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Abstract

ACL2 is a theorem proving system under development at Computational Logic,
Inc., by the authors of the Boyer-Moore system, Nqthm, and its interactive en-
hancement, Pc-Nqthm, based on our perceptions of some of the inadequacies of
Nqgthm when used in large-scale verification projects. Foremost among those in-
adequacies is the fact that Nqthm’s logic is an inefficient programming language.
We now recognize that the efficiency of the logic as a programming language is
of great importance because the models of microprocessors, operating systems,
and languages typically constructed in verification projects must be executed
to corroborate them against the realities they model. Simulation of such large
scale systems stresses the logic in ways not imagined when Nqthm was designed.
In addition, Nqthm does not adequately support certain proof techniques, nor
does it encourage the reuse of previously developed libraries or the collaboration
of semi-autonomous workers on different parts of a verification project. Finally,
Nqthm is implemented in an informally specified programming language (Com-
mon Lisp) and hence is not subject to mechanical verification. ACL2 is our
response to these perceived inadequacies. While the logic of Nqthm is based
on pure Lisp, the logic of ACL2 is based on the applicative subset of Common
Lisp. By adding to the applicative subset of Common Lisp a single-threaded
notion of state, fast applicative arrays and property lists, and efficiently im-
plemented multiple values, an efficient and practical applicative programming
language is produced. By axiomatizing the primitives and introducing appro-
priate rules of inference and extension principles, that language can be turned
into a logic. A premise of the ACL2 Project is that the Nqthm proof heuristics
allow the mechanization of the discovery of proofs in the ACL2 logic with the
same degree of success that Nqthm has for its logic. The ACL2 system may
be viewed as an extended re-implementation of Nqthm for extended applicative
Common Lisp. ACL2 is written using the logic it supports. It provides all of
Ngthm’s proof techniques (except those for V&C$), as well as several that Nqthm
does not provide, including forward chaining and congruence-based rewriting.
An incremental data base extension facility, based on hierarchically structured
“books” and several scoping mechanisms, is provided to address the problems
of reusability and collaborative proof efforts. We discuss the inadequacies of
Nqgthm motivating the design of ACL2; we briefly describe the ACL2 logic, the-
orem prover, interface, implementation, and some applications; and we discuss
some of our concerns and misgivings about the current design. Because ACL2
is not yet ready for public distribution, we make no claims as to its superiority
to Nqthm or other theorem proving systems.

1 Disclaimer

ACL2 is being developed by Robert S. Boyer, Matt Kaufmann, and J Strother
Moore, at Computational Logic, Inc. (CLI). It is the intention of the authors



and CLI to release ACL2 for public use, without fee, when its reliability and
documentation are up to our standards. Those levels have not yet been reached.
To our colleagues who wish to try out ACL2 for themselves, we apologize and
ask for their continued patience. Visitors to CLI are welcome to use it, but we
do not want preliminary versions floating around the net.

If geographical exploration is taken as a metaphor for theorem proving re-
search, then the present paper should be read merely as a scouting report of
where we are headed and why. It should not be taken as a recommendation
that anyone follow our trail, much less as an advertisement to buy parcels of
the land we have surveyed.

Because of his role in the ongoing development of ACL2, it would have been
entirely appropriate for Boyer to be a co-author of this paper. He declined for
fear of seeming hypocritical after his recent exhortations to the ATP community
not to publish papers about theorem proving systems unavailable for public
scrutiny. We support his position when the paper in question claims that the
described system has been found empirically to be superior to existing systems.
We make no such claims about ACL2 in this paper.

2 Mathematical Modeling of Digital Systems

The mathematics of computation was identified in the 1930’s by the collective
work of Church, Kleene and Turing. They established that recursive functions
can be used to model digital computation. By operating within a logical frame-
work, deductions about computational models can be carried out formally. By
mechanizing the formal logic, one can assist the human user in the proof dis-
covery process as well as eliminate logical errors from conjectures and proofs.

Following the way mathematics is generally used in engineering, system ver-
ification proceeds in three steps. First, a formal model of the desired digital
system is constructed. Second, the model is corroborated, usually by execut-
ing it on concrete test data, to confirm that it exhibits the desired behavior on
some finite set of tests. Often these first two steps are iterated until the model is
deemed a suitably accurate specification of the requirements. Finally, theorems
are proved about the model to establish some of the interesting properties of the
modeled system. Since the state space of models of digital systems is often ex-
ceedingly large or even infinite (in the case of some higher-level specifications),
proof is often the only practical means of confirming properties of a model.

In our work, we use a logic based on recursive functions. In the first step,
above, we exploit the fact that recursive functions can model any computation.
In the second we exploit the fact that recursive functions can be executed. In the
third we exploit the fact that recursive functions can be embedded in a logical
framework so as to provide formal (and hence machine-checkable) notions of
deduction and proof.

Our models usually take the form of abstract machines defined as recursive
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functions in the formal logic. Generally speaking, these functions take two in-
puts: a “state” and some “signals” that impinge upon the machine over “time.”
Such an abstract machine returns the final state of the machine after processing
all of the signals. It does this by “stepping” through a sequence of states, each
successive state being obtained by applying the machine’s “step function” to
the current state and the signal (if any) that arrives at that “time.”

Such machines are commonly used as formalizations of programming lan-
guages. However, they have also been used to model other aspects of the digital
systems problem, including hardware description languages, operating systems,
concurrent programs, physical systems interacting with digital ones, and re-
quirements modeling.

3 Nqthm: The Prototype of ACL2

To define abstract machines formally and reason about them, one must have a
mathematical logic that provides inductively constructed objects such as num-
bers, sequences, and trees, and principles of recursive definition and inductive
proof. The “Nqthm” system, developed by Boyer and Moore, provides such a
logic and a mechanized theorem prover for it [8, 11]. Nqthm is widely used in
the formal modeling of digital systems. Nqthm is well known for its robustness
and the extensive body of verification work done with it.

However, for the past five years the two authors and Robert S. Boyer have
been developing a new logic and theorem prover, called “ACL2.” ACL2 has
adopted (and often attempted to improve) almost all of the ideas behind Nqthm.
ACL2 was designed to correct the flaws uncovered by two decades of use of
Nqthm. Those flaws primarily concern the scale of the projects to be undertaken
with the system.

Because Nqthm is the prototype of ACL2, we begin our discussion of ACL2
by briefly reviewing Nqthm and some of its applications and flaws.

3.1 The Nqthm System

The Nqthm logic is a first order, quantifier-free logic resembling pure Lisp. The
logic provides for the schematic introduction of new inductively defined data
types, mathematical induction on the ordinals up to €y, the definition of total
recursive functions, and the witnessed constraint of new function symbols cou-
pled with a derived rule of functional instantiation giving the logic some of the
features of a higher-order logic. In addition, the logic provides an axiomatiza-
tion of a nonconstructive function, V&C$, which is an interpreter for the logic
and allows the introduction of any partial recursive function. See [11, 6] for
details.

The mechanization of the Nqthm logic is a system of Common Lisp programs
allowing the user to define functions in the logic, execute them on concrete



data, and state and prove theorems about such functions. The user interface
to Nqthm is the Common Lisp read-eval-print loop: Common Lisp forms are
typed to define functions in the logic, invoke the theorem prover, etc. A special
environment is provided in which forms in the logic may be executed. The
Nqgthm theorem prover uses a variety of proof techniques, e.g., simplification
and induction. These techniques are sensitive to rules in a data base. Hundreds
of heuristics orchestrate the application these rules. An interactive proof checker
for Nqthm, called “Pc-Nqthm” has also been developed [20, 21].

Important to Ngthm’s success has been the fact that when a new user-
supplied theorem is proved, rules are derived from it and stored in its data
base; these rules change the way the system behaves. By stating an appro-
priate collection of lemmas the user can effectively program Nqthm to prove
theorems in a given domain. A well chosen sequence of lemmas can lead Nqthm
to the proofs of very deep theorems. Target theorems can often be changed
and “re-proved” automatically because proof scripts tend to describe powerful
and general-purpose rules for manipulating the concepts rather than particular
proofs. That is, the user programs Nqthm to deal with the concepts and ex-
pects Nqthm to fill in the gaps between application-specific lemmas describing
the proof at a high level. This makes it easy to “maintain” an evolving sys-
tem of definitions and theorems if the system was initially verified with Nqthm.
That, in turn, has allowed Nqthm to accumulate a vast quantity of benchmark
theorems.

The latest version of Nqthm, named “Nqthm-1992,” was released in 1994.
A companion “Pc-Nqthm-1992” was also released. To obtain Nqthm-1992, con-
nect to Internet site ftp.cli.com by anonymous ftp, giving your email address
as the password, ‘get’ the file /pub/nqthm/nqthm-1992/README, and follow the
instructions therein. (Analogous instruction apply to Pc-Nqthm-1992.) Nqthm
is documented in two books [8, 11], and Pc-Nqthm is documented in [20, 21, 22].
Both systems and many of their applications are briefly described in [7]. A de-
tailed tutorial introduction to Nqthm and Pc-Nqthm may be found in [24]. The
recent Nqthm-1992 release includes 1.3 megabytes of updated documentation
consisting of new versions of the five most important chapters in [11]. In addi-
tion, the releases include more than 17 megabytes of example input for Nqthm
and Pc-Nqthm, including most of the important benchmarks listed below.

