
A Mechanically Checked Proof of aMultiprocessor Result via a Uniprocessor ViewJ Strother Moore�August 22, 1998AbstractWe describe a mechanically checked correctness proof for a system ofn processes, each running a simple, non-blocking counter algorithm. Weprove that if the system runs longer than 5n steps, the counter is increased.The theorem is formalized in applicative Common Lisp and proved withthe ACL2 theorem prover. The value of this paper lies not so much in thetrivial algorithm addressed as in the method used to prove it correct. Themethod allows one to reason accurately about the behavior of a concur-rent, multiprocess system by reasoning about the sequential computationcarried out by a selected process, against a memory that is changed ex-ternally. Indeed, we prove general lemmas that allow shifting between themultiprocess and uniprocess views. We prove a safety property using amultiprocess view, project the property to a uniprocess view, and thenprove a global progress property via a local, sequential computation ar-gument. Our uniprocessor view is a formal compositional semantics for ashared memory system.1 Informal Discussion of the ProblemConsider a system of n processes each executing the �ve step program in Figure1 against a shared memory. The execution model we use is that each of the �veinstructions is atomic and they are executed in an interleaved way by the variousprocesses. Naively, each process is simply incrementing a shared global counter,CTR, non-atomically. The variables old and new are local to each process.Instruction 2 is just a \compare and swap" (CAS). The instruction eitherwrites new to CTR or reads CTR into old. In either case, it sets new to a Booleanindicating which branch was taken. The type of new is thus integer or Boolean.The program could be simpli�ed by deleting instruction 3 and using instruction�Department of Computer Sciences, University of Texas, Austin, TX 78712,moore@cs.utexas.edu. 1



0. old := CTR;1. new := old+1;2. if CTR = oldthen CTR:=new; new:=false;else old:=CTR; new:=true; endif3. if new then goto 1; else skip; endif4. goto 0; Figure 1: The Algorithm4 to loop back to the top in both cases. As written, instruction 4 serves as aplaceholder for whatever computation is done after CTR is incremented by thisprocess.We assume that the local state of each process initially satis�es certain prop-erties, such as that the program counter points to one of the instructions aboveand that new is equal to old+1 whenever the program counter points to instruc-tion 2. A system state satisfying these properties is said to be a \good state." Itis easy to prove that good states exist and that the property is invariant undersystem execution.It is also easy to prove the safety property that the value of the counterweakly increases over time. We call this the \weak monotonicity" property.Only the \then-clause" of instruction 2 changes the counter. Because the then-clause is executed only when the counter's value is old, and because it sets thecounter to new, which is old+1 by our good state invariant, instruction 2 eitherincrements the counter or leaves it unchanged. Hence, the weak monotonicityproperty holds.More interesting is a progress property:Informal Main Theorem.Given enough time, the counter will strictly increase.Informal Proof:Consider some process in the system. There is some number, k, suchthat no matter what the initial program counter, k sequential stepsof the process will have caused the process to execute instruction 2.When instruction 2 is commenced, either the value of the counteris that of old or it is not. If the former, then the instruction incre-ments the counter. If the latter, then the counter must have changedsince we loaded old. But by weak monotonicity, it can only haveincreased.This informal argument is interesting for several reasons. First, it is awedbut suggestive of a convincing argument. Second, it takes a \single process"perspective on a problem inherently concerned with concurrency. While intu-itively appealing because it permits us to reason by symbolic execution, this2



