app (rev b) nil))).What does this suggest? Remember the hints on how to prove things!The lemma suggested is that nil is a right identity for app. But of ourse itis not quite! It is a right identity for proper lists.(defthm app-right-identity(implies (properp x)(equal (app x nil) x)))But to use this theorem we must also know that (rev b), from Subgoal *1/2',is proper. We've already posed that theorem in our sript { we needed it forour proof sketh of triple-rev { and so we move it forward in our sript.4So now our sript looks like this and we are still at the top!; --- Sript for proving triple-rev ---(defthm app-right-identity(implies (properp x)(equal (app x nil) x)))(defthm properp-rev(properp (rev x)))(defthm rev-app(equal (rev (app a b))(app (rev b) (rev a))))(defthm rev-rev(implies (properp z)(equal (rev (rev z)) z)))(defthm triple-rev(equal (rev (rev (rev a))) (rev a)))4 This fat, that lemmas invented for one proof may atually be useful in earlier proofs,is one of the reasons it is hard to build a rigid interfae that enfores some kind ofstak of proof plans: evolving plans an ause non-loal rearrangements.



; --- The End ---When we submit properp-rev it sueeds but we see the line that meansmultiple indutions were used:That ompletes the proofs of *1.1 and *1.so we undo with :u and read the hekpoint.Subgoal *1/1'(implies (and (onsp x) (properp (rev (dr x))))(properp (app (rev (dr x)) (list (ar x)))))The pair of funtion symbols that leap out now are properp and app. Notethat this is an instane of our advie about proving rules to simplify terms in-volving pairs of adjaent funtion symbols. Under what onditions is (properp(app a b)) true? It depends on whether (properp b) is true. This suggests(implies (properp b) (properp (app a b))). But that is a fairly weak the-orem and as a rewrite rule it means: whenever you see (properp (app a b))bakhain to (properp b) and if you an establish it, rewrite the target to t.Can we do better?Yes! Consider the theorem(defthm properp-app(equal (properp (app a b))(properp b)))This is stronger than the mere impliation. Furthermore, it is indeed a theorem!The rule generated from it allows the unonditional elimination of (properp(app a b)) in favor of the simpler (properp b).So we hange our sript again to what is shown below. This time, everysuessive form in it is proessed suessfully in the \simplify, indut, simplify"strategy.; --- Sript for proving triple-rev ---(defthm properp-app(equal (properp (app a b))(properp b)))(defthm app-right-identity(implies (properp x)(equal (app x nil) x)))(defthm properp-rev(properp (rev x)))(defthm rev-app(equal (rev (app a b))(app (rev b) (rev a))))(defthm rev-rev(implies (properp z)(equal (rev (rev z)) z)))(defthm triple-rev



(equal (rev (rev (rev a))) (rev a))); --- The End ---The last proof above onsists of a single simpli�ation, just as we planned.ACL2 !>(defthm triple-rev(equal (rev (rev (rev a))) (rev a)))But simplifiation redues this to t, using primitivetype reasoning and the :rewrite rules properp-rev andrev-rev.Q.E.D.SummaryForm: ( defthm triple-rev ...)Rules: ((:fake-rune-for-type-set nil)(:rewrite properp-rev)(:rewrite rev-rev))Warnings: NoneTime: 0.00 seonds (prove: 0.00, print: 0.00, other: 0.00)triple-revHowever, if we look one more time at the proof output, we again see the linethat means multiple indutions were usedThat ompletes the proofs of *1.1 and *1.| this time in the proof of rev-app. So we undo with :u and read the hekpoint.Subgoal *1/1'(implies (and (onsp a)(equal (rev (app (dr a) b))(app (rev b) (rev (dr a)))))(equal (app (rev (app (dr a) b))(list (ar a)))(app (rev b)(app (rev (dr a)) (list (ar a)))))).The destrutor terms (CAR A) and (CDR A) an be eliminated byusing CAR-CDR-ELIM to replae A by (CONS A1 A2), (CAR A) by A1and (CDR A) by A2. This produes the following goal.This time, no rules our to us that would further the simpli�ation proess, sowe allow the theorem prover to use destrutor elimination, and read further tosee if any subgoals suggest a rule that an avoid multiple indutions.Subgoal *1/1'5'(equal (app (app rv0 rv) (list a1))(app rv0 (app rv (list a1)))).