3.2 Some of Nqthm’s Applications

Space does not allow even a brief but exhaustive summary of theorems proved
with Nqthm; we therefore only describe a few. The theorems alluded to below
were selected to illustrate the expressivity, flexibility, and power of Nqthm to
deal with digital systems and the related mathematics. Why do we dwell on
Nqthm’s successes when we are here interested in its flaws? The relative weak-
ness of Nqthm’s quantifier-free, first order logic could be regarded as a flaw to be
corrected but we cite these examples to establish the fact that the expressivity
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of the logic is not a serious bottleneck.

e Mathematics for Computation Among the well-known Nqthm bench-
marks are Gauss’ law of quadratic reciprocity [31] and Godel’s incom-
pleteness theorem for Shoenfield’s first order logic extended with Cohen’s
axioms for hereditarily finite set theory, Z2, [34]. The first illustrates
Nqgthm’s use in deep reasoning about integers, perhaps the most com-
monly used mathematical construct in computing. The second illustrates
Nqgthm’s use in modeling other formal systems, a capability that has often
been exploited to use Nqthm to do proofs “in” other computational log-
ics: Ngthm has proved the soundness and completeness of a propositional
calculus decision procedure [8], the Turing completeness of pure Lisp [10],
the Church-Rosser theorem for lambda calculus [33], and the soundness
of the proof rules of Misra and Chandy’s Unity logic [14, 16].

e System Verification Perhaps most representative of digital systems ver-
ification is the now classic example, the “CLI short stack,” which com-
bines both hardware and software verification. The short stack consists of
a chain of abstract machines starting with a microprocessor (the FM8502)
described at the gate-level and ending with an operational semantics for
a simple high-level programming language (Micro-Gypsy). Between each
pair of machines in this chain is an Nqthm function implementing the
higher machine on the lower one. At the highest level the implementing
function is a “(cross-)compiler;” as one descends the implementing func-
tion is called an “assembler,” a “linker” and eventually a “downloader.”
Nqgthm has done the proofs necessary to establish that each higher-level
machine is correctly implemented on the next lower-level machine. Be-
cause of the constructive nature of the Nqthm logic, the statement of each
such theorem involves the definition of a “clock function” which calculates
the number of low-level steps necessary to carry out a given number of
high-level steps. Nqthm has also done the proofs necessary to “glue” these
results together. Thus, assuming the soundness of the Nqthm theorem
prover and the correctness of our models, it is known with mathemati-
cal certainty that the results of any given Micro-Gypsy program on any
given data can be computed by running the microprocessor on the result
of compiling, assembling, linking, and downloading the initial high-level
program and data. Furthermore, the clock functions can be composed
so that it is possible to say how many microcycles are necessary to do a
given high-level computation. This work consumed several man years and
is described in [4].

e Hardware Verification and System Maintenance Since the publi-
cation of the short stack work, CLI has designed, verified, and fabricated
another microprocessor, called the FM9001 [19]. This involved formaliz-
ing the NDL hardware description language [13] of LSI Logic Inc., and



verifying that a certain collection of NDL hardware modules implemented
a formally described machine language. In what we regard as a significant
demonstration of Ngthm’s ability to support the maintenance of verified
systems, the CLI short stack was ported to the FM9001 in less than one
man-week by retargetting the assembler and linker from the FM8502 to
the FM9001 and then (re-)verifying them. We say “(re-)verifying” because
the theorems proved had not actually been proved before but were merely
analogous to those proved in the FM8502 work. This required relatively
minor modification of the proof scripts developed for the FM&8502 and
relied upon Nqthm’s theorem prover to fill in the gaps.

Software A substantial subset of the MC68020, a widely used micropro-
cessor built by Motorola, has been formalized within Nqthm. Roughly
80% of the user available instructions were formalized. (Most of the re-
maining instructions have undefined effects on the machine state.) All
eighteen MC68020 addressing modes were formalized. Using this formal
description of the machine it is possible to analyze formally the behavior
of given MC68020 object code programs. Consider, for example, the C
program

isqrt(int i)

{
int j;
j=@G/2);
while ((1 / j) < j)
j=G+ @7 3i»n /2
return (j);
}

which computes the integer square root of a given nonnegative integer. By
compiling this program with the Gnu C compiler, gcc -0, one may obtain
MC68020 object code. One can then state and prove the theorem that
if a suitably configured MC68020 is executed a certain number of steps
starting from an invocation of the isqrt object code on suitable input,
1, the result left in DO is the greatest integer whose square is less than or
equal to ¢. In addition, one can prove that execution proceeds without
error and that the final machine state is suitable for continued execution
(e.g., A6, used by LINK, is unchanged).

The correctness of MC68020 object code programs for binary search,
Hoare’s Quick Sort, and some other well known algorithms have been
mechanically checked with Nqthm. The object code for these examples
was generated using the Gnu C, the Verdix Ada, and the AKCL Common
Lisp compilers. Perhaps most importantly, 21 of the 22 programs in the
Berkeley Unix C string library were mechanically verified. See [12, 39].



Design Goals for ACL2 7
CLI Technical Report #101

In related work by Yuan Yu at DEC’s Systems Research Center in Palo
Alto, California, Nqthm is being used to specify part of the DEC Alpha
architecture.

e Fault Tolerance A model of asynchronous communication was developed
in Nqthm and used to prove the reliability of the biphase mark commu-
nications protocol [27]. The model transduces the waveform written by
one processor into that read by an independently-clocked processor, as a
function of the phases and rates of the two clocks and the communications
delay. The correcntess of a gate-level design of a device implementing the
biphase mark protocol has been proved [32]. The correctness of a gate-level
design of a device implementing an 8-bit parallel io Byzantine agreement
processor has been proved [26]. In addition, it was proved that the algo-
rithm implemented by the Byzantine agreement processor correctly solves
the “oral messages” problem [5]. Finally, the correctness of the interactive
convergence clock synchronization algorithm was proved [38].

e Scheduling, Concurrency, and Distributed Computing Nqthm has
been used to prove that an operating system implemented in machine code
on a uniprocessor correctly provides multitasking and task isolation and
communication [3]. An Nqthm formalization of Misra and Chandy’s Unity
language [14] is described in [16, 17] along with the proofs of several Unity
programs. An Nqthm-checked proof that an earliest-deadline-first (EDF)
scheduler is optimal is proved in [37]. The final theorem is the classic
theorem about EDF schedulers.

3.3 The Role of Executability

The executability of Nqthm’s logic played a significant role in the development
and use of the computational models described above. We reconsider briefly
several of the applications.

3.3.1 The CLI Short Stack

Consider the Piton task in the CLI short stack project [4]. The task was to de-
sign an assembly-level language for the FM8502 suitable as the target language
for high-level language compilers, implement the language via an assembler and
linker, and verify the correctness of the implementation mechanically. A stack-
based abstract machine was chosen as the model for the resulting language,
which was named “Piton.” The model was formalized in Nqthm as an inter-
preter. In the present context this formal model may be best thought of as a
60 page system of Lisp definitions.

Having formalized the language semantics, the Piton interpreter was used
to run several Piton programs on test data. The purpose of this exercise was
two-fold. By hand-compiling some high level language programs and testing



them we found that some useful features had been omitted from the original
Piton prototype. In addition, we discovered bugs in the formal model, i.e.,
oversights or other errors in the formal definitions that caused the model to
describe a different language than the one intended. Such testing eventually led
us to conclude that Piton was specified as intended and required.

The next phase was to implement Piton on FM8502 by defining an assembler
and linker. This required about 30 pages of Lisp. We then tested the imple-
mentation by using it to run the previously generated Piton programs, both on
the Piton model and the FM8502 model (which, recall, was another system of
executable Nqthm definitions). In some cases we ran Piton programs for thou-
sands of FM8502 steps. We found several gross bugs in the implementation this
way.

Eventually, such testing convinced us the implementation was “probably
correct” and we were prepared to invest the effort in proving it. (In fact, the
implementation was not correct but the bugs were hard to find, such as errors
arising only if “maliciously chosen” systems of names or labels were used.) For-
mulating the correctness theorem required defining various mapping functions
between the high level Piton state and the low level FM8502 state. Again,
testing was done to verify the correspondence claimed between the states. Test-
ing was also done to check that the statement of the main theorem held for
particular Piton programs and test data.

The proof involved breaking the implementation down into steps and defining
several machines intermediate between Piton and FM8502, such as a symbolic
FMS8502 with a program space separate from its data space. The design of these
machines, the mapping functions between them, and the formal statements of
the lemmas relating them were all supported by additional testing.

3.3.2 FM9001

The FM9001 project required the formalization of a model of digital circuits.
The model is based on the NDL language of LSI Logic, Inc., and is essentially
a formalization of a commercial NDL simulator with which one of the FM9001
designers was very familiar. The Nqthm model is a recursive function named
dual-eval — so named because it computes either the output lines of the circuit
or the final states of the various state-holding devices within it. Dual-eval takes
among its inputs a “netlist,” an Nqthm constant describing a tree of hardware
modules and their interconnections via named input/output lines. The leaf
nodes of these trees are primitive logical gates.

Dual-eval can be thought of as a logic simulator (without, however, the
graphic and debugging facilities of commercial simulators). It is about 50 pages
of Lisp code. Running dual-eval on a concrete netlist and data involves sim-
ulating in the proper sequence the input/output behavior of every logical gate
in the design and is a computationally intensive activity.

The implementation of FM9001 was a concrete netlist. It was proved cor-
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rect in the sense that its dual-eval semantics was shown to correspond ap-
propriately to the formal model of the FM9001 as a machine code interpreter.
Dual-eval was executed on the FM9001 netlist to help debug the netlist, the
mapping functions, and the statement of the correctness theorem.

But extensive testing played a more important role later in the project, after
the FM9001 had been fabricated by LSI Logic, Inc., from the verified netlist.
Upon delivery of the fabricated devices, CLI tested them for conformance to the
design. One reason post-fabrication testing is important is to check the relia-
bility of the unverified layout tools involved in the lower levels of the hardware
design process. Another motivation of such testing is to check for production
flaws such as malfunctioning gates caused, perhaps, by material imperfections.
The FM9001 was tested against its dual-eval model (rather than the higher
level machine code model) because the dual-eval model contained output pins
designed explicitly for testing — outputs that were not part of the machine code
model.

Note that the post-fabrication testing of verified devices changes the role
of model execution. Heretofore execution was merely an efficient way to avoid
“premature” proof attempts. An instantaneous proof oracle would obviate the
need for the kind of model execution done in the Piton project because that kind
of execution was done merely in answer to a purely mathematical question: “is
this conjecture always true?” or, equivalently, “do these two mathematical ex-
pressions give the same answers?” But the post-fabrication testing of a verified
device is not a purely mathematical question. On the one hand one has a phys-
ical object. On the other one has a mathematical expression. The question is
whether the behavior of the object is accurately predicted by the mathemat-
ical expression. The behavior of the object can only be manifested by giving
it concrete data and observing its concrete output. Thus, one is forced to give
concrete data to the mathematical expression and derive its concrete output.
That is, one must compute with the formal model and compare the results with
those produced physically. Execution of the mathematical model is inherent
in post-fabrication testing. Often, at least for devices for which verification is
needed, the required computations are so large and the test cases so numerous
that we expect the efficiency with which the model can be executed becomes an
important issue.

3.3.3 The MC68020

We conclude this discussion of executability by considering the programmer
level model of the Motorola MC68020. The model is about 80 pages of Lisp
and was written using the MC68020 programmer’s manual [29] as the primary
source. While the MC68020 can be regarded as a formal artifact in as much as,
ideally, its behavior is exactly as specified by its gate-level design, that design
was unavailable to the author of the Nqthm model. In effect, the Nqthm model
was “reverse engineered” from the artifact.
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It was necessary therefore to corroborate the model. To do so, CLI tested
it against an MC68020 chip in the form of a Sun 3 workstation. Over 30,000
test vectors were executed both in the Nqthm model of the MC68020 and on an
actual chip [2]. Again, the importance of the executability of the Nqthm model
is obvious.

