
ACL2:
A Program Verifier

for
Applicative Common Lisp

Matt Kaufmann - AMD, Austin, TX
J Strother Moore – UT CS Dept, Austin, TX

1

Instead of debugging a program, one

should prove that it meets its

specifications, and this proof should be

checked by a computer program.

— John McCarthy, “A Basis for a

Mathematical Theory of Computation,”

1961

2

A Sample Lisp Program

(defun append (x y)

(if (endp x)

y

(cons (car x)

(append (cdr x) y))))

(append ’(1 2 3) (append ’(4 5 6) ’(7 8 9)))

= ’(1 2 3 4 5 6 7 8 9)

3

A Conjectured Property

(equal (append (append a b) c)

(append a (append b c)))

4

Turning (Applicative) Lisp into a

Mathematical Logic

Axioms:

t 6= nil

x = nil → (if x y z) = z

x 6= nil → (if x y z) = y

5

(car (cons x y)) = x

(cdr (cons x y)) = y

(endp nil) = t

(endp (cons x y)) = nil

6

(equal (append (append a b) c)

(append a (append b c)))

7

(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

8

(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Base Case: (endp a).

(equal (append (append a b) c)

(append a (append b c)))

9

(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Base Case: (endp a).

(equal (append b c)

(append a (append b c)))

10

(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Base Case: (endp a).

(equal (append b c)

(append a (append b c)))

11

(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Base Case: (endp a).

(equal (append b c)

(append b c))

12

(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Base Case: (endp a).

(equal (append b c)

(append b c))

13

(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Base Case: (endp a).

T

14

(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (append (append a b) c)

(append a (append b c)))

15

(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (append (cons (car a)

(append (cdr a) b)) c)

(append a (append b c)))

16

(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (append (cons (car a)

(append (cdr a) b)) c)

(append a (append b c)))

17

(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (cons (car a)

(append (append (cdr a) b) c))

(append a (append b c)))

18

(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (cons (car a)

(append (append (cdr a) b) c))

(append a (append b c)))

19

(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (cons (car a)

(append (append (cdr a) b) c))

(cons (car a)

(append (cdr a) (append b c))))

20

(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (cons (car a)

(append (append (cdr a) b) c))

(cons (car a)

(append (cdr a) (append b c))))

21

(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal

(append (append (cdr a) b) c)

(append (cdr a) (append b c)))

22

(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (append (append (cdr a) b) c)

(append (cdr a) (append b c)))

23

(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (append (append (cdr a) b) c)

(append (cdr a) (append b c)))

24

(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

T

25

(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Q.E.D.

26

Outline of This Talk

• What is ACL2?

• How does it work?

• Is it Useful?

• Why?

27

A Computational Logic for

Applicative Common Lisp

= ACL2

• a functional subset of Common Lisp

• a first-order mathematical logic

• a proof-construction

assistant/environment

28

Lisp’s Implicit Typing

We proved

(equal (append (append a b) c)

(append a (append b c)))

So this is supposed to evaluate to true for

all values of a, b, and c?

29

But

? (let ((a ’(1 2 3 . 4))

(b ’(5 6 7))

(c ’(8 9 10)))

(equal (append (append a b) c)

(append a (append b c))))

Error in process listener(2): value 4

is not of the expected type LIST.

30

Our paper explains how we classify some

theorems as Common Lisp compliant.

We don’t deal with this in this talk, but

ACL2 allows the user to declare the

expected types of arguments and prove

that they are respected.

31

How does the theorem prover work?

Q.E.D.

of ‘‘books’’ of definitions,
database composed

theorems, and advice

User

proofs

M
em

ory
G

ates
A

rith
V

ectors

prover

proposed definitions
conjectures and
advice

theorem

32

How does the theorem prover work?

Q.E.D.

database

User

proofs

proposed definitions
conjectures and
advice

A
rith
V

ectors

ACL2

33

Irrelevance

Equality

Destructor Elimination

User

Generalization

Induction

Simplification

pool

Elimination of

formula

34

Simplification

• congruence-based conditional rewriting

• use of recursively defined function

definitions

• use of previously proved theorems as rules

• efficient representation of constants

35

• very efficient evaluation

• fixed-point based typing procedure

• back- and forward-chaining

• integrated linear arithmetic decision

procedure

• extensions supporting non-linear

arithmetic
36

• integrated equality decision procedure

• integrated BDD decision procedure

• connected SAT decision procedure (in

progress)

• reflection (metafunctions)

• single-threaded objects (“monads”)

37

• beta-reduction avoidance

• hint mechanism for steering automatic

features

• interactive proof-checker for user control

• proof trees display for proof navigation

• decades of engineering

38

ACL2 Demo 1

39

Is it useful?