Name the formula above *1.1.We an now will disover a lemma stating that app is an assoiative opera-tion, shown as lemma app-asso below. With this addition, the proof sueedswithout multiple indutions.; --- Sript for proving triple-rev ---(defthm properp-app(equal (properp (app a b))(properp b)))(defthm app-right-identity(implies (properp x)(equal (app x nil) x)))(defthm properp-rev(properp (rev x)))(defthm app-asso(equal (app (app a b) )(app a (app b ))))(defthm rev-app(equal (rev (app a b))(app (rev b) (rev a))))(defthm rev-rev(implies (properp z)(equal (rev (rev z)) z)))(defthm triple-rev(equal (rev (rev (rev a))) (rev a))); --- The End ---Note that one side-e�et of our reommended reliane on \simplify, indut,simplify" is that it auses us to think about the general rules for manipulatingthe funtion symbols of the problem and to state them as lemmas. Had we reliedon ACL2's reative ontributions, we would not have identi�ed so many goodrules about rev, app, and properp.Note also that sine the �nal theorem is proved by rewriting with two existingrules, there is no need to enshrine triple-rev as a rule itself. Our subsequentrule library is a little smaller if we hange the last form in the sript to(defthm triple-rev(equal (rev (rev (rev a))) (rev a)):rule-lasses nil)The general proedure we have just desribed is alled \The Method" in [6℄and desribed in the doumentation for The-Method.ExerisesUse The Method to �nd proofs for eah of the theorems below using ACL2.Problem 8.1



(implies (memp e )(memp e (rev (dup (dup ))))Problem 8.2(equal (leaves (swaptree x))(rev (leaves x)))where leaves is de�ned as(defun leaves (x)(if (onsp x)(app (leaves (ar x)) (leaves (dr x)))(ons x nil)))Problem 8.3(subp x x)Problem 8.4(implies (properp x)(equal (int x x) x))Problem 8.5(implies (and (subp x y)(subp y z))(subp x z))Problem 8.6(subp (app a a) a)Problem 8.7(seteqp (rev a) a)where seteqp (\set equality") is de�ned as(defun seteqp (x y)(and (subp x y)(subp y x)))Note: Note that after proving that (rev a) is set-equivalent to a there is anatural expetation that ACL2 will replae (rev a) by a where ever it sees itused as a set. But seteqp is not equal! But ACL2 supports the introdution of



user-de�ned equivalene rules and the kind of generalized rewriting just hintedat. See equivalene and ongruene.Problem 8.8(seteqp (app a b) (app b a))Problem 8.9(equal (leaves (leaves x)) (app (leaves x) '(nil)))Problem 8.10(iff (memp e (lonesomes x))(and (memp e (leaves x))(lonesomep e (leaves x))))Problem 8.11(equal (raise b (add i j))(mult (raise b i) (raise b j)))where add, mult, and raise are de�ned to be list-based analogues of addition,multipliation, and exponentiation. In this analogial setting, numbers (reog-nized by nump) are represented by lists of nils of the appropriate length. Ofourse, ACL2 supports arithmeti but by simulating it in these exerises wefore you to invent a lot of lemmas!(defun nump (x)(if (onsp x)(and (equal (ar x) nil)(nump (dr x)))(equal x nil)))(defun add (x y)(if (onsp x)(ons nil (add (dr x) y))(mapnil y)))(defun mult (x y)(if (onsp x)(add y (mult (dr x) y))nil))(defun raise (x y)(if (onsp y)(mult x (raise x (dr y)))'(nil)))Problem 8.12



