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Abstract

We describe a mechanically checked correctness proof for a system of
n processes, each running a simple, non-blocking counter algorithm. We
prove that if the system runs longer than 5n steps, the counter is increased.
The theorem is formalized in applicative Common Lisp and proved with
the ACL2 theorem prover. The value of this paper lies not so much in the
trivial algorithm addressed as in the method used to prove it correct. The
method allows one to reason accurately about the behavior of a concur-
rent, multiprocess system by reasoning about the sequential computation
carried out by a selected process, against a memory that is changed ex-
ternally. Indeed, we prove general lemmas that allow shifting between the
multiprocess and uniprocess views. We prove a safety property using a
multiprocess view, project the property to a uniprocess view, and then
prove a global progress property via a local, sequential computation ar-
gument. Our uniprocessor view is a formal compositional semantics for a
shared memory system.

1 Informal Discussion of the Problem

Consider a system of n processes each executing the five step program in Figure
1 against a shared memory. The execution model we use is that each of the five
instructions is atomic and they are executed in an interleaved way by the various
processes. Naively, each process is simply incrementing a shared global counter,
CTR, non-atomically. The variables old and new are local to each process.
Instruction 2 is just a “compare and swap” (CAS). The instruction either
writes new to CTR or reads CTR into old. In either case, it sets new to a Boolean
indicating which branch was taken. The type of new is thus integer or Boolean.
The program could be simplified by deleting instruction 3 and using instruction
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0. old := CTR;
. new := old+1;
2. if CTR = old

then CTR:=new; new:=false;

else 01d:=CTR; new:=true; endif
3. if new then goto 1; else skip; endif
4. goto 0;

[

Figure 1: The Algorithm

4 to loop back to the top in both cases. As written, instruction 4 serves as a
placeholder for whatever computation is done after CTR is incremented by this
process.

We assume that the local state of each process initially satisfies certain prop-
erties, such as that the program counter points to one of the instructions above
and that new is equal to 01d+1 whenever the program counter points to instruc-
tion 2. A system state satisfying these properties is said to be a “good state.” It
is easy to prove that good states exist and that the property is invariant under
system execution.

It is also easy to prove the safety property that the value of the counter
weakly increases over time. We call this the “weak monotonicity” property.
Only the “then-clause” of instruction 2 changes the counter. Because the then-
clause is executed only when the counter’s value is old, and because it sets the
counter to new, which is 01d+1 by our good state invariant, instruction 2 either
increments the counter or leaves it unchanged. Hence, the weak monotonicity
property holds.

More interesting is a progress property:

Informal Main Theorem.

Given enough time, the counter will strictly increase.

Informal Proof:

Consider some process in the system. There is some number, k, such
that no matter what the initial program counter, k£ sequential steps
of the process will have caused the process to execute instruction 2.
When instruction 2 is commenced, either the value of the counter
is that of old or it is not. If the former, then the instruction incre-
ments the counter. If the latter, then the counter must have changed
since we loaded old. But by weak monotonicity, it can only have
increased.

This informal argument is interesting for several reasons. First, it is flawed
but suggestive of a convincing argument. Second, it takes a “single process”
perspective on a problem inherently concerned with concurrency. While intu-
itively appealing because it permits us to reason by symbolic execution, this



perspective is confusing in two ways. It leaves implicit the idea that the counter
is being changed by other processes during the k steps considered. Furthermore,
the “it can only have increased” is at best a very brief summary of the reconcil-
iation between the single process view and the global view. A third reason the
argument is interesting is that it leaves implicit an appeal to the pigeon hole
principle: some process executes at least & steps if the system runs long enough.
In essence, the purpose of this paper is to describe a formalization of this ar-
gument in ACL2 [4, 9]. In so doing we will also demonstrate that the “intuitively
appealing” argument can be made entirely precise and rigorous. Furthermore,
our proof makes clear the validity and utility of shifting between the concurrent,
multiprocess view and the sequential, uniprocess view as appropriate.