perspective is confusing in two ways. It leaves implicit the idea that the counteris being changed by other processes during the k steps considered. Furthermore,the \it can only have increased" is at best a very brief summary of the reconcil-iation between the single process view and the global view. A third reason theargument is interesting is that it leaves implicit an appeal to the pigeon holeprinciple: some process executes at least k steps if the system runs long enough.In essence, the purpose of this paper is to describe a formalization of this ar-gument in ACL2 [4, 9]. In so doing we will also demonstrate that the \intuitivelyappealing" argument can be made entirely precise and rigorous. Furthermore,our proof makes clear the validity and utility of shifting between the concurrent,multiprocess view and the sequential, uniprocess view as appropriate.2 Related WorkThe non-blocking counter algorithm discussed here is trivial and well-knownin the community concerned with non-blocking algorithms. The idea of usingnon-atomic operations to implement atomic ones is apparently �rst discussedin Lamport's early papers, e.g., [11]. See [8] for a discussion of wait-free syn-chronization and the power of various synchronization primitives such as atomicreads and write, compare and swap, etc.This paper is not about non-blocking algorithms per se but rather about astyle of proof one might use to deal with certain kinds of concurrent algorithms.We can categorize proofs into those conducted in formal logics | logics inwhich the syntax, axioms and rules of inference are made explicit and rigidlyrespected in proofs | and those conducted in the informal (but often veryprecise) style of traditional mathematics. Most proofs in the literature are inthe traditional style, e.g., [8], although many such proofs about non-blockingalgorithms are su�ciently subtle that their authors have found it necessary toadopt very precise notation, e.g., [14].Our proof, while informally presented here, is actually carried out in theformal | indeed the mechanized | logic of ACL2. ACL2, which stands for\A Computational Logic for Applicative Common Lisp," is a general-purpose�rst-order essentially quanti�er-free logic of total recursive functions based onan applicative subset of Common Lisp [18]. ACL2 is a re-implemented andextended version of the Boyer-Moore theorem prover, Nqthm [2]. Its primaryuse has been the formal speci�cation and veri�cation of microprocessor designs.Readers interested in some background on ACL2 should see the Appendix ofthis paper.Two widely-used formal logics designed explicitly for reasoning about con-current systems are Unity [5] and TLA [12]. In [6] Goldschlag formalizes Unityin the Nqthm logic and then uses Nqthm to derive many Unity proof rules andto check Unity proofs. However, with the exception of [6], and some ongoingwork at several labs, Unity and TLA do not currently have much mechanical3



proof support. A distinguishing characteristic of our proof of the non-blockingcounter algorithm is that it was mechanically checked.Proofs of the correctness of the non-blocking counter algorithm can easily beconstructed by hand in these other two formal systems. Indeed, Rajeev Joshi, aUniversity of Texas graduate student working with Jay Misra, has constructeda Unity proof of the counter algorithm in response to the work reported here[personal communication]. Joshi proves both the safety and progress properties.We discuss Joshi's proof in the conclusion of this paper.3 FormalizationWe formalize the problem so that we can speak clearly about the relationshipbetween the multiprocessor view and the uniprocessor view of the system. Weformalize the problem in Common Lisp, which is supported by the ACL2 the-orem prover. To save space we do not show the formal de�nitions of all theconcepts involved. Nor do we state every lemma in our script leading ACL2 toour proof. Our point here is not to focus on ACL2 but on a formalization of anintuitive style of reasoning about concurrency. We give informal readings of mostof our formulas, to clarify concepts not de�ned here. All the formal de�nitionsand theorems are available at http://www.cs.utexas.edu/users/moore/publica-tions/index.html.A multiprocess state or m-state is a triple consisting of the process associ-ation list (\alist") mapping processes to their local states as described below,a memory alist mapping variable identi�ers to values, and the code listing theinstructions each process is executing.If p is associated with some local state in the process alist of m-state s, wesay that p \is a process of" s.The local state of a process is a pair containing a program counter (a numberindicating which instruction in the code of the system's m-state is the next tobe executed) and a register alist mapping local variable identi�ers to values.We are interested only in m-states containing the following code. The in-structions below correspond to the lines in the pseudo-code of Figure 1.'((LOAD OLD CTR) ;0(INCR NEW OLD) ;1(CAS CTR OLD NEW) ;2(BR NEW 1) ;3(JUMP 0)) ;4Each instruction is represented as an object (namely a list containing sym-bols indicating the opcode and operands). We formalize the semantics of thisprogramming language operationally. We de�ne a \single step" function mstepwhich takes a process, p, and an m-state, s, and steps the state by appropriately\modifying" the local state of process p (rebinding p to a new local state in the4