(defthm add-ommutativity(equal (add i j) (add j i)))Hint on How To Prove Things: When you know a funtion is ommutative,use that fat to arrange the arguments in some anonial order. Thus, if add isknown to be ommutative, then whenever you see (add b a), rewrite it to (adda b). But do not use the rule the other way { to move things out of order { oryou will loop forever! ACL2 uses this heuristi and uses a lexiographi orderingon terms.Problem 8.13(defthm add-ommutativity2(equal (add i (add j k)) (add j (add i k))))Hint on How To Prove Things: The heuristi advie about ommutative fun-tions does not help you if you are rewriting (add b (add a )) beause the or-dering (probably) will not prefer (add a ) over b. But the theorem above, whihwe all a \ommutativity2" theorem, allows an appropriate swap and ACL2 usessuh theorems to arrange the ordering of terms. Given assoiativity, ommu-tativity, ommutativity2, and these heuristis, you an arrange nests of suhfuntions into right-assoiated form with the arguments asending in the order.That is what ACL2 does.Problem 8.14(defthm mult-ommutativity(equal (mult i j) (mult j i)))Problem 8.15(defthm mult-ommutativity2(equal (mult i (mult j k)) (mult j (mult i k))))9 AumulatorsA ommon form of reursion is to derement some argument while buildingthe �nal answer in another. This allows the funtion to inspet the partiallyomputed answer. In addition, suh funtions are often the funtional expressionof an iterative proess and are preferred over other forms of reursion beausethey are tail-reursive, thus allowing ompilers to make optimizations that (forexample) avoid stak overows. The arguments that are being built up are alled\aumulators." Proving theorems about aumulator-using funtions frequentlyrequires are in stating suÆiently general theorems.



Consider, for example, the hallenge of reversing a list. One de�nition is(defun rev (x)(if (onsp x)(app (rev (dr x)) (ons (ar x) nil))nil))This de�nition su�ers two ineÆienies in terms of the resoures required toexeute it. The �rst is that it requires stak spae proportional to the length ofthe list, beause for every ons in the dr-hain of the input, exeution mustpush a new stak frame so that it an \remember" to do the app. The seondis that the app opies the list returned by the reursive all and returns theopy; the memory alloated to reating the reursive all's answer is unreahable\garbage" as soon as the app has �nished with it.The following tail-reursive version eliminates both of these drawbaks.(defun rev1 (x a)(if (onsp x)(rev1 (dr x) (ons (ar x) a))a))This is the funtional expression of the ode fragment:while onsp(x) f a = ons(ar(x),a); x = dr(x);g;return a;It is the same as rev if a is initialized to nil. For example, (rev1 '(1 2 3)nil) is '(3 2 1).Suppose we wanted to prove (equal (rev1 x nil) (rev x)). Think aboutproving this by indution. It is lear we should indut on x by dr. The indutionhypothesis is about (rev1 (dr x) nil). The indution onlusion is about(rev1 x nil). When we expand that term in the onlusion it beomes (rev1(dr x) (ons (ar x) nil)). Note that the rev1 term in the hypothesis doesnot math the rev1 term in the onlusion. In the hypothesis, the aumulatoris nil but in the expanded onlusion it is (ons (ar x) nil). We wouldlike to \instantiate" nil to be (ons (ar x) nil), but of ourse we annotinstantiate anything but a variable.This theorem is not strong enough to be indutively provable. If we think ofrev1 as an expression of an iteration, then the main theorem we are proving isabout the �rst entry to the loop (when a is nil) and we must think about anarbitrary entry to the loop. Put another way, instead of thinking about (rev1 xnil) we must think about (rev1 x a). This is just the generalization problem.So what is the relation between (rev1 x a) and (rev x)? One way to helpdisover the general form of the theorem we are seeking is to try a few examples.For example, (rev1 '(1 2 3) '(4 5 6)) is (3 2 1 4 5 6).The obvious general form of the theorem is (equal (rev1 x a) (app (revx) a)).Hint on How To Prove Things: When dealing with a funtion that has anaumulator argument, never try to prove a theorem about the funtion by indu-