2 Related Work

The non-blocking counter algorithm discussed here is trivial and well-known
in the community concerned with non-blocking algorithms. The idea of using
non-atomic operations to implement atomic ones is apparently first discussed
in Lamport’s early papers, e.g., [11]. See [8] for a discussion of wait-free syn-
chronization and the power of various synchronization primitives such as atomic
reads and write, compare and swap, etc.

This paper is not about non-blocking algorithms per se but rather about a
style of proof one might use to deal with certain kinds of concurrent algorithms.
We can categorize proofs into those conducted in formal logics — logics in
which the syntax, axioms and rules of inference are made explicit and rigidly
respected in proofs — and those conducted in the informal (but often very
precise) style of traditional mathematics. Most proofs in the literature are in
the traditional style, e.g., [8], although many such proofs about non-blocking
algorithms are sufficiently subtle that their authors have found it necessary to
adopt very precise notation, e.g., [14].

Our proof, while informally presented here, is actually carried out in the
formal — indeed the mechanized — logic of ACL2. ACL2, which stands for
“A Computational Logic for Applicative Common Lisp,” is a general-purpose
first-order essentially quantifier-free logic of total recursive functions based on
an applicative subset of Common Lisp [18]. ACL2 is a re-implemented and
extended version of the Boyer-Moore theorem prover, Nqthm [2]. Its primary
use has been the formal specification and verification of microprocessor designs.
Readers interested in some background on ACL2 should see the Appendix of
this paper.

Two widely-used formal logics designed explicitly for reasoning about con-
current systems are Unity [5] and TLA [12]. In [6] Goldschlag formalizes Unity
in the Ngthm logic and then uses Nqthm to derive many Unity proof rules and
to check Unity proofs. However, with the exception of [6], and some ongoing
work at several labs, Unity and TLA do not currently have much mechanical



proof support. A distinguishing characteristic of our proof of the non-blocking
counter algorithm is that it was mechanically checked.

Proofs of the correctness of the non-blocking counter algorithm can easily be
constructed by hand in these other two formal systems. Indeed, Rajeev Joshi, a
University of Texas graduate student working with Jay Misra, has constructed
a Unity proof of the counter algorithm in response to the work reported here
[personal communication]. Joshi proves both the safety and progress properties.
We discuss Joshi’s proof in the conclusion of this paper.

3 Formalization

We formalize the problem so that we can speak clearly about the relationship
between the multiprocessor view and the uniprocessor view of the system. We
formalize the problem in Common Lisp, which is supported by the ACL2 the-
orem prover. To save space we do not show the formal definitions of all the
concepts involved. Nor do we state every lemma in our script leading ACL2 to
our proof. Our point here is not to focus on ACL2 but on a formalization of an
intuitive style of reasoning about concurrency. We give informal readings of most
of our formulas, to clarify concepts not defined here. All the formal definitions
and theorems are available at http://www.cs.utexas.edu/users/moore/publica-
tions/index.html.

A multiprocess state or m-state is a triple consisting of the process associ-
ation list (“alist”) mapping processes to their local states as described below,
a memory alist mapping variable identifiers to values, and the code listing the
instructions each process is executing.

If p is associated with some local state in the process alist of m-state s, we
say that p “is a process of” s.

The local state of a process is a pair containing a program counter (a number
indicating which instruction in the code of the system’s m-state is the next to
be executed) and a register alist mapping local variable identifiers to values.

We are interested only in m-states containing the following code. The in-
structions below correspond to the lines in the pseudo-code of Figure 1.

> ((LOAD OLD CTR) ;0
(INCR NEW OLD) 31
(CAS CTR OLD NEW) ;2
(BR NEW 1) ;3
(JUMP 0)) ;4

Each instruction is represented as an object (namely a list containing sym-
bols indicating the opcode and operands). We formalize the semantics of this
programming language operationally. We define a “single step” function mstep
which takes a process, p, and an m-state, s, and steps the state by appropriately
“modifying” the local state of process p (rebinding p to a new local state in the



process alist of s) and possibly the memory component of s. The mstep function
returns s if the given p is not a process of s. Following Lisp syntax we write
(mstep p s), rather than mstep(p, s), to denote the application of the function
mstep to p and s.