This might be considered a sorry state of affairs given the fact that the
circuit design of the MC68020 can be regarded as a mathematical object (as
FMO9001’s netlist was) and its correspondence to the machine code model is
therefore subject to formal proof. But this state of affairs is common and the
reasons go beyond the mere technical. Even after it becomes practical to verify
such large designs, a variety of economic, legal, and other obstacles stand in the
way of the publication or distribution of the “proprietary mathematical models”
of commercial products by their manufacturers. The eventual promulgation of
formal standards (e.g., for VHDL or Ada) can mitigate this problem for some
products. But after verification has becomes more practical and cost-effective,
we speculate that there will be commercial trade in “reverse engineered” for-
mal models and those models will have been corroborated against the modeled
products exactly as though those products had no other mathematical models.

3.4 Some of Nqthm’s Flaws

Despite our success with Nqthm we are aware of many shortcomings. Most of
these shortcomings relate to the scale of the project to be undertaken. When
Ngthm was designed (primarily in the 1970’s) the most impressive theorem
proved by it was the uniqueness of prime factorizations, which required about
100 lines to state starting from Peano’s axioms. By 1985, Nqthm was being
used to prove theorems requiring 1,000 lines to state (Godel’s theorem and the
correctness of the FM8501 microprocessor [18]). By 1990 it was being used to
prove theorems requiring almost 8,000 lines to state (FM9001). This is almost
two orders of magnitude larger than the “inspirational” theorems of Nqthm’s
design stage.

Below we list those flaws of Nqthm that we believed could and should be
fixed by a new design.!

e Prototyping Formal Models Admitting functions to the logic requires
theorem proving. But users prefer to prototype their formal models first,
testing them on concrete data until convinced that the model is accurate
enough to warrant the investment in proof.

e Execution Speed Testing a formal model on concrete data presupposes
the logic is executable, i.e., that the value of a variable-free term or formula

1Of course, the most troubling “flaw” of Nqthm is the weakness and slowness of its theorem
prover. If the theorem prover would instantly recognize any Nqthm formula that was a theorem
and recognize no non-theorems, the other flaws would cause little trouble!
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can be computed. Nqthm’s logic is executable (unless undefined function
symbols are present). But Nqthm’s logic executes less efficiently than we
would like. This must be understood in the context of the large models and
numerous test cases discussed above. Perhaps the main reason Nqthm’s
logic executes slowly is the need for runtime type checking. Another is
the presence of user-defined shells and other abstract objects (e.g., (TRUE)
and (FALSE)) in the logic for which no corresponding data types exist in
the underlying execution engine. If some Common Lisp conses must be
set aside for the representation of the logic’s shells, then those conses
are not available for the representation of their natural counterparts in
the logic. The result is that the implementations of all of the logic’s
constructors and accessors are complicated by runtime type checking and
the provision for various “escape” mechanisms. Furthermore, because of
these complications, calls to the logic’s accessor functions are compiled
into procedure calls rather than handled more efficiently in-line.

e Useful Proof Techniques There are many useful proof techniques not
supported by Nqthm. Consider for example the notion of “quotient struc-
ture.” Traditionally this notion refers to a set-theoretic construction in
which a new structure is formed from the equivalence classes of an existing
structure, for a particular equivalence relation. A typical use of such struc-
tures in our work is the partitioning of the set of states of some formalized
machine into equivalence classes by a projection that ignores hidden re-
sources. In suitable circumstances — formally described by a congruence
rule — one can regard two nonidentical states as equivalent vis-a-vis the
behavior of some higher level machine. The first-order, non-set-theoretic
setting of Nqthm makes this sort of construction inconvenient for us. The
identity relation (Nqthm’s EQUAL) is the only equivalence relation with
which Nqthm’s heuristics will do replacement or substitution during sim-
plification. To get Nqthm to replace a term by a nonidentical but suitably
equivalent term is quite awkward, requiring one to arrange for all of the
corresponding congruence and transitivity rules to be explicitly used by
the simplifier during backchaining. Other proof techniques that Nqthm
users have from time to time requested include forward chaining, the use
of alternative definitions of a concept, and “forcing” a hypothesis to be
true in back chaining by assuming its truth temporarily and bringing the
full resources of the system to bear on it later, when the proof is otherwise
complete.

e User Control of the Theorem Prover Nqthm is guided in its search
for a proof by the enabled rules of its data base. Few “local” scoping
mechanisms are available to the Nqthm user. The user must thus manip-
ulate the global state of the data base in a sequential way to configure it
for each theorem. This flat structure produces complicated proof scripts
that are highly dependent upon an implicit notion of the current status of
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all rules. It also complicates the task of combining two independently de-
veloped proof scripts. Furthermore, many heuristics are beyond the user’s
control and arcane tricks are sometimes necessary to provoke the desired
behavior. Finally, the hints available to the Nqthm user for directing the
system’s search explicitly are quite limited.

The Command Language Nqthm’s command language is Common
Lisp. A strength of the arrangement is that Lisp is a powerful command
language; by the suitable definition of Common Lisp macros users can tai-
lor their command environments to their tastes. But typical commands
consist of a mix of Common Lisp and Nqthm terms and formulas. This
can be quite confusing, especially when dealing with function symbols
such as CAR and APPEND which are defined slightly differently in the two
languages. Furthermore, because the configuration of the host Lisp is not
part of Nqthm, proof scripts developed by one user are not always readable
by another.

State Saving, Reusability, and Collaboration Nqthm allows the user
to save the data base into a file, called a “library” file, and thus start a sub-
sequent session in the same state. Nqthm libraries for many domains have
been developed, e.g., natural numbers, list processing, MC68020 object
code programs. But it is not possible to combine two libraries because
each is a complete snapshot of the Common Lisp image. Nevertheless,
such combination is exactly what one would want to do if one needed a
number theoretic result while constructing the proof of an MC68020 pro-
gram. This makes it quite difficult to build on the work of others or one’s
own past work, except by having Nqthm reprocess the old script. This
raises the cost of verification by encouraging the repeated redevelopment
of foundational work and tends to linearize the development of a veri-
fied system into a monolithic project by a single person who has complete
knowledge of the state. Because of the growing size of verification projects,
we believe that verification systems should encourage the collaborative ef-
forts of many people working semi-autonomously on different parts of the
system.

Practicing What We Preach It has always struck us as hypocritical
that we would, on the one hand, advocate the use of formally defined
programming languages and machine-checked formal proof as a means
of assuring correctness while, on the other hand, programming our own
system, Nqthm, in an informally specified language and relying entirely
on informal arguments that we had done our job correctly. Would it not
be more convincing if we programmed the system in a formal language
and could, at least, state its correctness? Should we not aspire someday
to prove the correctness of the system and to somehow check that proof
mechanically?
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4 ACL2

ACL2 is an extended, reimplemented analogue of Nqthm that supports an ex-
tension of the applicative subset of Common Lisp as its logic. “ACL2” stands
for “A Computational Logic for an Applicative Core Language.” By “core lan-
guage” we mean a formalism that can be used — as Nqthm was — to model
many different computing systems. Common Lisp is such a language. By for-
malizing a logic around applicative Common Lisp we can take advantage of the
exceptionally good optimizing compilers for Common Lisp to get, in many cases,
execution speeds comparable to C. Two guiding tenets of the ACL2 project
have been to conform to all compliant Common Lisp implementations and to
add nothing to the logic that violates the understanding that the user’s input
can be submitted directly to a Common Lisp compiler and then executed (in an
environment where suitable ACL2-specific macros and functions are defined).

The definition of Common Lisp used in our work has been [35, 36]. We
comment on the draft proposed ANSI standard for Common Lisp [30] in the
conclusion.

Just as Nqthm is more than a verification tool for pure Lisp — in particular,
it has been used as a modeling tool for a wide variety of digital systems —
ACL2 is intended to be more than a verification tool for Common Lisp. Its
current applications range from hardware verification to models of high level
programming languages such as Ada.

4.1 Logic

The ACL2 logic is a first-order, quantifier-free logic of recursive functions pro-
viding mathematical induction on the ordinals up to ¢y and two extension prin-
ciples: one for recursive definition and one for constrained introduction of new
function symbols, here called encapsulation.

The syntax of ACL2 is that of Common Lisp. Formally, an ACL2 term
is either a variable symbol, a quoted constant, or the application of an n-ary
function symbol or lambda expression, f, to n terms, written (f ¢;...t,). This
formal syntax is extended by a facility for defining constants and macros. We
discuss macros later.

The rules of inference are those of Nqthm, namely propositional calculus with
equality together with instantiation and mathematical induction up to ¢y. Two
extension principles, recursive definition and encapsulation, are also provided.

The following primitive data types are axiomatized.

¢ ACL2 Numbers. The numbers consist of the rationals and complex
numbers with rational components. Examples are -5, 22/7, and #c(3 5).

e Character Objects. ACL2 supports Common Lisp’s “standard charac-
ters” including #\A, #\a, #\, and #\Newline, as well as three of Common
Lisp’s “nonstandard characters,” #\Page, #\Tab and #\Rubout.
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e Strings. ACL2 supports strings of standard characters, e.g., "Arithmetic
Overflow".

e Symbols. ACL2 supports Common Lisp’s symbols. In general, symbols
are objects consisting of two parts, a package and a name. The symbol
EXEC in the package "MC68020" is written MC68020: : EXEC. One package
is always selected as “current” and its name need not be written. Thus, if
"MC68020" is the current package, the symbol above may be more simply
written as EXEC. Packages may “import” symbols from other packages
(although in ACL2 all importation must be done at the time a package is
defined). If MC68020: :EXEC is imported into the "STRING-LIB" package
then STRING-LIB: :EXEC is in fact the same as MC68020: :EXEC.

e Lists. ACL2 supports arbitrary ordered pairs of ACL2 objects, e.g., (X
MC68020::X ("Hello." (1 . 22/7))).

It is our intention that all of the Common Lisp functions on the above data
types are axiomatized or defined as functions or macros in ACL2. By “Common
Lisp functions” here we mean the programs specified in [35] or [36] that are (i)
applicative, (ii) not dependent on state, implicit parameters, or data types other
than those in ACL2, and (iii) completely specified, unambiguously, in a host-
independent manner. Approximately 150 such symbols are axiomatized.

Common Lisp functions are partial; they are not defined for all possible
inputs. Consider for example the primitive function car. Page 411 of [36] says
that the argument to car “must be” a cons or nil. On page 6 we learn “In
places where it is stated that “so-and-so ‘must’ or ‘must not’ or ‘may not’ be the
case, then it ‘is an error’ if the stated requirement is not met.” On page 5 we
learn that ‘it is an error’ means that “No valid Common Lisp program should
cause this situation to occur” but that “If this situation occurs, the effects and
results are completely undefined” and “No Common Lisp implementation is
required to detect such an error.”