tion unless the aumulator argument is a variable symbol. That is, think aboutthe most general legal all of the funtion, not the initial all.As soon as you replae the nil in (rev1 x nil) by a new variable symbola you are onfronted with the problem: what happens to a on the other side ofthe theorem? In this ase, we use app to \onnet" the expeted answer, (revx), to the initial value of a. It is nie that app is already known to us. Often,however, you will have to invent a new funtion to relate the �nal answer to theinitial value of the aumulator. This suggests the advie given earlier: do notbe afraid to introdue new onepts to explain what is happening.Now onsider proving (equal (rev1 x a) (app (rev x) a)) by indution.The Indution Priniple allows us to replae a in the hypothesis by any term wewish, if we are induting on x (replaing x by the smaller (dr x)). So whiha do we hoose? The answer is obvious: the a that we will need if we expand(rev1 x a) in the onlusion. In partiular, the hoie of a in the hypothesis is(ons (ar x) a).Here is ACL2's proof of the theorem. Note how trivial it is.(defthm rev1-is-app-rev(equal (rev1 x a) (app (rev x) a)))Name the formula above *1.Perhaps we an prove *1 by indution. Two indution shemesare suggested by this onjeture. Subsumption reduesthat number to one.We will indut aording to a sheme suggested by (rev1 x a).This suggestion was produed using the :indution rulesrev and rev1. If we let (:p a x) denote *1 above thenthe indution sheme we'll use is(and (implies (not (onsp x)) (:p a x))(implies (and (onsp x)(:p (ons (ar x) a) (dr x)))(:p a x))).This indution is justified by the same argument usedto admit rev1, namely, the measure (al2-ount x) is dereasingaording to the relation o< (whih is known to be well-founded on the domain reognized by o-p). Note, however,that the unmeasured variable a is being instantiated.When applied to the goal at hand the above indution shemeprodues the following two nontautologial subgoals.Subgoal *1/2(implies (not (onsp x))(equal (rev1 x a) (app (rev x) a))).But simplifiation redues this to t, using the :definitionsapp, rev and rev1, the :exeutable-ounterpart of onsp



and primitive type reasoning.Subgoal *1/1(implies (and (onsp x)(equal (rev1 (dr x) (ons (ar x) a))(app (rev (dr x)) (ons (ar x) a))))(equal (rev1 x a) (app (rev x) a))).But simplifiation redues this to t, using the :definitionsapp, rev and rev1, the :exeutable-ounterpart of onsp,primitive type reasoning and the :rewrite rules assoiativity-of-app, ar-ons and dr-ons.That ompletes the proof of *1.Q.E.D.SummaryForm: ( defthm rev1-is-app-rev ...)Rules: ((:definition app)(:definition rev)(:definition rev1)(:exeutable-ounterpart onsp)(:fake-rune-for-type-set nil)(:indution rev)(:indution rev1)(:rewrite assoiativity-of-app)(:rewrite ar-ons)(:rewrite dr-ons))Warnings: NoneTime: 0.01 seonds (prove: 0.01, print: 0.00, other: 0.00)rev1-is-app-revACL2 !>Note how we oriented the rewrite rule generated from rev1-is-app-rev: weeliminate rev1 in favor of the nier funtions app and rev. While rev1 is ompu-tationally eÆient, it is often hard to state indutively provable theorems aboutit beause the aumulator argument must always be oupied by a variablesymbol.Hint on How To Prove Things: When you disover a general theorem aboutan aumulator-using funtion relating it to primitive reursive funtions, use thenew theorem to eliminate the aumulator-using funtion from future problems.ExerisesUse The Method to �nd proofs for eah of the theorems below.Problem 9.1 The following two funtions are nump analogues of fatorial. Provethey are equivalent:



(equal (fat1 n '(nil)) (fat n)) ; '(nil) is ``one''where(defun fat (n)(if (onsp n)(mult n (fat (dr n)))'(nil)))(defun fat1 (n a)(if (onsp n)(fat1 (dr n) (mult n a))a))Problem 9.2(equal (m-flatten x nil) (leaves x))where(defun m-flatten (x a)(if (onsp x)(m-flatten (ar x)(m-flatten (dr x) a))(ons x a)))The funtion m-flatten is an \almost tail-reursive" version of leaves �rstwritten by John MCarthy. It has the interesting property that it produes nogarbage: every ons it reates is in the �nal answer, unlike leaves.10 ConlusionWe have illustrated how to �nd simple rigorous proofs. We �rst repeat all thehints given so far, and then we add a few more.Hint on How To Prove Things: Indution must be applied to strong theorems,not weak ones! Always try to invent the strongest theorems you an think of !Hint on How To Prove Things: Give areful thought to the \preferred" formsyou use in your proofs and provide yourself with lemmas that allow you, insofaras possible, to anonialize terms.Hint on How To Prove Things: When using the ACL2 system, never provea named theorem without understanding its e�et as a rule!Hint on How To Prove Things: Realize that when you are dealing witharithmeti, your sense of what is \straightforward" has been honed by many



years of drill-and-pratie with manipulating algebrai properties of numbers. Beprepared to \explain" formally why some arithmeti relations hold!Hint on How To Prove Things: If you are doing arithmeti proofs withACL2, start by inluding one of the arithmeti books into your sript. Themost ommonly used book is inluded by adding the ommand (inlude-book"arithmeti/top-with-meta" :dir :system).Hint on How To Prove Things: Realize that when you are dealing witharithmeti you may be doing inequality haining, not replaement of equals byequals, and make that form of reasoning expliit in your notation.Hint on How To Prove Things: Every time you enounter a new theoremyou should give thought to how it is to be used in subsequent proofs.Hint on How To Prove Things: Ensure that your rules do not loop! One wayto do this is to keep in mind some ordering on your preferred terms and be surethat the right-hand side of eah rule is lower in this ordering than the left-handside.Hint on How To Prove Things: De�nitions are (generally) used as expansionrules, i.e., funtion alls are replaed by their instantiated bodies. This imposesa restrition on your hoie of preferred forms: funtion bodies are preferableto funtion alls. If you want to override that built-in preferene in ACL2, youshould disable the funtions after proving the rules you need about them.Hint on How To Prove Things: When designing your rewrite rules, be surethe left-hand sides are in your preferred form!Hint on How To Prove Things: Keep your proofs in the \simplify, indut,simplify" form. That is, identify eah indutively proved lemma you need in aproof, write it down, and give it a name. Do not get into the habit of invent-ing and indutively proving lemmas \on the y" in the middle of other proofs.



It is better that you understand and ontrol the lemma deomposition of yourtheorems.Hint on How To Prove Things:When onsidering a new onjeture to prove,look for general theorems an will prove it by simpli�ation { rewriting and hain-ing { before you onsider proving it by indution.Hint on How To Prove Things: Look for pairs of adjaent funtion symbolsand try to think of rules that simplify those expressions.Hint on How To Prove Things: When forming new onjetures, test themon onstants.Hint on How To Prove Things: Often you will have to invent new onepts{ onepts not involved in your main theorem { to state the lemmas you need.Hint on How To Prove Things: If you have introdued hypotheses in yourlemmas, be sure you prove that the appropriate terms satisfy those hypotheses.Hint on How To Prove Things: Separate your onerns!Hint on How To Prove Things: We reommend that the novie ACL2 usernot rely on ACL2's reative ontributions in the beginning. As the problems be-ome harder, ACL2's reative ontributions ount for less and less { and itsability to arry out massive automati simpli�ations using user-spei�ed rulesounts for more and more. So the novie is enouraged to learn to spot the needfor rules and to program ACL2 to use them.Hint on How To Prove Things:Whenever a proof fails (or you want to reduea proof to the reommended form), read the formula at the �rst hekpoint andlook for a lemma deomposition. Sometimes, it helps to read a few formulas pastthe �rst hekpoint { often ACL2's heuristis ome fairly lose to generating theneeded lemma, or at least reating a term that will suggest the lemma to you. Soif the hekpoint does not suggest anything, read on.Hint on How To Prove Things: When you know a funtion is ommutative,use that fat to arrange the arguments in some anonial order. Thus, if add isknown to be ommutative, then whenever you see (add b a), rewrite it to (adda b). But do not use the rule the other way { to move things out of order { oryou will loop forever! ACL2 uses this heuristi and uses a lexiographi orderingon terms.Hint on How To Prove Things: The heuristi advie about ommutativefuntions does not help you if you are rewriting (add b (add a )) beause theordering (probably) will not prefer (add a ) over b. But the theorem above,whih we all a \ommutativity2" theorem, allows that swap and ACL2 uses suhtheorems to arrange the ordering of terms. Given assoiativity, ommutativity,ommutativity2, and these heuristis, you an arrange nests of suh funtions