We then define

(defun mrun (s oracle)
(if (endp oracle)
s
(mrun (mstep (car oracle) s)
(cdr oracle))))

which takes a list of processes, oracle, and an m-state, s, and returns the final
m-state obtained by successively stepping s on each p in oracle. Thus, the
oracle specifies how long the system is run and the particular order in which the
processes execute.

Let (CTR s) be (binding ’CTR (mem s)). That is, let CTR be the function
that maps an m-state s to the value of the memory location named ’CTR in the
memory of s. The main theorem we will prove is

Main Theorem.
(implies (and (good-statep s)
(every-element-a-processp L s)
(< (¢ 5 (cardinality L)) (len L)))
(< (CTR s) (CTR (mrun s L))))

which says that if s is a good state, every element of the oracle L is a process
of s, and the length of L exceeds five times the number of distinct processes in
L, then the value of CTR is strictly increased by running s with oracle L.

The predicate (good-statep s) is true iff s is an m-state in which every
local process state satisfies a certain “local state invariant” given below, and, in
addition, (CTR s) is an integer and (code s) is the program shown above. The
local state invariant is that the program counter of the local state is an integer
between 0 and 4, the local old contains an integer value old, and the local new
contains 1 + old, whenever the local program counter is 2.

It is straightforward to show that good states are preserved by mstep and
hence, inductively, by mrun. Formally, the theorem for mstep is

(implies (good-statep s)
(good-statep (mstep p s))).

This theorem is proved by expanding the definition of mstep and considering the
cases, i.e., proving that good-statep is preserved by every instruction executed
by any process. The theorem for mrun is

(implies (good-statep s)
(good-statep (mrun s L)))



and is trivial to prove by induction on L using the aforementioned mstep result.
The weak monotonicity (or safety) property mentioned in the introduction
can be formalized for mstep as

(implies (good-statep s)
(<= (CTR s) (CTR (mstep p s)))).

This is easy to prove by expanding the definition of mstep.! The only instruction
that changes CTR is the CAS and it either increments it by one (given the local
state invariant for p) or leaves it unchanged. A simple induction proves the
mrun version of weak monotonicity.

4 The Single Process View

To carry out the progress proof sketched, we formalize the single process view of
the system. In this view, a state consists of a local process state, the memory,
and the code. We call such a state a “uniprocess state” or “u-state.” Since
a u-state contains the local state of a single process, the notion of running
a u-state must provide for the possibility that the shared memory is changed
“concurrently” by the processes not represented in the u-state. We formalize
this with another “oracle,” M, that specifies the sequence of memories seen by
successive steps of the single process.

(defun urun (us M)
(cond ((endp M) us)
((endp (cdr M))
(make-u-state (uls wus)
(car M)
(ucode us)))
(t (urun (ustep us (car M)) (cdr M)))))

The functions uls and ucode take a u-state and return the local process state
and code components, respectively. The function make-u-state constructs a
new u-state from the three components. The function ustep takes a u-state
and a memory and steps the local process, using the specified memory. Observe
that the process is stepped using successive memories in the oracle M. When
M contains only one memory, the run terminates by inserting that memory into
the final u-state.

There is no a prior: relation between the successive memories seen by the
given process, since we make no assumptions about what the other processes
are doing. However, the weak monotonicity theorem will allow us to constrain
the value of the counter in successive memories of the oracle when running the
counter program.

I1We could state a stronger safety property with the same high-level proof: if s is a good
state then (CTR (mstep s)) is either (CTR s) or (CTR s)+1.



5 Relating the Two Views

Before we consider the particulars of the counter program, we prove some general
results relating the multiprocessor view, mrun, to the uniprocessor view, urun.
These results will allow us to shift perspective.