This raises some problems with the direct embedding of applicative Common
Lisp into a logic. The situation is far worse than merely not knowing the value
of (car 7). We do not know that the value is an object in the logic: (car 7)
might be w, for example. Worse still, we do not know that car is a function:
the form (equal (car 7) (car 7)), which is an instance of the axiom (equal
x x), might evaluate to nil in some Common Lisps because the first (car 7)
might return t and the second might return nil. The “story” relating our
logic to Common Lisp is complicated and we explain it after completing the
description of the logic.

In support of the “story” we formalize in ACL2 the notion of “guards.” Each
ACL2 function symbol has a guard, which is a term that specifies the domain
of the function. The guard of car is (or (consp x) (equal x nil)). Appli-
cations of a function outside its guarded domain produce unspecified results.
We have identified a guard for each of the Common Lisp primitives in ACL2
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and made sure that our axioms do not constrain the primitives outside of their
guarded domains.
To applicative Common Lisp we add four important new features.

e We add a notion of “state,” containing, among other things, the file system
and input/output “channels” to files. Syntactic checks in the language
insure that the state is single-threaded, thus giving rise to a well-defined
notion of the “current state.”

e We add fast applicative arrays. These are implemented, behind the scenes,
with Common Lisp arrays in a manner that always returns values in accor-
dance with our axioms and operates efficiently provided certain program-
ming disciplines are followed (namely, they are used in a single-threaded
way so that only the most recently updated version of an array is used).

e We add fast applicative property lists in a manner similar to that for
arrays.

e We add new multiply-valued function call and return primitives that are
syntactically more restrictive than those of Common Lisp (requiring a
function always to return the same number of values and always to be
called in the appropriate manner) but which can admit a faster imple-
mentation than Common Lisp’s.

Finally, ACL2 has two extension principles: definition and encapsulation.
Both preserve the consistency of the extended logic. Indeed, the standard model
of numbers and lists can always be extended to include the newly introduced
function symbols. (Inconsistency can thus be caused only if the user adds a new
axiom directly rather than via an extension principle.) The definitional principle
insures consistency by requiring a proof that each defined function terminates.
This is done, as in Nqthm, by the identification of some ordinal measure of
the formals that decreases in recursion. In [8] we show (for Nqthm) that this
insures that one and only one set-theoretic function satisfies the recursive defi-
nition and that proof carries over to the ACL2 case, with appropriate treatment
of the nonuniqueness of the constrained functions used in the definition. The
encapsulation principle preserves consistency by requiring the exhibition of wit-
ness functions that have the alleged properties.

The form of a function definition is as in Common Lisp,

(defun f (x1..r,) (declare ...) body)

ACL2 extends Common Lisp’s declare so as to permit the specification of a
guard expression, (g z1...x,), as well as to permit the optional specification of
an ordinal measure and other “hints.” If the required termination theorems can
be proved,



16

Axiom.
(9 1..x) — (f z1...1,) = body

is added as a new axiom. Observe that the value of the function outside of its
guarded domain is unspecified. Logically, our guards are just terms that appear
as hypotheses in many axioms.

Encapsulation allows the introduction of new function symbols satisfying
arbitrary constraints provided one can exhibit definitions of those symbols that
make those constraints theorems. This allows for abstractions to be introduced
conservatively. An encapsulation command takes the form of an arbitrary se-
quence of commands, e.g., definitions and theorems, some of which are labeled
“local.” When an encapsulation command is verified for admissibility, all of
the subcommands are executed and each must be successful. But the effects of
the command are obtained by executing only the non-local subcommands. To
constrain a new function symbol f of one argument so that it always returns
a rational number, it suffices to define (f x) locally to be 22/7, say, and then
to prove and “export” the theorem (rationalp (f x)). The local definition
of f is merely a witness to the consistency of the constraint. “Outside” the
encapsulation, (f x) is known only to be rational.

A derived rule of inference, called “functional instantiation,” [6], gives ACL2
some of the features of a higher order logic by allowing one to instantiate the
function symbols of a previously proved theorem, replacing them with other
function symbols or lambda-expressions, provided one can prove that the re-
placements satisfy the constraints on the old symbols. For example, any theorem
proved about the rational f above could later be used to obtain the analogous
theorem about any rational function or expression.

ACL2’s logic is strictly weaker than Nqthm’s because ACL2’s logic does not
contain an analogue of Nqthm’s nonconstructive V&C$. The logical tendrils of
V&C$ are pervasive and the heuristics for dealing with it are very complicated
(and hence invite implementation errors). Whether it is a comment on the
utility of V&C$ or (more likely) on the weakness of our heuristics for handling
it, it is a fact that Nqthm users avoid V&C$. Little substantial use of it appears
in Nqthm’s benchmarks, and since the introduction of functional instantiation,
some of those uses have been replaced by the use of constrained functions and
functional instantiation, as illustrated in [15] where the two methods are used
to prove the termination of Knuth’s generalized 91-function [25]. In any case,
we decided not to burden ACL2 or its users with an analogue of V&C$. We
are optimistic that this does not seriously lessen the applicability of ACL2 to
practical verification problems.

4.2 Metatheoretic Considerations

Lisp and ACL2 exploit the fact that there is a straightforward mapping from
terms in the logic to the objects of the logic. For example, the term (f ¢;...t,)
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can be identified with the list structure > (f t;...t,). The latter is said to be
the quotation of the former. To make this possible we insist that if f is a
function symbol in the syntax, then ’ f is a symbol object. The mapping is so
straightforward that one often forgets it and thinks of terms as being objects in
the logic, though this is technically a categorical mistake.

One way this mapping is exploited is in the macro facility. Macros allow
the syntax of the logic to be extended. Macros are functions. If f is a macro
and z1, ..., z, are arbitrary objects, then (f z...x,,) may be used as a term
and denotes the term (whose quotation is) obtained by applying f to the z;.
For example, by the appropriate macro definition of case one might arrange
for (case x (1 "a") (2 "b") (otherwise "c")) to “macroexpand” to (if
(equal x 1) "a" (if (equal x 2) "b" "c")). Thus, the syntactic denota-
tion of an expression is determined by computation and the power of recursive
functions can be used (for better or worse) to introduce essentially arbitrary no-
tation. By introducing well-designed application-specific notation one can make
specifications more succinct and easy to grasp.

Like Nqthm, the ACL2 theorem prover also exploits the identification of
terms and objects. It is possible to define “term transforming” functions (which
actually operate on the quotations of terms). If one then proves that such a
transformer preserves semantic identity (i.e., that the object denoted by the
input term is the same as the object denoted by the output term), the trans-
formation can be incorporated soundly into the simplification routines of the
theorem prover. See [9].

The link between terms and objects means that some system design and user
interface issues impact the choice of axioms. For example, execution efficiency
dictates that the quotation of a function symbol be an object in the logic that
can be concretely and uniquely represented by that symbol. Thus, while theo-
retical considerations permit one to encode the quotations of function symbols
as integers, efficiency suggests including in the logic some suitable objects.

Nowhere is the impact of the user interface on the choice of axioms more
apparent than in the provision of packages for symbol objects. Why are our
symbol objects complicated by the notion of a package component? Nqthm’s
symbols (the LITATOMs) were not so complicated. The answer is that we care
less that the symbol objects of the logic have packages than we care that their
“dequotations” as function symbols have packages. We want to make it easy
to combine theories developed by different users. Packages allow independent
users to create disjoint systems of function definitions. For example, each of two
users, Smith and Jones, can define the function step. Provided the two users
work in differently named current packages, say "SMITH" and "JONES", their
two systems can be combined without logical conflict and each can continue
to reference his or her own step by that name while referencing the other
by prefixing it with the appropriate package, e.g., JONES: :step. But because
function symbols are identified with the symbol objects, > JONES: : step must be
a symbol object and the axioms must make explicit the package component of
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a symbol and the relationships between packages.

4.3 Execution Efficiency, Guard Verification and Colors

The implicit guards of Common Lisp allow great efficiency. The implementation
of the function car may assume its actual is a cons or nil. By a suitable
representation of data, the implementation of car can simply fetch the contents
of the memory location at which the actual is stored. No type checks are
necessary. Similarly, append, whose guard requires that the first argument be a
list ending in nil, can recur down the cdr of that argument until it encounters
nil, without type checking. Of course, if car or append is applied to 7 the
results are unpredictable. There are implementations of Common Lisp, for
example, Gnu Common Lisp (which used to be called Austin Kyoto Common
Lisp), in which the performance of the compiled code generated for arithmetic
and list processing functions is comparable to hand-coded C arithmetic and
pointer manipulation. Exceptional execution efficiency on a wide variety of
platforms, combined with clear applicative semantics when used properly, was
one of the great attractions of basing the ACL2 logic on Common Lisp.

Because guards are explicit in ACL2, two choices are possible when consid-
ering how to evaluate a function call. ACL2 could check at runtime that the
actuals satisfy the guard or it could glibly execute the Common Lisp function,
taking a chance that anything might happen if the guard were not actually sat-
isfied. Because we are in a logical setting, however, we could arrange also for
ACL2 to do the latter only if it had proved, from the context of the function
call, that the guard must be true. For example, one might show that if the
guard to a given defined function is true of the formals, then every guard that
will be encountered in the execution of the body of that function will also be
satisfied. If one marked such functions then their safe evaluation would be fast:
check the guard upon the first entry from an “unsafe” context and then execute
the body with no checking (and no risk). If an entire system were so marked,
the only runtime check would be of the initial inputs.

We codify this marking scheme with what we call “colors.” Colors, however,
are also connected to another aspect of ACL2 function definition, namely the
issue of prototyping and testing before admission to the logic.