process alist of s) and possibly the memory component of s. The mstep functionreturns s if the given p is not a process of s. Following Lisp syntax we write(mstep p s), rather than mstep(p; s), to denote the application of the functionmstep to p and s.We then de�ne(defun mrun (s oracle)(if (endp oracle)s(mrun (mstep (car oracle) s)(cdr oracle))))which takes a list of processes, oracle, and an m-state, s, and returns the �nalm-state obtained by successively stepping s on each p in oracle. Thus, theoracle speci�es how long the system is run and the particular order in which theprocesses execute.Let (CTR s) be (binding 'CTR (mem s)). That is, let CTR be the functionthat maps an m-state s to the value of the memory location named 'CTR in thememory of s. The main theorem we will prove isMain Theorem.(implies (and (good-statep s)(every-element-a-processp L s)(< (* 5 (cardinality L)) (len L)))(< (CTR s) (CTR (mrun s L))))which says that if s is a good state, every element of the oracle L is a processof s, and the length of L exceeds �ve times the number of distinct processes inL, then the value of CTR is strictly increased by running s with oracle L.The predicate (good-statep s) is true i� s is an m-state in which everylocal process state satis�es a certain \local state invariant" given below, and, inaddition, (CTR s) is an integer and (code s) is the program shown above. Thelocal state invariant is that the program counter of the local state is an integerbetween 0 and 4, the local old contains an integer value old, and the local newcontains 1 + old, whenever the local program counter is 2.It is straightforward to show that good states are preserved by mstep andhence, inductively, by mrun. Formally, the theorem for mstep is(implies (good-statep s)(good-statep (mstep p s))).This theorem is proved by expanding the de�nition of mstep and considering thecases, i.e., proving that good-statep is preserved by every instruction executedby any process. The theorem for mrun is(implies (good-statep s)(good-statep (mrun s L))) 5



and is trivial to prove by induction on L using the aforementioned mstep result.The weak monotonicity (or safety) property mentioned in the introductioncan be formalized for mstep as(implies (good-statep s)(<= (CTR s) (CTR (mstep p s)))).This is easy to prove by expanding the de�nition of mstep.1 The only instructionthat changes CTR is the CAS and it either increments it by one (given the localstate invariant for p) or leaves it unchanged. A simple induction proves themrun version of weak monotonicity.4 The Single Process ViewTo carry out the progress proof sketched, we formalize the single process view ofthe system. In this view, a state consists of a local process state, the memory,and the code. We call such a state a \uniprocess state" or \u-state." Sincea u-state contains the local state of a single process, the notion of runninga u-state must provide for the possibility that the shared memory is changed\concurrently" by the processes not represented in the u-state. We formalizethis with another \oracle," M , that speci�es the sequence of memories seen bysuccessive steps of the single process.(defun urun (us M)(cond ((endp M) us)((endp (cdr M))(make-u-state (uls us)(car M)(ucode us)))(t (urun (ustep us (car M)) (cdr M)))))The functions uls and ucode take a u-state and return the local process stateand code components, respectively. The function make-u-state constructs anew u-state from the three components. The function ustep takes a u-stateand a memory and steps the local process, using the speci�ed memory. Observethat the process is stepped using successive memories in the oracle M . WhenM contains only one memory, the run terminates by inserting that memory intothe �nal u-state.There is no a priori relation between the successive memories seen by thegiven process, since we make no assumptions about what the other processesare doing. However, the weak monotonicity theorem will allow us to constrainthe value of the counter in successive memories of the oracle when running thecounter program.1We could state a stronger safety property with the same high-level proof: if s is a goodstate then (CTR (mstep s)) is either (CTR s) or (CTR s)+1.6