For every m-state computation (with oracle L and initial m-state s) there are
many “corresponding” u-state computations obtained by taking the viewpoint
of one of the processes and using an appropriately constructed memory oracle,
M.

Consider the idea of transforming an m-state s to a u-state for a selected
process, p. This “projection” of s simply creates the u-state with the same
memory and code as s but with the local state of p in s. We denote the pro-
jection by (proj p s). It is easy to construct the appropriate M from L and
s: Partition L into the regions between successive occurrences of the selected p.
Use mrun on the regions to generate the memory to be used by the subsequent
p step, starting with the initial state s. Finally, collect the successive memo-
ries. This projection of the oracle is formally written (proj-oracle p s L).
Observe that if there are n occurrences of p in L then the projected oracle has
length n + 1.

One easy consequence of the foregoing definitions is the

Commutative Diagram Theorem.
(implies (processp p s)
(equal (urun (proj p s)
(proj-oracle p s L))
(proj p (mrun s L)))).

This is a general result relating the two views of the system and is independent
of the code being executed. Informally, the theorem says that if p is a process,
then the uniprocessor model, running on the p projections of s and L, produces
the p projection of the multiprocessor model, running on s and L.

As noted above, the oracle projection function employs mrun, the multipro-
cessor model, to determine the memory oracle for use by the uniprocessor. The
projection function appears on the “uniprocessor side” of the equation above.
Thus, there is a sense in which the multiprocessor model is still involved in the
uniprocessor run addressed by the theorem. But that use of the multiprocessor
model is compositional in the uniprocessor model: the behavior of a sequence of
instructions in process p can be analyzed with the uniprocessor model without
having simultaneously to consider the individual actions of instructions in other
processes. Our uniprocessor model is a formal compositional semantics for a
shared memory system. This proof of Crux below illustrates this.

Since the projection function, proj, preserves the memory of the projected
m-state s, we can derive the following theorem by taking the mem of both sides
of the above equality and simplifying:

Commutative Diagram Corollary.



(implies (processp p s)
(equal (umem
(urun (proj p s)
(proj-oracle p s L)))
(mem (mrun s L)))).

That is, we can reason about the final memory of an m-state run by reasoning
about the final memory of a u-state run from any p projection, provided that
p is one of the processes of the m-state. Since our main theorem concerns the
final memory value of CTR in an m-state run, the theorem above is the formal
tool that allows us to take the single process view.

A second consequence of the definitions of proj and proj-oracle is a way
to project results such as our weak monotonicity theorem for m-states into
analogous theorems about u-states. Recall that the weak monotonicity result
is that the value of CTR weakly increases in an mrun from a good state. Then,
roughly speaking, the value of CTR weakly increases in the memories produced
by proj-oracle from a good state.

Rather than prove this theorem about our particular program and its treat-
ment of CTR, we again prove a more general result — a result independent of a
particular program. Suppose we have a property ¥ of m-states that is preserved
by mstep, and suppose we have a preorder (a reflexive and transitive relation)
R on memories with the property that when 1 holds on s, R holds between the
memory of s and the memory of (mstep p s). Then R holds between the suc-
cessive memories seen by ustep starting from (proj p s) with memory oracle
(proj-oracle p s L).

Preorder Projection Theorem.
(implies (and (¢ s)
(processp p s))
(all-R (proj p s)
(proj-oracle p s L)))

where all-R checks that R holds between successive usteps as noted above.

The Preorder Projection Theorem holds for any ¢ and R with the
properties noted above. In ACL2 we state this “second order” theorem by
using ACL2’s “encapsulation” mechanism [10] to constrain new functions
and R to have the properties noted. Then we define all-R in terms of R and
ustep. Preorder Projection is proved by an induction on L, decomposing it
by regions between successive occurrences of p as in proj-oracle.