At any moment, every ACL2 function has one of four colors. The colors
and their significance are described below. Colors are not part of the logic but
merely a feature of our implementation of it. Facilities are provided for changing
the color of a function. Functions of all colors can be compiled.

e Red A function symbol has the color red if the symbol has been defined
for computational purposes but not admitted to the logic. When such a
function is defined, syntax checks are done (to insure that the definition
is in the ACL2 language) but no termination proof is done and no axiom
is added. Thus, the logic remains consistent. Calls of the function can
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be evaluated at the command level and thus tested. The function can
be freely redefined because no nontrivial results about it could have been
proved or entered into the data base. Finally, the guard of a red function
is ignored at runtime, so execution can cause Common Lisp errors but
optimal performance is obtained. Red functions are useful for prototyping
a formal model for both behavior and performance before any proof burden
is incurred; red functions are also useful as utility functions (e.g., for use
in macros or for data base query).

e Pink Pink functions are like red ones except that the guards are checked at
runtime. After prototyping a system of red definitions one might convert
it to pink to confirm that, on the given tests, the functions are being
used in accordance with their guards. Since pink functions can be freely
redefined (along with their guards), guards can be prototyped without
proof burdens.

e Blue A function symbol is blue if the symbol has been defined for compu-
tational purposes and also admitted to the logic. To make a symbol blue,
a termination proof must be done. Theorems can be proved about blue
functions. Blue functions can be executed on concrete data, but guards
are checked at runtime. After a function has been prototyped in a “hot”
color (red or pink), its conversion to blue at the cost of termination proofs
adds an axiom and thus enables one to undertake proofs of correctness
and other properties.

e Gold A function symbol is gold if the symbol has been defined computa-
tionally and admitted to the logic (i.e., was blue) and, in addition, every
subfunction called in the body is gold and theorems have been proved es-
tablishing that when the guard of the function is true the guards of every
subfunction are also true on their actuals. This is called “guard verifica-
tion.” When a gold function is called (from outside a gold function), its
guard is checked at runtime but then the body is executed without any
guard checking. Thus, gold functions run as fast as red ones but with
no risk of runtime error (except, possibly, resource exhaustion). After a
blue formal model has been proved correct, one could undertake to make
it gold by proving all of the guard conjectures. When that is done, the
model will run efficiently.

Because guards are arbitrary expressions, guard verification is, in general,
undecidable. But if guards are primitive type expressions on the formals, guard
verification is usually a trivial theorem proving problem and can be done by
special syntactic means. Some work is this direction has already been done [1].
Admissibility does not require guard verification: termination of the recursion
can be proved without necessarily showing that all subfunctions are well-defined.
Indeed, it is often necessary to admit a function to the logic in color blue, prove
theorems about its value, and then convert it to gold.
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4.4 The Story Relating the Logic to Common Lisp

We make the following claim about ACL2. Suppose f is a function symbol
of one argument defined in some certified book (as described below), that the
guard of f is t, that f is gold, and that (equal (f z) t) is a theorem of ACL2
proved in that book. Consider any Common Lisp compliant to [36] into which
the ACL2 kernel has been loaded. Load the book into that Lisp. Let x be a
Common Lisp object that is also an ACL2 object (i.e., an ACL2 number, ACL2
character object, an ACL2 string, a symbol in some ACL2 package, or the cons
of two ACL2 objects). Then the application in that Lisp of f to x returns t or
else causes a resource error (e.g., stack overflow or memory exhaustion).

Given the lack of details of the logic in this paper, it is impossible to argue
the truth of this claim here. Nor have we written down a rigorous argument
elsewhere at this point, though we can explain the idea here as follows. (f x)
must evaluate to t (because of the soundness of the logic), and the computation
will at no step exercise a function symbol outside of its guarded domain (because
f is gold), where the logic and Common Lisp agree.

This claim can be generalized considerably. The most useful generalization
introduces the notion of a “gold formula” which is, roughly put, a formula in
which the guards of all function symbols are true in the context in which they
occur and claims, roughly, that any ACL2 instance of a gold theorem evaluates
to non-nil in any compliant Common Lisp.

4.5 Theorem Prover

The ACL2 theorem prover is a reimplementation of the Nqthm theorem prover
for the ACL2 logic. Most of the proof techniques of Nqthm have been imple-
mented in ACL2. Many have been extended significantly.

One of the driving forces behind our design of ACL2 is that its architec-
ture should be open so users can configure it in different ways. ACL2’s proof
techniques are sensitive to a hierarchically structured data base of rules derived
initially from previously certified “books.” Furthermore, an evolving “theory,”
which is computationally determined by the user as a function of the current
data base and goal, specifies “views” of the data base. Books and theories are
discussed later.

4.5.1 Proof Techniques

Most of the proof techniques are allowed to “force” hypotheses, by assuming
them true. The theorem prover is organized so that if the main goal is proved
but hypotheses are forced, the forced hypotheses are addressed in appropriate
contexts in a later “round” of proof. Typically, guards are forced when they are
not “obviously” true, since otherwise we cannot use the functions’s definitions.
This means that it is possible to submit simple (but false) conjectures about
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ACL2 functions to the system and be informed, explicitly by the system, that
the conjecture holds provided some previously unrelieved guard (or, “type”)
checking can be done.

While guards are forced by default, the user may actually specify which
hypotheses are to be forced. By delaying the consideration of forced hypotheses
ACL2 can combine them to reduce the total proof effort. For example, while a
particular function call might be opened many times in different contexts, the
validity of its guard might be addressed just once in a suitably general context.

Here now is a description of the ACL2 theorem prover. Readers familiar
with Ngthm will recognize that system’s structure and techniques.

The user’s conjecture is translated via macro expansion into a formal term
and converted to a set of clauses, each of which must be proved. The clauses are
added to a pool of goals and extracted one at a time for further consideration
by a succession of proof techniques. If an extracted goal is proved, the size of
the pool shrinks by one. When the pool is empty, the user’s conjecture has been
proved. If a proof technique reduces the given goal to several subgoals, it puts
the subgoals into the pool. Otherwise, the proof technique passes the extracted
goal to the next proof technique.

The proof techniques, in order of application are:

e preprocessing: This process expands some propositional functions and
uses IF-normalization, tautology checking, recognition of common cases,
and equivalence closure. An ordered binary decision diagram (OBDD)
algorithm has been coded for ACL2 [28] and we hope to integrate it into
the preprocessor.

e simplification: By far the most complicated proof technique, simpli-
fication combines primitive type checking, forward chaining, backward
chaining, forcing, congruence based rewriting under arbitrary equivalence
relations and their refinements, generalized alternative recursive defini-
tions, verified conditional metatheoretic simplifiers, tautology checking,
congruence closure, and generalized linear arithmetic.

Because of its importance we illustrate briefly the role of equivalence re-
lations here. The rewriter has a “goal equivalence relation” which speci-
fies the required relation between its input term and its output. For ex-
ample, at the top-level the rewriter maintains propositional equivalence,
i.e., the rewritten term must be propositionally equivalent to the input
term. As the rewriter descends through the structure of the term being
rewritten, it changes the goal equivalence relation according to congruence
rules previously proved. Suppose for example that a member expression
is being rewritten, and that the data base contains the rule establish-
ing that propositionally equivalent member expressions are produced when
set-equal lists are substituted into the second argument of member. Then
when rewriting the second argument of the target member expression the
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system will allow itself to maintain set-equal. This means that a rule
such as (set-equal (append a b) (append b a)) can be used as a re-
placement rule to commute the arguments of append, even though append
is not in general commutative. The user can prove new relations to be
equivalence relations and prove appropriate congruence rules. Thus, even
when nonunique concrete representations are used for abstract entities,
the user can enjoy the simplicity of “substitution of equals for equals”
at the expense of setting up the appropriate equivalence and congruence
rules.

destructor elimination: This process trades “bad” terms for “good”
ones by a “change of variables” technique driven from the data base. For
example, under suitable conditions, (- i j) might be reduced to k by
replacing i everywhere by (+ k j).

cross-fertilization: Equivalence hypotheses are used and possibly dis-
carded. Such hypotheses are used by replacing certain occurrences (de-
pending on available congruence rules) of one side of the equivalence by
the other.

generalization: This process selects certain occurrences of terms involved
on both sides of equivalence relations or in the hypothesis and conclusion
of the goal and then replaces them with new variable symbols. Restrictive
hypotheses about the new variables may be added.

elimination of irrelevance: Irrelevant hypotheses are thrown out, based
on variable isolation and deduced type information.

mathematical induction: This process attempts to find an induction
scheme appropriate for the conjecture, based on the terms in the conjec-
ture. The analysis involves the arbitrary well-founded relations used to
justify recursive functions, user supplied rules linking function symbols to
additional schemes, various techniques for merging and otherwise combin-
ing schemes, and selection heuristics.

4.5.2 The Data Base, Books, Rules and Theories

A book is a file of definitions and theorems and references to other books whose
contents are recursively included. ACL2’s data base may be extended repeatedly
by the “inclusion” of books. “Views” of the data base are specified by “theories,”
as described below.

The book mechanism is related to the encapsulation mechanism; a book can

hide the details of its proofs (locally) while exporting powerful collections of
rules. That is, the contents of a book appears different to its author than to
its readers. All events are visible to the author, or more precisely, to the agent
“certifying” the book, as discussed below. But to the reader, only “non-local”
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events are visible. Thus, the author might include in a book many “intermedi-
ate” theorems whose only purpose is to lead ACL2 to the proofs of the “main”
theorems in the book. By marking the intermediate theorems as “local” the
author can hide them from readers. Hiding is important in collaborative work
since the tactical choices made by one user are often counterproductive in the
context of the tactical choices of another.

Books can also define packages and declare a given package “current” for
the purposes of the book, thus providing the namespace protection of packages.
Books can also define theories and theory manipulation functions, as discussed
below. When two books are loaded together, syntactic checks are done to insure
their logical compatibility.

Books can be certified, which involves processing them and their subbooks
so as to determine that every definition and encapsulation is admissible and
every alleged theorem is provable. Certification looks at every event in a book,
both the local and the non-local ones. Certificates containing details of the
certification, including the checksums of the relevant books, are generated by
the certification process. When a book is later included in a session only its
non-local events are seen and their proofs are not reconstructed but just as-
sumed, provided the certification data is consistent. Inconsistent certificates
cause informative warnings to the user. Attention to directory structures allows
books to be moved between directories on the host system without requiring
recertification. The checksum computation is insensitive to comments in the
file so that certified books can be documented or reformatted without requiring
recertification. The certification process provides a means of version control
that is integrated into the proof system. This is particularly important if multi-
ple users are developing a system. (Strictly speaking, logical soundness requires
that only one ACL2 process have write permission for the duration of a proof
on all of the books involved and that certification of all books be performed by
that process at the beginning of the proof. Given the fundamental insecurity
of most host file systems, it was thought that checksums provide an acceptable
level of assurance to detect accidental corruption by cooperative colleagues. Fi-
nal formal assurance is obtained by a root-and-branch stand-alone certification
at the end of the project.)

As with Nqthm, proved theorems generate rules that are added to the data
base. Unlike Nqthm, ACL2 does not require the syntactic form of a theorem
to specify how it will be used as a rule. Instead, every rule generated from a
theorem is derived from a “corollary” formula, optionally specified by the user
(and defaulting to the theorem itself), which is implied by the theorem and
whose syntax describes the rule.