5 Relating the Two ViewsBefore we consider the particulars of the counter program, we prove some generalresults relating the multiprocessor view, mrun, to the uniprocessor view, urun.These results will allow us to shift perspective.For every m-state computation (with oracle L and initial m-state s) there aremany \corresponding" u-state computations obtained by taking the viewpointof one of the processes and using an appropriately constructed memory oracle,M .Consider the idea of transforming an m-state s to a u-state for a selectedprocess, p. This \projection" of s simply creates the u-state with the samememory and code as s but with the local state of p in s. We denote the pro-jection by (proj p s). It is easy to construct the appropriate M from L ands: Partition L into the regions between successive occurrences of the selected p.Use mrun on the regions to generate the memory to be used by the subsequentp step, starting with the initial state s. Finally, collect the successive memo-ries. This projection of the oracle is formally written (proj-oracle p s L).Observe that if there are n occurrences of p in L then the projected oracle haslength n+ 1.One easy consequence of the foregoing de�nitions is theCommutative Diagram Theorem.(implies (processp p s)(equal (urun (proj p s)(proj-oracle p s L))(proj p (mrun s L)))).This is a general result relating the two views of the system and is independentof the code being executed. Informally, the theorem says that if p is a process,then the uniprocessor model, running on the p projections of s and L, producesthe p projection of the multiprocessor model, running on s and L.As noted above, the oracle projection function employs mrun, the multipro-cessor model, to determine the memory oracle for use by the uniprocessor. Theprojection function appears on the \uniprocessor side" of the equation above.Thus, there is a sense in which the multiprocessor model is still involved in theuniprocessor run addressed by the theorem. But that use of the multiprocessormodel is compositional in the uniprocessor model: the behavior of a sequence ofinstructions in process p can be analyzed with the uniprocessor model withouthaving simultaneously to consider the individual actions of instructions in otherprocesses. Our uniprocessor model is a formal compositional semantics for ashared memory system. This proof of Crux below illustrates this.Since the projection function, proj, preserves the memory of the projectedm-state s, we can derive the following theorem by taking the mem of both sidesof the above equality and simplifying:Commutative Diagram Corollary. 7



(implies (processp p s)(equal (umem(urun (proj p s)(proj-oracle p s L)))(mem (mrun s L)))).That is, we can reason about the �nal memory of an m-state run by reasoningabout the �nal memory of a u-state run from any p projection, provided thatp is one of the processes of the m-state. Since our main theorem concerns the�nal memory value of CTR in an m-state run, the theorem above is the formaltool that allows us to take the single process view.A second consequence of the de�nitions of proj and proj-oracle is a wayto project results such as our weak monotonicity theorem for m-states intoanalogous theorems about u-states. Recall that the weak monotonicity resultis that the value of CTR weakly increases in an mrun from a good state. Then,roughly speaking, the value of CTR weakly increases in the memories producedby proj-oracle from a good state.Rather than prove this theorem about our particular program and its treat-ment of CTR, we again prove a more general result | a result independent of aparticular program. Suppose we have a property  of m-states that is preservedby mstep, and suppose we have a preorder (a reexive and transitive relation)R on memories with the property that when  holds on s, R holds between thememory of s and the memory of (mstep p s). Then R holds between the suc-cessive memories seen by ustep starting from (proj p s) with memory oracle(proj-oracle p s L).Preorder Projection Theorem.(implies (and ( s)(processp p s))(all-R (proj p s)(proj-oracle p s L)))where all-R checks that R holds between successive usteps as noted above.The Preorder Projection Theorem holds for any  and R with theproperties noted above. In ACL2 we state this \second order" theorem byusing ACL2's \encapsulation" mechanism [10] to constrain new functions  and R to have the properties noted. Then we de�ne all-R in terms of R andustep. Preorder Projection is proved by an induction on L, decomposing itby regions between successive occurrences of p as in proj-oracle.We then \functionally instantiate" [3] the theorem to obtainPreorder Projection Corollary.(implies (and (good-statep s)(processp p s))(ascendingp (proj p s)(proj-oracle p s L)))8