We then “functionally instantiate” [3] the theorem to obtain

Preorder Projection Corollary.
(implies (and (good-statep s)
(processp p s))
(ascendingp (proj p s)
(proj-oracle p s L)))



where

(defun ascendingp (us M)
(cond ((endp M) t)
(t (and (integerp (binding ’CTR (car M)))
(<= (binding ’CTR (umem us))
(binding ’CTR (car M)))
(ascendingp (ustep us (car M))
(cdr M))))))

To derive this functional instance we let 1 be good-statep and let R be
the relation defined by (R meml mem2) = (and (integerp (binding ’CTR
mem?2)) (<= (binding ’CTR meml) (binding ’CTR mem2))). It is easy
to show that these choices satisfy the constraints on ¥ and R, namely that the
former is preserved by mstep and the latter is a preorder for good state mem-
ories and that successive msteps are related by it. The function ascendingp is
just all-R under this instantiation of R.

In essence, the Preorder Projection Theorem allows us to “trade in”
weak monotonicity at the m-state level for the assurance that the memories
seen at the u-state level satisfy the ascendingp predicate. Observe that with
the exception of the invariance of good-statep and weak monotonicity, we have
not yet had to reason about a particular program: we are proving general results
about two different ways of viewing a concurrent system.

6 The Crux of the Proof

It is now time to address ourselves to the program in question. Thanks to the
Commutative Diagram Corollary we can consider a uniprocess view under
a projection of the multiprocess oracle. Thanks to the Preorder Projection
Theorem we know the memories in the projected oracle satisfy the ascendingp
property. We will use these results formally in the next section to derive our
main theorem. In this section we simply prove a uniprocessor result under an
assumption of ascendingp memories.

Recall the flawed informal argument on page 2. The argument focussed on
a number of local steps, k, sufficient to insure that the process executes the CAS
instruction. Analysis of the code reveals that any path of length & = 5 will
execute the CAS. But the first arrival at the CAS is not sufficient to insure that
the counter increases from the multiprocess perspective. In particular, suppose
that the process arrives at the CAS while old is less than the current value of
the counter. Then the CAS will not change the counter. The informal argument
proves that the counter will have increased between the time the selected process
loaded old and the time it executes the CAS, but not that it increased during
the k instructions.

To carry off a proof from the uniprocess perspective, it is sufficient to argue
that during any uniprocess run of a fixed length k, the selected process both



reads the counter and subsequently executes the CAS. The code reads the counter
in two places, instruction 0 and instruction 2. Analysis of the code reveals that
every path of length 6 reads the counter and subsequently executes the CAS.
The most interesting such path is the one that starts at the BR at program
counter 3, with an outdated version of old and a true new. This initial path
condition obtains if the process had executed the CAS (obtaining a good old and
a true new) and had then been suspended long enough for other processes to
increment the counter. Proceeding from that initial path condition the process
(1) jumps to instruction 1, (2) sets new to 1+o0ld, (3) executes the CAS to set
old appropriately (but not change the counter), (4) executes the BR, again, to
jump to 1, (5) sets new appropriately and, finally, (6) executes the CAS that
either increments the counter or demonstrates that it has increased during this
run.

Formally, the theorem, below, says that if M is of length 7 and is ascending
from a good u-state us,? then the value of CTR strictly increases in a urun from us
with M. The fact that M must be of length 7 is a “fencepost” phenomenon: such
an M causes the uniprocess to step six times because urun, above, terminates
without stepping when M has one element.

Crux.
(implies (and (equal (len M) 7)
(ascendingp us M)
(good-u-statep us))
(< (binding ’CTR (umem us))
(binding ’CTR (umem (urun us M)))))

This theorem is proved automatically by case analysis on the program counter
of the local state followed by expansion of the operational semantics of the
subsequent six instructions. Such proofs are often said to be “by symbolic
execution.” Such a finite case analysis and symbolic execution cannot be carried
out without first abstracting away from the arbitrary number of “irrelevant”
steps carried out by the other processes between steps of the selected one. This
is why the uniprocess view (or compositional semantics) is useful.

7 The Main Theorem

The main theorem says that CTR goes up if we run the multiprocessor system on
any oracle longer than a certain number. We first prove a lemma that stitches
together all of the foregoing results.