Including a book into an ACL2 session adds all the rules derived from the
non-local events in the book. Each rule in ACL2 has a unique name. A rule can
be used only if it is “enabled.” Whenever ACL2 goes to the data base to obtain
information an appropriate rule name is found, checked for being enabled, and
tracked in a “tag tree,” a structure that follows the evolving proof construction
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and records relevant information. Pervasive tracking and use of enabled rule
names provides the ACL2 user with much finer grained control of ACL2 as well
as more information, if desired, about the evolving proof.

To be “enabled” a name must be in the current theory, where a theory is a
list of rule names. A theory thus gives a view of the data base in the sense that
a rule is seen only if its name is in the current theory.

Theories are just objects in the logic, namely lists. Since a theory is just a
list of ACL2 objects, theories can be computed and manipulated by ACL2 func-
tions. Utility functions for manipulating theories include functions for unioning
together theories (enabling all the rules in each), taking the set difference of two
theories (disabling all the rules in the latter theory), and computing the current
theory as of some previous proof. The user may define theory manipulation
functions. Daemons can be installed on names to insure that incompatible rules
do not coexist within a derived theory. Books may provide alternative sets of
rules and make them conveniently available via theories and theory functions
provided in the books. The author’s advice about how rules are used in concert
may be codified into daemons.

4.5.3 Proof Trees and Commentary

The ACL2 theorem prover prints a running commentary on its evolving proof
attempt, explaining each transformation, the derivation of forced hypotheses,
the use of hints, etc. In addition, if Emacs is available, ACL2 sketches the
evolving proof tree as it goes, pruning branches that are proved. The proof tree
facility is linked to the evolving commentary so that the commentary associated
with any point in the tree can be conveniently obtained. This allows the user to
ignore ACL2’s scrolling commentary (indeed, many users simply do not display
that buffer) and simply jump directly to the trouble spots (the “checkpoints”
of [11] and of the tool described in [23]).

4.5.4 Documentation

ACL2 is documented via an online documentation facility that is part of ACL2.
The ACL2 documentation is maintained in a hypertext-like structure which
may be browsed via ACL2 documentation commands. In addition, it may be
browsed via Emacs’ Info mode and via Mosaic. Roughly .9 megabytes of on-
line documentation is available about ACL2, including tutorials. Instructional
materials are being prepared as part of this documentation.

The ACL2 user may wish to document his or her formal models and browse
that documentation with the facilities provided. ACL2 supports this use of
its documentation facilities. In particular, Common Lisp allows documentation
strings to be included in the definitions of constants, macros and functions and
ACL2 extends that to the commands that introduce other names, such as theo-
rems and theories. ACL2 recognizes documentation strings that are formatted
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in a certain way and links them into its browser. Facilities are provided to con-
vert ACL2’s graph into files suitable for browsing with Info mode and Mosaic.
Thus, when a book is included in a session — possibly introducing many new
function symbols and rules — the author’s documentation of those new names
also becomes available.

4.5.5 The User Interface

ACL2 presents itself to the user as a read-eval-print loop in which ACL2 forms
are read and evaluated. Upon reflection, this is a dizzying statement, because it
implies that the command to define a function, for example, is an ACL2 form.
We discuss this in the next section.

We here focus on three interesting aspects of this interface. First, as with
traditional Common Lisp interfaces, the user may freely mix the definition of
functions with their evaluation, typing only Common Lisp. Indeed, the only
language one must know to use ACL2 is ACL2 (applicative Common Lisp). We
find this unity pleasing. Indeed, the aspects of ACL2 relating to logic and proof
are transparent as long as one is merely prototyping and testing a red system.
A window based interface could be engineered from this base with about the
same difficulty as one could be engineered for a traditional Common Lisp.

Second, because the command language is ACL2, the user can define macros
to tailor the command environment. Here are three illustrative command-level
mMacros.

e A macro form might automatically “disable” all the rules generated by a
theorem embedded in the form.

e A macro form might generate schematically a collection of theorems from
some data structure provided in the form. Such a macro might implement
some specialized methodology for proving certain kinds of properties about
the object model.

e A macro form might submit a given theorem for proof and compute au-
tomatically a certain style hint known by the user to be necessary when
theorems of the given kind are proved.

In Nqthm, such macros were defined in Common Lisp. But proof scripts
using those macros were unreadable by unmodified Nqthm images. In ACL2,
such macros may be included in the proof scripts in which they are used (perhaps
by the recursive inclusion of a customization book). Checks made when books
are loaded insure that the macros used by a collection of books are compatible.
It is our intention that the provision of macros at the command level will give
ACL2 an advantage over Nqthm when using the system as a “shell” in which to
construct verification environments for specialized domains precisely because it
allows one to codify, formally, the methodology required.
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Third, ACL2 can be used to query the data base. Sophisticated users of
Nqthm frequently use this aspect of Nqthm, as to collect all the names defined
since a given name was introduced, etc. But in Nqthm the use of Common Lisp
can potentially render the system unsound, as would happen if the user redefined
the Common Lisp function prove or destructively modified the property lists
while inspecting them. But in ACL2, such utility functions can be defined
without having to program in a new language and without risking damage to
the system, because of ACL2’s applicative nature and the checks made by its
definitional principle. Indeed, users can define useful utilities and exchange
them via books, without rendering the system unsound.

4.6 Practicing What We Preach

ACL2 is coded in ACL2. That is, the ACL2 system is a collection of books
containing definitions of ACL2 functions. The type mechanism, the rewriter,
the linear arithmetic procedure, the induction heuristic, the error checkers, the
error handlers, the mechanism for reading and processing books, the top-level
read-eval-print loop — all are ACL2 functions. To boot the system, the compiled
code is loaded into any Common Lisp and then the system reads and processes
its own source files, first in the color red and then gold. (At the moment, only
part of the system, about a tenth of it, has been processed in gold. Among
our goals is to process the entire system in gold.) The system currently stands
at 4.9 megabytes (or about 109,000 lines of code), making it one of the largest
applicative programs in the world.

The discipline of using ACL2 as its own implementation language has had a
remarkable impact on the language, the theorem prover, and the system support
tools. Simply expressing ACL2 in itself stretched the applicative language from
the rather confining natural subset of Common Lisp to a practical applicative
programming language. Our concern for the efficiency of our software drove
us to make ACL2 efficient. Array access and change are essentially constant-
time operations, that operate at about half the speed of the array access and
change in C. Appropriately declared simple arithmetic expressions execute at
C speeds. However, unlike other practical applicative languages, ACL2 includes
an axiomatization and a mechanical theorem proving environment.

The discipline of processing our source code with the definitional princi-
ple has yielded important improvements to the heuristics originally taken from
Nqthm. For example, one 700 line definition in our source code expanded un-
der Ngqthm’s definition normalization routines to 25 megabytes of formal code.
ACL2 does not normalize definitions, which on the one hand forces its theorem
prover to do so but on the other allows context-sensitive normalization to re-
duce the number of cases. Whether ACL2 can manage to prove things about
definitions of practical size (e.g., its own source code) remains to be seen; but
the experiment has at least established that the heuristics of Nqthm could not.

By “practicing what we preach” we have been forced to confront in ACL2
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the same problems of scale, e.g., efficiency, problem size, documentation, ver-
sion control, distributed development, etc., that Nqthm users were beginning to
confront. Furthermore, solving these problems has been on our “critical path.”

Some of the other side-effects of our choice of ACL2 as implementation lan-
guage are noted briefly below.

e Because it is written in that subset of applicative Common Lisp that
is host-independent, ACL2 is portable to any compliant Common Lisp
platform.

e The ACL2 state, and in particular the data base, is an ACL2 object that
may be inspected by ACL2 functions and the user. It is possible to save
versions of the data base for later retrieval and otherwise take advantage of
the “first class” nature of the data base. Theory manipulation functions
get the data base as an argument. Metafunctions could in principle be
sensitive to the data base.

e Metafunctions can be coded more efficiently.

e It is possible for ACL2 to reason about its own behavior since its source
code is among the axioms. So far, only trivial use of this has been made,
namely, to verify the guards of hundreds of ACL2 system functions. (It
should be noted that until ACL2 constructs independently checked formal
proof objects — the direction in which our tag tree mechanism is headed
— a proof by ACL2 about its own source code has to be regarded with
the same skepticism one is inclined toward when someone says “I would
never lie to you.”)

e It is possible to state in ACL2 that the system is sound.

e It is in principle possible to prove that ACL2 is sound. This is among our
long-term goals.

5 The Associativity of Append

In this section we exhibit a Common Lisp definition of list concatenation and
prove that it is associative. We avoid using the built-in function append because
it is defined as a macro that takes two or more arguments.

The function app below concatenates two lists. However, the first argument
must be a true-listp, which is to say, it must end in nil. Note the declared
:guard below. This allows the definition of app to terminate with a null check,
which is more efficient than the type check atom.

(defun app (x y)
(declare (xargs :guard (true-listp x)))
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(cond ((null x) y)
(t (cons (car x) (app (cdr x) y)))))

This function is associative provided its guard is satisfied. Here is a state-
ment of the theorem:

(implies (and (true-listp a)
(true-listp b))
(equal (app (app a b) c) (app a (app b c)))).

The proof of this theorem, constructed by the current version of ACL2 (Ver-
sion 1.6), is shown below. The Common Lisp reader generally converts lower
case input to upper case (except in strings and in certain delimited symbols)
and thus the formulas printed below are in upper case.

Of special interest is the “forcing round.” The main proof proceeds by
an induction on A. The term (APP (APP A B) C) in the induction conclu-
sion expands, using the definition of APP on the innermost APP term, to (APP
(CONS (CAR A) (APP (CDR A) B)) C). This expansion is permitted because
the guard for that term, (TRUE-LISTP A), is known to be true by hypothesis.
But to expand the outermost APP in (APP (CONS (CAR A) (APP (CDR A) B))
C) we must know that its first argument is a TRUE-LISTP and this is problem-
atic because it involves an inductive argument about the innermost APP. But
the proof proceeds by “forcing” this guard (in Subgoal *1/3’ below). At the
successful conclusion of the main proof, ACL2 undertakes a “Forcing Round”
to show, by induction, that under the given hypotheses the innermost APP term
returns a TRUE-LISTP.

Name the formula above *1.

Perhaps we can prove *1 by induction. Five induction schemes are suggested
by this conjecture. Subsumption reduces that number to four. These

merge into two derived induction schemes. However, one of these is

flawed and so we are left with one viable candidate.