An elusive circuitry error is causing a chip

used in millions of computers to generate

inaccurate results

— NY Times, “Circuit Flaw Causes

Pentium Chip to Miscalculate, Intel

Admits,” Nov 11, 1994

40

Intel Corp. last week took a $475 million

write-off to cover costs associated with the

divide bug in the Pentium microprocessor’s

floating-point unit — EE Times, Jan 23,

1995

41

IEEE 754 Floating Point Standard

Elementary operations are to be performed

as though the infinitely precise (standard

mathematical) operation were performed

and then the result rounded to the

indicated precision.

42

AMD K5 Algorithm FDIV(p, d,mode)

1. sd0 = lookup(d) [exact 17 8]

2. dr = d [away 17 32]

3. sdd0 = sd0 × dr [away 17 32]

4. sd1 = sd0 × comp(sdd0, 32) [trunc 17 32]

5. sdd1 = sd1 × dr [away 17 32]

6. sd2 = sd1 × comp(sdd1, 32) [trunc 17 32]

... ... =

29. q3 = sd2 × ph3 [trunc 17 24]

30. qq2 = q2 + q3 [sticky 17 64]

31. qq1 = qq2 + q1 [sticky 17 64]

32. fdiv = qq1 + q0 mode

43

Using the Reciprocal

1 2

+
+
+

.0 4

.0 0 0 0 0 8

-2.0 4
-2.

3 5.8 3 3 3 3 4
4 3 0.0 0 0 0 0 0
4 3 2.

-.1 7
3 6.

.0 4 0 8

.0 0 0 8-

.0 0 3 4

.0 0 0 0 6 6-

.0 0 0 7 9 2-
-

Reciprocal Calculation:

1/12 = 0.0833 ≈ 0.083 = sd2

Quotient Digit Calculation:

0.083 × 430.0000 = 35.6900000 ≈ 36.000000 = q0

0.083 × -2.0000 = -.1660000 ≈ -.170000 = q1

0.083 × .0400 = .0033200 ≈ .003400 = q2

0.083 × -.0008 = -.0000664 ≈ -.000067 = q3

Summation of Quotient Digits:

q0 + q1 + q2 + q3 = 35.833333

44

Computing the Reciprocal

i

2
sd sd sd

0 1
1/d

sd
i+1

= sd
i
(2 - sd d)

dy
dx

= - x
-2

y = 1
x

- d

45

top 8 bits approx

of d inverse

1.00000002 0.111111112
1.00000012 0.111111012
1.00000102 0.111110112
1.00000112 0.111110012
1.00001002 0.111101112
1.00001012 0.111101012
1.00001102 0.111101002
1.00001112 0.111100102
1.00010002 0.111100002
1.00010012 0.111011102
1.00010102 0.111011012

... ...
1.00101102 0.110110102
1.00101112 0.110110002
1.00110002 0.110101112
1.00110012 0.110101012
1.00110102 0.110101002
1.00110112 0.110100112
1.00111002 0.110100012
1.00111012 0.110100002
1.00111102 0.110011112
1.00111112 0.110011012

top 8 bits approx

of d inverse

1.01000002 0.110011002
1.01000012 0.110010112
1.01000102 0.110010102
1.01000112 0.110010002
1.01001002 0.110001112
1.01001012 0.110001102
1.01001102 0.110001012
1.01001112 0.110001002
1.01010002 0.110000102
1.01010012 0.110000012
1.01010102 0.110000002

... ...
1.01101102 0.101101002
1.01101112 0.101100112
1.01110002 0.101100102
1.01110012 0.101100012
1.01110102 0.101100002
1.01110112 0.101011112
1.01111002 0.101011102
1.01111012 0.101011012
1.01111102 0.101011002
1.01111112 0.101010112

top 8 bits approx

of d inverse

1.10000002 0.101010102
1.10000012 0.101010012
1.10000102 0.101010002
1.10000112 0.101010002
1.10001002 0.101001112
1.10001012 0.101001102
1.10001102 0.101001012
1.10001112 0.101001002
1.10010002 0.101000112
1.10010012 0.101000112
1.10010102 0.101000102