Suppose we have a good m-state s and an oracle L in which some process p
of s occurs exactly six times. Then (CTR s) is strictly less than (CTR (mrun s
L)).

?Here (good-u-statep us) checks that the local state of us enjoys the local state invariant
and the code of us is our program.

10



Lemma.
(implies (and (good-statep s)
(processp p s)
(equal 6 (occurrences p L)))
(< (CTR s)
(CTR (mrun s L))))

Proof: Instantiate Crux above, replacing us by (proj p s) and replacing M
by (proj-oracle p s L). The result is:

Crux’.
(implies (and (equal (len (proj-oracle p s L)) 7)
(ascendingp (proj p s) (proj-oracle p s L))
(good-u-statep (proj p s)))
(< (binding ’CTR (umem (proj p s)))
(binding ’CTR (umem (urun (proj p s)
(proj-oracle p s L))))))

By the Commutative Diagram Corollary and the definitions of CTR and
proj, the conclusion of Crux’ is (< (CTR s) (CTR (mrun s L))), which is
the conclusion we wish to prove. Therefore, it remains only to show that the
hypotheses of Lemma imply those of Crux’. The first hypothesis is easy: if p
occurs six times in L then the length of (proj-oracle p s L) is seven. The
second we get from the Preorder Projection Corollary: if s is a good state
and p is a process of s, then (proj-oracle p s L) is ascending from (proj p
s). The third follows trivially. Q.E.D.

The diagram in Figure 2 illustrates the proof. The oracle L has a distin-
guished process p. The m-states shown are labelled s and (mrun s L). They
map, respectively, to the u-states v and (urun s M). The oracle L maps to
M as (proj-oracle p s L). By the Preorder Projection Corollary, M is
ascending. We wish to prove that ctr < ctr’, where ctr is the value of CTR in
the memory of s and ctr’ is the value in (mrun s L). The value of CTR in w is
also ctr. By the Commutative Diagram Corollary, ctr’ is the value of CTR
in (urun s M). But by Crux, ctr < ctr'.

The Lemma requires that the selected p occur exactly six times in the oracle.
What if it occurs more times? Then the counter still strictly increases because
the first six occurrences give us a strict increase and subsequent occurrences do
not reduce the counter (by weak monotonicity). So we have

Lemma’.
(implies (and (good-statep s)
(processp p s)
(<= 6 (occurrences p L)))
(< (CTR s)
(CTR (mrun s L))))

We may therefore address ourselves to the problem of finding, in sufficiently
long oracles, a p that occurs six or more times.

11
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Figure 2: Diagram of Proof of Lemma

But if the length of L exceeds i times the number of distinct processes in L,
then there exists a p that occurs more than ¢ times. This is just a version of the

Pigeon Hole Principle.
(implies (and (integerp n)
(<= 0 1)
(< (*x i (cardinality L)) (len L)))
(< 7 (occurrences (choose ¢ L) L)))

where (choose i L) is recursively defined to find an element of L that occurs
more than ¢ times or return nil.

Furthermore, if every element of L is a process of s then choose will return
a process of s. Thus, by instantiating Lemma’, letting p be (choose 5 L) and
appealing to the Pigeon Hole Principle to establish the third hypothesis of
Lemma’, we get:

Main Theorem.
(implies (and (good-statep s)
(every-element-a-processp L s)
(< (x 5 (cardinality L)) (len L)))
(< (CTR s) (CTR (mrun s L)))).

12



8 Conclusion

It is illuminating to contrast our proof with the previously mentioned work by
Joshi. Joshi’s proof of the safety property in Unity is virtually identical to our
ACL2 proof of that property, modulo the differences between the two logics.
Roughly speaking, both proofs merely consider every possible step by every
process and show in every case that the counter cannot decrease.