We will induct according to a scheme suggested by (APP A B). If we
let (:P A B C) denote *1 above then the induction scheme we’ll use
is
(AND (IMPLIES (NOT (TRUE-LISTP A))
(:P A B C))
(IMPLIES (AND (TRUE-LISTP A)
(NOT (NULL A))
(:P (CDR A) B C))
(:P A B C))
(IMPLIES (AND (TRUE-LISTP A) (NULL A))
(:P ABC).
This induction is justified by the same argument used to admit APP,
namely, the measure (ACL2-COUNT A) is decreasing according to the relation
EO-ORD-< (which is known to be well-founded on the domain recognized
by EO-ORDINALP). When applied to the goal at hand the above induction
scheme produces the following three nontautological subgoals.
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Subgoal *1/3
(IMPLIES (AND (TRUE-LISTP A)
(NOT (NULL A))
(EQUAL (APP (APP (CDR A) B) C)
(APP (CDR A) (APP B C)))
(TRUE-LISTP B))
(EQUAL (APP (APP A B) C)
(APP A (APP B C)))).

By the simple :definition of NULL we reduce the conjecture to

Subgoal *1/3’
(IMPLIES (AND (TRUE-LISTP A)
(NOT (EQUAL A NIL))
(EQUAL (APP (APP (CDR A) B) C)
(APP (CDR A) (APP B C)))
(TRUE-LISTP B))
(EQUAL (APP (APP A B) C)
(APP A (APP B C)))).

But forced simplification reduces this to T, using primitive type reasoning,
the :rewrite rules CDR-CONS and CAR-CONS and the :definitions of TRUE-
LISTP and APP (forced).

Subgoal *1/2
(IMPLIES (AND (TRUE-LISTP A)
(NOT (NULL A))
(NOT (TRUE-LISTP (CDR A)))
(TRUE-LISTP B))
(EQUAL (APP (APP A B) C)
(APP A (APP B C)))).

But we reduce the conjecture to T, by primitive type reasoning.

Subgoal *1/1
(IMPLIES (AND (TRUE-LISTP A)
(NULL A)
(TRUE-LISTP B))
(EQUAL (APP (APP A B) C)
(APP A (APP B C)))).

By the simple :definition of NULL we reduce the conjecture to

Subgoal *1/1°
(IMPLIES (AND (TRUE-LISTP A)
(NOT A)
(TRUE-LISTP B))
(EQUAL (APP (APP A B) C)
(APP A (APP B C)))).

But simplification reduces this to T, using primitive type reasoning,
the :definition of APP and the :executable-counterparts of TRUE-LISTP,
NOT and EQUAL.
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That completes the proof of *1.
q.e.d. (given one forced hypothesis)

Modulo the following forced goal, that completes the proof of the input
Goal. See :DOC forcing-round.

[11Goal, below, will focus on
(TRUE-LISTP (APP (CDR A) B)),
which was forced in
Subgoal *1/3’, above,
by applying (:DEFINITION APP) to
(APP (CONS (CAR A) (APP (CDR A) B)) C).

We now undertake Forcing Round 1.

[1]1Goal
(IMPLIES (AND (CONSP A)
(TRUE-LISTP (CDR A))
(TRUE-LISTP B))
(TRUE-LISTP (APP (CDR A) B))).

The destructor terms (CAR A) and (CDR A) can be eliminated by using
CAR-CDR-ELIM to replace A by (CONS Al A2), generalizing (CAR A) to
A1 and (CDR A) to A2. This produces the following goal.

[1]1Goal’
(IMPLIES (AND (CONSP (CONS A1 A2))
(TRUE-LISTP A2)
(TRUE-LISTP B))
(TRUE-LISTP (APP A2 B))).

This simplifies, using primitive type reasoning, to

[1]1Goal’’
(IMPLIES (AND (TRUE-LISTP A2) (TRUE-LISTP B))
(TRUE-LISTP (APP A2 B))).

Name the formula above [1]*1.

Perhaps we can prove [1]*1 by induction. Three induction schemes are
suggested by this conjecture. These merge into two derived induction
schemes. However, one of these is flawed and so we are left with one
viable candidate.

We will induct according to a scheme suggested by (APP A2 B). If we
let (:P A2 B) denote [1]*1 above then the induction scheme we’ll use
is
(AND (IMPLIES (NOT (TRUE-LISTP A2))
(:P A2 B))
(IMPLIES (AND (TRUE-LISTP A2)
(NOT (NULL A2))
(:P (CDR A2) B))
(:P A2 B))
(IMPLIES (AND (TRUE-LISTP A2) (NULL A2))
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(:P A2 B)))

This induction is justified by the same argument used to admit APP,

namely, the measure (ACL2-

COUNT A2) is decreasing according to the

relation EO-ORD-< (which is known to be well-founded on the domain

recognized by EO-ORDINALP).

induction scheme produces

[1]1Subgoal *1/3
(IMPLIES (AND (TRUE-LISTP

When applied to the goal at hand the above
the following three nontautological subgoals.

A2)

(NOT (NULL A2))

(TRUE-LISTP
(TRUE-LISTP
(TRUE-LISTP (APP

By the simple :definition

[1]Subgoal *1/3’
(IMPLIES (AND (TRUE-LISTP
(NOT (EQUAL
(TRUE-LISTP
(TRUE-LISTP
(TRUE-LISTP (APP

(APP (CDR A2) B))
B))
A2 B))).

of NULL we reduce the conjecture to

A2)

A2 NIL))

(APP (CDR A2) B))
B))

A2 B))).

But simplification reduces this to T, using the :definitions of TRUE-
LISTP and APP and primitive type reasoning.

[1]Subgoal *1/2
(IMPLIES (AND (TRUE-LISTP

A2)

(NOT (NULL A2))
(NOT (TRUE-LISTP (CDR A2)))

(TRUE-LISTP
(TRUE-LISTP (APP

B))
A2 B))).

But we reduce the conjecture to T, by primitive type reasoning.

[1]1Subgoal *1/1
(IMPLIES (AND (TRUE-LISTP
(NULL A2)
(TRUE-LISTP
(TRUE-LISTP (APP

By the simple :definition

[1]Subgoal *1/1’
(IMPLIES (AND (TRUE-LISTP
(NOT A2)
(TRUE-LISTP
(TRUE-LISTP (APP

A2)

B))
A2 B))).

of NULL we reduce the conjecture to

A2)

B))
A2 B))).

But simplification reduces this to T, using the :definition of APP
and the :executable-counterparts of TRUE-LISTP, NOT and EQUAL.

That completes the proof of [1]*1.

Q.E.D.
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Summary
Form: ( THM ...)
Rules: ((:DEFINITION IMPLIES)

(
(:REWRITE CDR-CONS)

(:REWRITE CAR-CONS)

(:ELIM CAR-CDR-ELIM)

(:DEFINITION TRUE-LISTP)
(:FAKE-RUNE-FOR-TYPE-SET NIL)
(:DEFINITION NULL)

(:DEFINITION NOT)
(:EXECUTABLE-COUNTERPART TRUE-LISTP)
(:EXECUTABLE-COUNTERPART NOT)
(:EXECUTABLE-COUNTERPART EQUAL)
(:DEFINITION APP))

Warnings: None

Time:

6

1.60 seconds (prove: 0.80, print: 0.43, proof tree: 0.28, other: 0.08)

Applications of ACL2

We list briefly some of the ongoing applications of ACL2. Most of these projects
are still in the formalization stage and have not yet gotten to the most significant
proofs. However, this collection of ACL2 projects already includes over 1,500
theorems proved, not counting those proofs performed during the admission of
the blue and gold definitions in the systems described below.

The ACL2 system is being built in ACL2. The construction involves
termination proofs and guard verification of ACL2 functions. The source
code now stands at 4.9 megabytes of ACL2.

The Nqthm package is being developed. Roughly speaking, this is a book
that embeds the Nqthm logic into the ACL2 logic and causes ACL2’s
theorem prover to emulate Nqthm’s. With the exception of Nqthm’s
V&C$ and its superiors, all primitive Nqthm functions are now defined
within the "NQTHM" package and the relevant Nqthm axioms about them
have been proved as ACL2 theorems by ACL2. For example after ap-
propriately defining such symbols as NQTHM: : CAR, the formula (IMPLIES
(NOT (LISTP X)) (EQUAL (CAR X) 0)) is an ACL2 theorem, provided
it is read while in the current package "NQTHM". This is one of the ax-
ioms of Ngthm. The Nqgthm definitional principle and shell principle
have been implemented. A book of rules causing the ACL2 theorem
prover to emulate the Nqthm theorem prover is being developed. It is
hoped that with this book most of the 11 megabytes of Nqthm bench-
marks will “replay” automatically in ACL2. This project is still under
way but results so far are promising. We have processed roughly 75% of
the file /nqthm-1992/examples/basic/proveall .events, which includes
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such theorems as the correctness of a simple optimizing expression com-
piler, Euclid’s theorem, and the soundness of a tautology checker. We
expect the Acl2 emulation of Nqthm to result in an overall degradation
of performance (compared to both Nqthm’s proof engine and its execu-
tion environment). However, the Nqthm package will provide a migration
pathway for Nqthm users to ACL2. Furthermore, the Nqthm package will
provide an important collection of benchmark theorems on which we can
tune Acl2 performance.

e Many low-level books are being developed with the expectation that they
will find widespread use. Among them are books for natural, integer,
modulo, rational and complex arithmetic, groups, hardware specifications,
and metatheoretic reasoning.

e The Nqthm work related to the Motorola MC68020 is being recast into
ACL2. In particular, an ACL2 definition of the object code interpreter
is being developed from the Nqthm model and the Nqthm library used
in the program correctness proofs will be developed as an ACL2 book.
Initially, our aim is to reproduce the Nqthm proofs with Acl2 — a goal
that could perhaps be achieved more easily via the Nqthm package. But
ultimately we hope to tune to ACL2 model so that the simulation of object
code programs is faster than via the Nqthm model or its emulation in the
Nqthm package.

e The semantics of a subset of Ada is being coded in ACL2 in the form of
an Ada interpreter. Some simple Ada programs have been verified with
respect to this semantics. A book of useful Ada rules is being developed.
The intent of these and other “high-level” books about a given subject
formalism (in this case Ada) is to configure ACL2 so that the proofs about
objects in the subject formalism (here, Ada programs) are straightforward
when certain paradigms are followed.

o A top-level specification of a proprietary Motorola digital signal processing
(DSP) microprocessor is being developed. When complete, the specifica-
tion will be used to prove the correctness of some DSP algorithms and to
develop a high-level book about the processor. This work is analogous to
the Ngthm work on the MC68020 and the C string library.

e The semantics of VHDL is being coded in ACL2 in the form of a VHDL
interpreter or simulator. When completed it will be, in principle, possible
to prove theorems about the behavior of VHDL systems. Because of the
size and complexity of VHDL, such proofs will be an interesting challenge
to ACL2 and its users.
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7 Conclusions and Criticisms

The ACL2 project is now five years old. The system has not been released
because we are still finding bugs in it and we are not happy yet with its doc-
umentation. Within CLI, ACL2 is used more than Nqthm, although this is
probably more due to social reasons than technical ones (one hears more talk
about ACL2 than Nqthm around the coffee pot). ACL2 now has about a dozen
users, all of whom have experience with Nqthm.