into right-assoiated form with the arguments asending in the order. That iswhat ACL2 does.Hint on How To Prove Things: When dealing with a funtion that has anaumulator argument, never try to prove a theorem about the funtion by indu-tion unless the aumulator argument is a variable symbol. That is, think aboutthe most general legal all of the funtion, not the initial all.Hint on How To Prove Things: When you disover a general theorem aboutan aumulator-using funtion relating it to primitive reursive funtions, use thenew theorem to eliminate the aumulator-using funtion from future problems.See al2-tutorial for further introdution, with subtopis ontaining manyother helpful tips for using the ACL2 logi and theorem prover, and with manymore examples.One important tip there is that there are many books of rules developed byACL2 users. We did not stress the use of books here simply beause we are tryingto train you to use The Method and to program the simpli�er yourself. Thoseare skills you will need. But as you master those skills and move on to biggerprojets, it is very helpful when you an build on the work of others. That is howmathematis has built suh a magni�ent body of results. So now we enshrinethis advie as a hint.Hint on How To Prove Things: Build on the work of others instead ofinventing everything yourself. In the ACL2 setting, learn about the books available(by visiting the Mathematial Tools link on the ACL2 home page), learn aboutand use inlude-book (see inlude-book) to load books into your sripts, andlearn to use ertify-book (see ertify-book) to reate books others an use.If you want to learn more about ACL2, we reommend you buy the bookComputer-Aided Reasoning: An Approah by Kaufmann, Manolios, and Moore[6℄. While Kluwer Aademi Press owns the eletroni and hardbak opyrights,the authors own the paperbak rights and sell a spiral-bound version for loseto their ost, about $15 plus shipping. (You an �nd the book in hardbakelsewhere, for well over its original prie of about $120.) See the Books andPapers link on the ACL2 home page for ordering details. The book ontainsabout 150 exerises and the solutions are on the web.The ompanion book, Computer-Aided Reasoning: ACL2 Case Studies, editedby the same authors [5℄, is also a very valuable resoure beause it presents de-tailed notes on many large-sale proof projets and the atual soure sripts areavailable on the web. The ompanion book is available under the same opy-righting terms and approximately the same pries as the �rst.A detailed aount of proof development for a non-trivial example may befound in [9℄. The proof desribed there was arried out with ACL2's predeessor,Nqthm, but lessons therein pertain to ACL2 usage as well.



TheWorkshops link on the home page is also a good soure of material. ACL2workshop papers are usually aompanied by omplete proof sripts, whih areposted on the ACL2 home page.One more hint is in order.Hint on How To Prove Things: Pratie makes perfet. There is no substitutefor experiene. Think of theorems to prove and work out the proofs!A De�nitionsIn this appendix we inlude de�nitions of all the funtions mentioned in our ex-erises. This appendix thus answers the exerises that just require de�nitions! Sodon't look here until you do those exerises. But to do the proof-based exerises,it might be best to use our de�nitions.We have presented the de�nitions in alphabetial order so you an �nd them.ACL2 requires de�nitions to be presented bottom-up: de�ne onepts beforeusing them.(defun add (x y)(if (onsp x)(ons nil (add (dr x) y))(mapnil y)))(defun app (x y)(if (onsp x)(ons (ar x) (app (dr x) y))y))(defun ollet-lonesomep (a b); ollet elements of a that are lonesome in b(if (onsp a)(if (lonesomep (ar a) b)(ons (ar a)(ollet-lonesomep (dr a) b))(ollet-lonesomep (dr a) b))nil))(defun dup (x)(if (onsp x)(ons (ar x)(ons (ar x)(dup (dr x))))nil))(defun fat (n)(if (onsp n)(mult n (fat (dr n)))'(nil)))