... ...
1.10101102 0.100110012
1.10101112 0.100110002
1.10110002 0.100101112
1.10110012 0.100101112
1.10110102 0.100101102
1.10110112 0.100101012
1.10111002 0.100101012
1.10111012 0.100101002
1.10111102 0.100100112
1.10111112 0.100100112

top 8 bits approx

of d inverse

1.11000002 0.100100102
1.11000012 0.100100012
1.11000102 0.100100012
1.11000112 0.100100002
1.11001002 0.100011112
1.11001012 0.100011112
1.11001102 0.100011102
1.11001112 0.100011102
1.11010002 0.100011012
1.11010012 0.100011002
1.11010102 0.100011002

... ...
1.11101102 0.100001012
1.11101112 0.100001002
1.11110002 0.100001002
1.11110012 0.100000112
1.11110102 0.100000112
1.11110112 0.100000102
1.11111002 0.100000102
1.11111012 0.100000012
1.11111102 0.100000012
1.11111112 0.100000002

46

Q. What’s this got to do with Lisp?

A. Theorems are not proved about artifacts

(like billiard balls, artillery shells, moon

rockets, or microprocessors); theorems are

proved about mathematical descriptions or

models of those artifacts. And Lisp is our

language of choice.

47

The Formal Model of the Code
(defun FDIV (p d mode)

(let*

((sd0 (eround (lookup d) ’(exact 17 8)))

(dr (eround d ’(away 17 32)))

(sdd0 (eround (* sd0 dr) ’(away 17 32)))

(sd1 (eround (* sd0 (comp sdd0 32)) ’(trunc 17 32)))

(sdd1 (eround (* sd1 dr) ’(away 17 32)))

(sd2 (eround (* sd1 (comp sdd1 32)) ’(trunc 17 32)))

...

(qq2 (eround (+ q2 q3) ’(sticky 17 64)))

(qq1 (eround (+ qq2 q1) ’(sticky 17 64)))

(fdiv (round (+ qq1 q0) mode)))

(or (first-error sd0 dr sdd0 sd1 sdd1 ... fdiv)

fdiv)))

48

The K5 FDIV Theorem (1200 lemmas)

(defthm FDIV-divides

(implies (and (floating-point-numberp p 15 64)

(floating-point-numberp d 15 64)

(not (equal d 0))

(rounding-modep mode))

(equal (FDIV p d mode)
(round (/ p d) mode))))

(by Moore, Lynch and Kaufmann, in 1995,

before the K5 was fabricated)

49

AMD Athlon 1997

All elementary floating-point operations,

FADD, FSUB, FMUL, FDIV, and FSQRT,

on the AMD Athlon were

• specified in ACL2 to be IEEE compliant,

• proved to meet their specifications, and

• the proofs were checked mechanically.

50

AMD Athlon FMUL

module FMUL; // sanitized from AMD Athlon(TM)

// by David Russinoff and Art Flatau

//**

// Declarations

//**

//Precision and rounding control:

‘define SNG 1’b0 // single precision

‘define DBL 1’b1 // double precision

‘define NRE 2’b00 // round to nearest

‘define NEG 2’b01 // round to minus infinity

‘define POS 2’b10 // round to plus infinity

51

//Parameters:

input x[79:0]; //first operand

input y[79:0]; //second operand

input rc[1:0]; //rounding control

input pc; //precision control

output z[79:0]; //rounded product

//**

// First Cycle

//**

//Operand fields:

sgnx = x[79]; sgny = y[79];

expx[14:0] = x[78:64]; expy[14:0] = y[78:64];

52

RTL sim

RTL

fabrication

=

proofs

ACL2AMD

53

The ACL2 proofs uncovered bugs that had

remained hidden through hundreds of

millions of test cases in RTL simulators.

The bugs were fixed and the new RTL

verified before the Athlon was fabricated.

This work was done primarily by David

Russinoff and Art Flatau, of AMD.