We have many concerns about ACL2’s viability.

7.1 Guards

Perhaps the most pervasive concern is the feeling that guards are not yet ad-
equately handled. Guard checking is slow because so many common cases are
handled by full-blown theorem proving rather than fast syntactic checkers. More
problematic is that guards complicate the statement of theorems. Nqthm’s logic
gets incredible mileage out of the notion that functions — especially arithmetic
functions — default “unexpected” input to reasonable values so that many the-
orems are stated without hypotheses. In ACL2 one must be careful to restrict
every variable appropriately so that the guards of all functions are satisfied.
(Macros can be written to supply restrictive hypotheses based on variable names,
so the syntactic burden is not the issue.) For example, Common Lisp makes no
guarantee that (+ i j) is (+ j i) unless both i and j are numbers. This means
not only that theorems are more cumbersome to state but rules — especially
rewrite rules and definitions — are more restrictive, cause more backchaining
and fail to apply more often. A consideration is that sometimes rules fail to
apply even though the hypotheses are true, because the system is too weak to
establish their truth without additional help.

In the original version of ACL2 we made no special provisions for guards
and found that many rules, especially definitions, could not be applied under
Nqthm’s heuristics because hypotheses (namely guards) could not be relieved
at the time they were needed. This is illustrated by the proof above of the
associativity of APP: the hypothesis required induction to prove.

Our first attempt to handle guards specially was suggested by Nqthm’s han-
dling of guard-like hypotheses in its linear arithmetic decision procedure, where
a new case split is introduced whenever the procedures “needs” a hypothesis it
cannot establish. With ACL2 this generated proofs that were hard to follow be-
cause of the numerous and apparently spontaneous case splits. While this may
seem like mere carping, the effect was quite deleterious on the user’s ability to
“debug” a proof attempt and guide the system to successful proofs.

In addition, it is important to realize that most proof attempts fail because
the goal conjecture is not a theorem. This happens (in Nqthm, in ACL2, and,
we suspect, in most mechanized theorem proving systems used for similar tasks)
because the user is still grappling with the modeling and formalization problems.
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The guard-generated case splits, even those eventually dispatched successfully,
merely delayed the user’s discovery of the “real” reason the proof attempt failed.

The introduction of “forcing rounds” was our second attempt to try to mit-
igate the problem of guards. Unlike the approach in our first attempt, forcing
rounds delay the consideration of the “type-like” guard conjectures until after
the “gist” of the proof has been successfully done. Forcing rounds were regarded
by the users as an improvement over the earlier scheme. But users still remem-
ber fondly the Nqthm days when such details simply did not arise. Of course,
guards allow execution efficiency. Therefore, the trade-off is whether the added
complexity in proofs is worth the speedup in the simulation speeds of large for-
mal models. The results are not yet in because we have not completed suitably
large scale experiments yet.

When we are discouraged about the ability of the system to handle guards,
we are sometimes tempted to change slightly the story relating ACL2 to Com-
mon Lisp. Rather than maintain that ACL2 functions are undefined outside
their guarded domains we could define them explicitly as is done in Nqthm’s
logic. The result would be a particular implementation of a Common Lisp, which
we sometimes refer to as “completed Common Lisp.” In completed Common
Lisp functions would coerce unexpected arguments to natural values. Thus, for
example, arithmetic functions would coerce non-numeric arguments to 0. This
would simplify many axioms and theorems. Definitions could be used uncondi-
tionally. Some unusual theorems would hold, e.g., (equal (car 7) nil), that
would surprise some Common Lisp programmers. But the story relating the
completed Common Lisp logic to Common Lisp would be the same as it is now:
gold theorems are true in all compliant Common Lisps. We are reluctant to go
this route just now, choosing instead to proceed first by evaluating ACL2 on
big examples.

Perhaps a natural question at this point is: “Why don’t the Acl2 imple-
mentors do away with this notion of guards and instead take a more standard
approach to the same issue, i.e., using some kind of decidable type checking?”
Our most important reason: we have already decided to stay compliant with the
Common Lisp language, and we are not aware of any simple way of inventing
a decidable type system that lets us do this in a reasonable fashion. Also, we
are encouraged by the progress we have made in the handling of guards (specif-
ically, in the success of the “forcing round” technique), and users have begun
considering their use in specifications. If guards are found to be useful this way,
they will enjoy a decided advantage over decidable type systems that we have
seen, because they are as expressive as the Common Lisp language itself: any
predicate may be used as a guard. Most decidable type systems do not even
allow types other than conjunctions of calls of unary predicates! At any rate,
even if we ultimately feel that we must give up the present notion of guards,
the “completed Common Lisp” idea discussed above provides a route for elim-
inating much of the proof burden introduced by guards, without eliminating
the connection to Common Lisp or the ability to use guards as a specification
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device.

7.2 Draft Proposed ANSI Standard

We are aware of one area in which ACL2 is at odds with the draft proposed
ANSI standard for Common Lisp [30] and that is in connection with the “gen-
eralized Boolean” functions of the proposed standard. In ACL2, equal, for
example, is a Boolean valued function, meaning that it returns either nil or
t. But in [30] equal is a “generalized Boolean” valued function, meaning that
it may return any non-nil value to indicate truth. Many functions that re-
turn Booleans in traditional Lisp implementations return generalized Booleans
in [30], including equal, <, symbolp, and subsetp. Apparently programs are
not to use such functions in contexts other than those in which their values are
tested as propositions.

As ACL2 now stands there are gold theorems that are not true of the lan-
guage described in [30]. One example is (equal (equal nil nil) (equal nil
nil)). In ACL2, both of the interior equal terms return t and so the theorem
follows from the axiom (equal x x). But in [30] the first (equal nil nil)
might return t and the second might return 23 and the two are not equal. This
formula violates the spirit of [30]: generalized Booleans are to be used only in
propositional tests. To conform to [30] we might introduce a new attribute of
function symbols, namely whether they have generalized Boolean values, and
narrow the class of gold formulas to exclude those where generalized Booleans
are “misused.”

7.3 The Complexity of ACL2

The proliferation of ACL2 rule classes may be a mistake. For example, the cur-
rent ACL2 supports rewrite rules, linear rules, linear alias rules, well-founded
relation rules, built-in clause rules, compound recognizer rules, destructor elimi-
nation rules, generalization rules, meta rules, forward chaining rules, equivalence
rules, refinement rules, congruence rules, type-prescription rules, alternative def-
inition rules, induction rules, and type-set inverter rules. This is an aspect of
ACL2’s open architecture: it is easy to program ACL2’s theorem prover. But
it is easy to program it very inefficiently. Moreover, the plethora of rule classes
can be intimidating to new users (though we expect that improved, “layered”
documentation may help in this regard).

Programming disciplines (perhaps augmented by some additional heuristics)
need to be developed so that users can create rule sets that are effective and
efficient. We may find the plethora of rule classes simply too complicated for the
development of adequate disciplines and be forced to abandon some of these.
More likely, we may develop disciplines that essentially recommend that only
“experts” employ all but the few well-understood rule classes.
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More generally, we are concerned about the intellectual complexity of the
ACL2 proof engine and environment. We find its applicative definition wonder-
fully clear, but 4.9 megabytes of source code — even very clear source code — is
difficult to keep in mind. An ACL2 image is about 30 megabytes. We estimate
that about 20 of that is devoted to the initial property list world which contains
the results of processing the 4.9 megabytes of ACL2 source code. For example,
one of the definitional axioms of ACL2 is the formula that equates (prove term
pspv hints wrld ctx state) to its body, i.e., the initial axioms include the
definition of our heuristic theorem prover. Along these same lines, it is possible
to inspect the initial data base and see the definition of the rewriter with its
16 formal parameters and its 30 mutually recursive entries. There is a lot of
complexity here.

While soundness is, of course, an issue, it is not the main obstacle. Ulti-
mately, soundness could be be insured, we hope, by having the system generate
proof objects which are checked. Our concern is that if the system is too com-
plex it will be impossible for us to coordinate its various parts so that they
operate harmoniously, i.e., so that it discovers any proofs at all. It would be
very reassuring to us to see ACL2 reproduce the proofs in Nqthm’s benchmark
files, simply as evidence that ACL2’s abundance of proof techniques interoperate
harmoniously “enough.”

7.4 Performance

Finally, ACL2 feels sluggish. One must, of course, ask “Compared to what?”
Since all of its users are former Nqthm users, the answer is that ACL2 feels
sluggish compared to Ngthm.

One possible explanation is that ACL2’s performance is degraded by its ap-
plicative implementation. We believe this conjecture is false. Experiments with
isolated code fragments indicate that the applicative expression of Nqthm’s al-
gorithms generally execute as fast or faster than their Nqthm implementation.
This is not surprising: Nqthm’s coding style is heavily influenced by its pre-
vious expression in Interlisp where the performance trade-offs between global
variables, special variables, and local variables were different than in Common
Lisp. We expect that if we were to recode Nqthm applicatively it would speed
up by perhaps as much as 10%.

But ACL2 is not such a recoding of Nqthm: its logic is much more com-
plicated and its heuristics are sometimes different. The differences in the logic
make it difficult even to present the two systems with the “same problem.” To
do so one must embed the relevant fragment of one logic in the other and prove
the rules necessary to cause one system to emulate the other. But even when
that is done, the proofs generated for identical problems sometimes diverge
because of the heuristic differences in the two systems.

These considerations make it very difficult to produce a meaningful quanti-
tative comparison of the two systems. Rather than pursue comparisons then it
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is our intention to try to speed up ACL2. We know that its applicative printing
functions are quite slow compared to the Common Lisp primitives; speeding
up these functions would make ACL2 feel faster. But the performance of the
theorem prover can also be improved, both by reconsidering some heuristics and
by recoding some poor implementations of individual functions. This kind of
tuning, of which Nqthm has had a great deal, comes only after a very large col-
lection of benchmark theorems is available for test purposes. Therefore, we are
inclined at this stage simply to use ACL2 (and to ignore, for the time being, our
qualms about its performance). The Nqthm package, which will make Nqthm’s
benchmark files available to ACL2, is especially important for performance tun-
ing, as it will allow us to compare various “tunings” of ACL2 on thousands of
theorems.
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