Joshi’s proof of our main theorem appears fundamentally different from ours.
In Unity, our main theorem is stated as a “leads to” property. It is proved by
Joshi using a well-foundedness argument. He defines a measure on (what we
would call) m-states and a well-founded relation on that measure. The mea-
sure is essentially the lexicographic combination of two measures, the number
of processes for which 01d=CTR and a vector of size n containing the program
counters of the n processors (normalized so that the CAS instruction has the
lowest program counter). Joshi then proves that any step by any process de-
creases this measure according to the obvious lexicographic ordering.® Thus, the
main work in Joshi’s progress proof is at the multiprocessor level: the system is
viewed globally and the measure is responsible for providing a coherent view of
the effects of any step by any process.

In contrast, the program-specific work in our proof, namely the proof of
Crux, is carried out at the uniprocessor level. We reason about the sequential
execution of a single, selected process. The process we select is not necessarily
the one responsible for ultimately incrementing the counter. Indeed, our proof
does not identify the responsible process.

We can reason locally because our Commutative Diagram Corollary
gives us a way to project the system’s global behavior into the view from any
selected process. The effects of the other processes are captured in the safety
property and then transformed, via functional instantiation to our Preorder
Projection Corollary, which provides us with a local view of the global mem-
ory from the perspective of the selected process.

Whether our approach can be adapted to more interesting concurrent sys-
tems remains to be seen. This is our first experiment. If this is a promising
approach it can probably be used in other formal systems. Just as the ACL2
and Unity proofs of the safety property are essentially the same, one can well
imagine carrying out a proof of this nature with Unity after the derivation of an
appropriate derived rule of inference for Unity. However, it is important that
the formal logic employed have the expressive power to define such concepts as
our ascendingp.

We have illustrated a method of proving a theorem about a system of concur-
rent programs. The method allows one to reason accurately about the behavior
of a multiprocess system by reasoning about the sequential computation carried

3Joshi actually proves a stronger theorem than ours. He omits our “good state” initial
condition. To do this, he has to elaborate his measure with a third component, which records
how many processes have read CTR.
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out by a selected process against a memory that is changed externally. We find
this method appealing primarily because it corresponds closely to the “naive”
way of reasoning about such programs. That is, the naive approach, if formal-
ized carefully, provides a rigorous verification methodology. Indeed, it can be
mechanically checked by a pre-existing tool.
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10 Appendix: Background on ACL2

ACL2 stands for “A Computational Logic for Applicative Common Lisp.” ACL2
is both a mathematical logic and system of mechanical tools which can be used to
construct proofs in the logic. The logic formalizes a subset of Common Lisp. The
ACL2 system is essentially a re-implemented extension, for applicative Common
Lisp, of the so-called “Boyer-Moore theorem prover” Nqthm [1, 2].

10.1 The Logic

The ACL2 logic is a first-order, essentially quantifier-free logic of total recursive
functions providing mathematical induction and two extension principles: one
for recursive definition and one for “encapsulation.”

The syntax of ACL2 is a subset of that of Common Lisp. Formally, an ACL2
term is either a variable symbol, a quoted constant, or the application of an n-
ary function symbol or lambda expression, f, to n terms, written (f 1 ...¢,).
This syntax is extended by Common Lisp’s facility for defining constant symbols
and macros.

The rules of inference are those of Nqthm, namely propositional calculus
with equality together with instantiation and mathematical induction on the
ordinals up to €g = w*” .

The axioms of ACL2 describe five primitive data types: the complex ra-
tionals, characters, strings, symbols, and ordered pairs or lists. The complex
rationals are complex numbers with rational components and hence include the
rationals, the integers and the naturals. Symbols are logical constants denot-
ing words, such as CAS and mstep. Symbols are in “packages” which provide a
convenient way to have disjoint name spaces. SMITH: :mstep is a different sym-
bol than JONES: :mstep; but if the user has selected "SMITH" as the “current
package” then the former symbol can be written more succinctly as mstep.