(defun fat1 (n a)(if (onsp n)(fat1 (dr n) (mult n a))a))(defun foundp (x a)(if (onsp a)(if (equal x (ar (ar a)))t(foundp x (dr a)))nil))(defun int (x y)(if (onsp x)(if (memp (ar x) y)(ons (ar x) (int (dr x) y))(int (dr x) y))nil))(defun leaves (x) ; the leaves of x(if (onsp x)(app (leaves (ar x))(leaves (dr x)))(ons x nil)))(defun lonesomep (e lst)(if (mem e lst)(not (mem e (dr (mem e lst))))nil))(defun lonesomes (x)(ollet-lonesomep (leaves x) (leaves x)))(defun lookup (x a)(if (onsp a)(if (equal x (ar (ar a)))(dr (ar a))(lookup x (dr a)))nil))(defun mapnil (x)(if (onsp x)(ons nil (mapnil (dr x)))nil))(defun m-flatten (x a)(if (onsp x)(m-flatten (ar x)(m-flatten (dr x) a))



(ons x a)))(defun mem (e x) ; where does e our in x?(if (onsp x)(if (equal e (ar x))x(mem e (dr x)))nil))(defun memp (e x)(if (onsp x)(if (equal e (ar x))t(memp e (dr x)))nil))(defun mult (x y)(if (onsp x)(add y (mult (dr x) y))nil))(defun nump (x)(if (onsp x)(and (equal (ar x) nil)(nump (dr x)))(equal x nil)))(defun properp (x)(if (onsp x)(properp (dr x))(equal x nil)))(defun raise (x y)(if (onsp y)(mult x (raise x (dr y)))'(nil)))(defun rev (x)(if (onsp x)(app (rev (dr x)) (ons (ar x) nil))nil))(defun rev1 (x a)(if (onsp x)(rev1 (dr x) (ons (ar x) a))a))(defun seteqp (x y)(and (subp x y)(subp y x)))



(defun swaptree (x)(if (onsp x)(ons (swaptree (dr x))(swaptree (ar x)))x))(defun subp (x y)(if (onsp x)(if (memp (ar x) y)(subp (dr x) y)nil)t))(defun treeopy (x)(if (onsp x)(ons (treeopy (ar x))(treeopy (dr x)))x))(defun ziplists (x y)(if (onsp x)(ons (ons (ar x) (ar y))(ziplists (dr x) (dr y)))nil))B EmasEmas has an interative tutorial. Type meta-x help-with-tutorial enter.Here are some ommonly used ommands.To Insert Textjust type itTo Move Aroundtrl-f move forward one haratertrl-b move bakward one haratertrl-n move down to next linetrl-p move up to previous linetrl-meta-f moves forward over balaned expressiontrl-meta-b moves bakward over balaned expressiontrl-meta-u moves up one level of parens.meta-< move to the beginning of the bu�ermeta-> move to the end of the bu�erTo Cut and Pastetrl-d delete one haratertrl-k kill one line { and put it in the \kill ring"trl-meta-k kill one balaned expression - and put it in the \kill ring"trl-y to yank (paste) text from the killring bak into the bu�er