54

Some Interesting Software Verified

• Motorola CAP DSP (Brock)

“¬hazards(s)

→ microarch(s) = isa(s)”

- more than 100 pages of models

- established correctness of isa as a

simulator
55

- isa (in ACL2) executes 3 times faster

than Motorola’s own microarch

simulator (in C) and is proved to be bit-

and cycle-accurate!

This is verified software that is worth

something!

56

• FDIV on AMD K5 (Moore, Kaufmann,

Lynch)

• fp RTL for AMD AthlonTM processor and

AMD OpteronTM processor (Russinoff,

Flatau, Kaufmann, Smith, Sumners)

• FDIV and FSQRT on IBM Power 4

(Sawada)

57

• soundness of the Ivy proof checker

(McCune, Shumsky)

• correctness of BDD implementation (60%

CUDD speed without reordering)

(Sumners)

• Union Switch & Signal post-compiler

checker (Bertolli)

58

• Rockwell instruction set equivalence

theorems (Greve, Wilding)

• Rockwell AAMP7 separation kernel in

microcode (Greve, Wilding)

• Rockwell / aJile Systems JEM1 (Hardin,

Greve, Wilding)

59

• Sun CLDC JVM model (700 pages) (Liu)

• properties of various Java classes and

methods via javac (Moore, Smith)

• correctness of Sun JVM class loader (Liu)

• correctness of Sun JVM bytecode verifier

(Liu) (in progress)

60

• Bryant’s Y86 Verilog (microarchitecture

correspondence) (Ray)

• Dijkstra’s shortest path (Moore, Zhang)

• Unicode reader (Davis)

• See also workshops and seminar links

from ACL2 home page

61

Lisp as a Meta Language

Our proofs are often based on operational

semantics.

We define interpreters (for netlists,

bytecode, etc.) in Lisp.

We map programs into this code via

conventional compilers (gcc, javac).

62

Via this “deep embedding” we move up

and down the abstraction hierarchy while

staying in one logic and proof system.

AMD has a sophisticated “shallow

embedding” of a design language that

incorporates automatic verified

simplification.

63

JVM Operational Semantics

Our “M6” model is based on an

implementation of the J2ME KVM. It

executes most J2ME Java programs

(except those with significant I/O or

floating-point).

M6 supports all CLDC data types,

multi-threading, dynamic class loading,

64

class initialization and synchronization via

monitors.

65

We have translated the entire Sun CLDC

API library implementation into our

representation with 672 methods in 87

classes. We provide implementations for 21

out of 41 native APIs that appear in Sun’s

CLDC API library.

We prove theorems about bytecoded

methods with the ACL2 theorem prover.

66

This work is supported by a gift from Sun

Microsystems.

67

.java

.class

.lisp ACL2

‘‘fact(5)=120’’

‘‘fact(n)=n!’’

jvm2acl2

javac
Theorems

68

ACL2 Demo 2

69

Why are we succeeding?

Reason 1: Our modeling language and

logic is Lisp:

• expressive

• flexible

• rugged

70

• widely supported on many platforms

• extremely efficient

• supported with excellent editors and

debugging tools provided by others

71

Reason 2: We have invested 34 years

• striving for perfection

• supporting efficient execution

• integrating a wide variety of proof

techniques

• engineering for industrial scale formulas

72

• developing reusable “books” (lemma

collections)

• investing effort in documentation (books,

online text, HTML, Emacs info)

• active email lists and user support

73

Reason 3: We have chosen the right

problems. In our applications, the models

typically

• describe actual digital artifacts

• are easily related to the artifacts

• are executed to convince designers and

management that verification is relevant

74

• are useful as simulation engines

• permit mathematical abstraction and

proof of important properties

75

Drawbacks

The ACL2 user must be trained to

use the tool, not fight it.

The language is not as expressive as many

would like (but it is executable).

Finding appropriate lemmas is often a hard

(mathematical) problem.

76

Developing compatible collections of

theorems takes system design (not just

mathematical) talent.

77

Our Hypothesis

The “high cost” of formal methods

– to the extent the cost is high –

is a historical anomaly due to the fact that

virtually every project formally

recapitulates the past.

78

The use of mechanized formal methods will

ultimately

• decrease time-to-market, and

• increase reliability.

79

Conclusion

Mechanical reasoning systems are changing

the way complex digital artifacts are built.

Complexity not an argument against formal

methods.

It is an argument for formal methods.

80