Essentially all of the Common Lisp functions on the above data types are
axiomatized or defined as functions or macros in ACL2. By “Common Lisp
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functions” here we mean the programs specified in [18] that are (i) applicative,
(ii) not dependent on state, implicit parameters, or data types other than those
in ACL2, and (iii) completely specified, unambiguously, in a host-independent
manner. Approximately 170 such functions are axiomatized or defined.

Common Lisp functions are partial; they are not defined for all possible
inputs. In ACL2 we complete the domains of the Common Lisp functions and
provide a “guard mechanism” by which one can establish that the completion
process does not affect the value of a given expression. See [9].

Finally, ACL2 has two extension principles: definition and encapsulation.
Both preserve the consistency of the extended logic. The definitional principle
insures consistency by requiring a proof that each defined function terminates.
This is done, as in Nqthm, by the identification of some ordinal measure of the
formals that decreases in recursion.

The encapsulation principle allows the introduction of new function symbols
constrained by axioms to have certain properties. Consistency is preserved by
requiring the exhibition of witness functions proved to have the alleged proper-
ties. One may then define functions and prove theorems about the constrained
symbols. The functional instantiation mechanism, essentially the same as de-
scribed in [3] for Nqthm, then allows the derivation of new theorems from old
ones by the apparently higher order act of replacing constrained and defined
function symbols by other function symbols — with the obligation of proving
that the new symbols satisfy the constraints on the old.

10.2 The System

Like Ngthm, ACL2’s theorem prover orchestrates a variety of proof techniques.
As suggested by Figure 3, the user puts the formula to be proved into a pool. The
simplifier, the most important proof technique, draws a formula from the pool
and either “simplifies” it — replacing it in the pool by the several new formulas
sufficient to prove it — or passes it to the next proof technique. The simplifier
employs many different proof techniques, including conditional (back chaining)
rewrite rules, congruence-based rewriting, efficient ground term evaluation, for-
ward chaining, type-inference, the OBDD propositional decision procedure, a
rational linear arithmetic decision procedure, and user-defined, machine-verified
meta-theoretic simplifiers.

Roughly speaking, as the formula moves clockwise around the ring in Fig-
ure 3 it becomes more general. Eventually, if all else fails, the induction mech-
anism is applied.

The proof techniques are extensions of those used by Nqthm; see [1]. Most
of the techniques are rule-driven. The rules are derived from previously proved
theorems. For example, if the user has instructed ACL2 to prove that append
is associative

(equal (append (append x y) z)
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Figure 3: The Orchestration of Proof Techniques

(append x (append y z)))

and to use that fact as a :rewrite rule (from left to right), then — after the
associative law is proved — the simplifier will right-associate all append-nests.

ACL2, like Nqthm, “overloads” formulas so that in addition to their usual
logical interpretation the system interprets them as rules. The behavior of the
system is determined by the rules (theorems) in its database. The data base may
be configured by the user by including various certified “books” of previously
proved rules. New rules can be added only by causing ACL2 to prove the
corresponding theorem. See Figure 4. The user is therefore responsible for
codifying a proof strategy as a set of theorems. The system is responsible for
soundness.

10.3 Applications

Among the significant proof projects carried out with ACL2 are

e the verification of the floating-point division and square root microcode
for the AMD K5™[13, 15],

e the verification of the IEEE compliance of the RTL for the AMD K7™
floating-point addition, subtraction, multiplication, division and square
root [16],

e the ACL2 modeling of the Motorola CAP digital signal processor and its

use to prove that a pipeline hazard detection predicate was correct and
that several DSP microcode applications were correct [4],
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e the modeling of a pipelined microprocessor with multiple, out-of-order in-
struction issue with a reorder buffer, speculative execution and exceptions

and proofs that relate relate this model to a more conventional ISA model
[17],

e the modeling of the ALU of the JEM1 microprocessor, the world’s first
silicon Java Virtual Machine [7].

ACL2 distributed without fee under the GNU General Public License. The
ACL2 home page, http://www.cs.utexas.edu/users/moore/acl2, contains an an-
notated bibliography, a user’s manual and instructions for how to obtain the
systemmn.
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