Othertrl-x b selet another bu�er (type bu�er name)trl-x trl-f read a �le into a bu�er of that nametrl-x trl-s write a bu�er to the �le it ame fromtrl-x trl-w write a bu�er to the �le you nametrl-meta-q indent the list expression immediately afterthe ursor in a way onsistent with the parenthesesThe ACL2 soure ode distribution omes with a pre-de�ned Emas librarythat ontains many useful ommands for interating with ACL2. Just put thefollowing in the .emas �le in your home diretory, replaing <dir> by theabsolute pathname of your loal ACL2 soure ode diretory.(load "<dir>/emas/emas-al2.el")This library also enables navigation of proofs and hekpoints with an emas-based tool; see proof-tree-emas.Referenes1. B. Brok and W. A. Hunt, Jr. Formal analysis of the motorola CAP DSP. InIndustrial-Strength Formal Methods. Springer-Verlag, 1999.2. B. Brok and J S. Moore. A mehanially heked proof of a omparator sortalgorithm. In Engineering Theories of Software Intensive Systems. IOS Press,Amsterdam, 2005 (to appear).3. David Greve and M. Wilding. A separation kernel formal seurity poliy, 2003.4. M. Kaufmann. Modular proof: The fundamental theorem of alulus. In M. Kauf-mann, P. Manolios, and J S. Moore, editors, Computer-Aided Reasoning: ACL2Case Studies, pages 75{92, Boston, MA., 2000. Kluwer Aademi Press.5. M. Kaufmann, P. Manolios, and J S. Moore, editors. Computer-Aided Reasoning:ACL2 Case Studies. Kluwer Aademi Press, Boston, MA., 2000.6. M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reasoning: AnApproah. Kluwer Aademi Press, Boston, MA., 2000.7. M. Kaufmann and J S. Moore. A preise desription of the ACL2 logi. Inhttp://www.s.utexas.edu/users/moore/publiations/km97a.ps.gz. Dept. of Com-puter Sienes, University of Texas at Austin, 1997.8. M. Kaufmann and J S. Moore. The ACL2 home page. Inhttp://www.s.utexas.edu/users/moore/al2/. Dept. of Computer Sienes,University of Texas at Austin, 2004.9. M. Kaufmann and P. Pehiari. Interation with the boyer-moore theorem prover:A tutorial study using the arithmeti-geometri mean theorem. Journal of Auto-mated Reasoning, 16(1{2):181{222, 1996.10. H. Liu and J S. Moore. Exeutable JVM model for analytial reasoning: A study.In Workshop on Interpreters, Virtual Mahines and Emulators 2003 (IVME '03),San Diego, CA, June 2003. ACM SIGPLAN.11. W. MCune and O. Shumsky. Ivy: A preproessor and proof heker for �rst-order logi. In M. Kaufmann, P. Manolios, and J S. Moore, editors, Computer-Aided Reasoning: ACL2 Case Studies, pages 265{282, Boston, MA., 2000. KluwerAademi Press.



12. J S. Moore. Proving theorems about Java and the JVM with ACL2.In M. Broy and M. Pizka, editors, Models, Algebras and Logi ofEngineering Software, pages 227{290. IOS Press, Amsterdam, 2003.http://www.s.utexas.edu/users/moore/publiations/marktoberdorf-03.13. J S. Moore, T. Lynh, and M. Kaufmann. A mehanially heked proof of theorretness of the kernel of the AMD5K86 oating point division algorithm. IEEETransations on Computers, 47(9):913{926, September 1998.14. D. Russino�. A mehanially heked proof of IEEE ompliane of aregister-transfer-level spei�ation of the AMD-K7 oating-point multiplia-tion, division, and square root instrutions. London Mathematial Soi-ety Journal of Computation and Mathematis, 1:148{200, Deember 1998.http://www.onr.om/user/russ/david/k7-div-sqrt.html.15. D. M. Russino� and A. Flatau. Rtl veri�ation: A oating-point multiplier. InM. Kaufmann, P. Manolios, and J S. Moore, editors, Computer-Aided Reasoning:ACL2 Case Studies, pages 201{232, Boston, MA., 2000. Kluwer Aademi Press.16. J. Sawada. Formal veri�ation of divide and square root algorithms us-ing series alulation. In Proeedings of the ACL2 Workshop, 2002.http://www.s.utexas.edu/users/moore/al2/workshop-2002, Grenoble, April2002.17. R. Sumners. Corretness proof of a BDD manager in the on-text of satis�ability heking. In Proeedings of ACL2 Workshop2000. Department of Computer Sienes, Tehnial Report TR-00-29,November 2000. http://www.s.utexas.edu/users/moore/al2/workshop-2000/�nal/sumners2/paper.ps.