where(defun ascendingp (us M)(cond ((endp M) t)(t (and (integerp (binding 'CTR (car M)))(<= (binding 'CTR (umem us))(binding 'CTR (car M)))(ascendingp (ustep us (car M))(cdr M))))))To derive this functional instance we let  be good-statep and let R bethe relation de�ned by (R mem1 mem2) = (and (integerp (binding 'CTRmem2)) (<= (binding 'CTR mem1) (binding 'CTR mem2))). It is easyto show that these choices satisfy the constraints on  and R, namely that theformer is preserved by mstep and the latter is a preorder for good state mem-ories and that successive msteps are related by it. The function ascendingp isjust all-R under this instantiation of R.In essence, the Preorder Projection Theorem allows us to \trade in"weak monotonicity at the m-state level for the assurance that the memoriesseen at the u-state level satisfy the ascendingp predicate. Observe that withthe exception of the invariance of good-statep and weak monotonicity, we havenot yet had to reason about a particular program: we are proving general resultsabout two di�erent ways of viewing a concurrent system.6 The Crux of the ProofIt is now time to address ourselves to the program in question. Thanks to theCommutative Diagram Corollary we can consider a uniprocess view undera projection of the multiprocess oracle. Thanks to the Preorder ProjectionTheorem we know the memories in the projected oracle satisfy the ascendingpproperty. We will use these results formally in the next section to derive ourmain theorem. In this section we simply prove a uniprocessor result under anassumption of ascendingp memories.Recall the awed informal argument on page 2. The argument focussed ona number of local steps, k, su�cient to insure that the process executes the CASinstruction. Analysis of the code reveals that any path of length k = 5 willexecute the CAS. But the �rst arrival at the CAS is not su�cient to insure thatthe counter increases from the multiprocess perspective. In particular, supposethat the process arrives at the CAS while old is less than the current value ofthe counter. Then the CAS will not change the counter. The informal argumentproves that the counter will have increased between the time the selected processloaded old and the time it executes the CAS, but not that it increased duringthe k instructions.To carry o� a proof from the uniprocess perspective, it is su�cient to arguethat during any uniprocess run of a �xed length k, the selected process both9



reads the counter and subsequently executes the CAS. The code reads the counterin two places, instruction 0 and instruction 2. Analysis of the code reveals thatevery path of length 6 reads the counter and subsequently executes the CAS.The most interesting such path is the one that starts at the BR at programcounter 3, with an outdated version of old and a true new. This initial pathcondition obtains if the process had executed the CAS (obtaining a good old anda true new) and had then been suspended long enough for other processes toincrement the counter. Proceeding from that initial path condition the process(1) jumps to instruction 1, (2) sets new to 1+old, (3) executes the CAS to setold appropriately (but not change the counter), (4) executes the BR, again, tojump to 1, (5) sets new appropriately and, �nally, (6) executes the CAS thateither increments the counter or demonstrates that it has increased during thisrun.Formally, the theorem, below, says that if M is of length 7 and is ascendingfrom a good u-state us,2 then the value of CTR strictly increases in a urun from uswithM . The fact thatM must be of length 7 is a \fencepost" phenomenon: suchan M causes the uniprocess to step six times because urun, above, terminateswithout stepping when M has one element.Crux.(implies (and (equal (len M) 7)(ascendingp us M)(good-u-statep us))(< (binding 'CTR (umem us))(binding 'CTR (umem (urun us M)))))This theorem is proved automatically by case analysis on the program counterof the local state followed by expansion of the operational semantics of thesubsequent six instructions. Such proofs are often said to be \by symbolicexecution." Such a �nite case analysis and symbolic execution cannot be carriedout without �rst abstracting away from the arbitrary number of \irrelevant"steps carried out by the other processes between steps of the selected one. Thisis why the uniprocess view (or compositional semantics) is useful.7 The Main TheoremThe main theorem says that CTR goes up if we run the multiprocessor system onany oracle longer than a certain number. We �rst prove a lemma that stitchestogether all of the foregoing results.Suppose we have a good m-state s and an oracle L in which some process pof s occurs exactly six times. Then (CTR s) is strictly less than (CTR (mrun sL)).2Here (good-u-statep us) checks that the local state of us enjoys the local state invariantand the code of us is our program. 10



Lemma.(implies (and (good-statep s)(processp p s)(equal 6 (occurrences p L)))(< (CTR s)(CTR (mrun s L))))Proof: Instantiate Crux above, replacing us by (proj p s) and replacing Mby (proj-oracle p s L). The result is:Crux'.(implies (and (equal (len (proj-oracle p s L)) 7)(ascendingp (proj p s) (proj-oracle p s L))(good-u-statep (proj p s)))(< (binding 'CTR (umem (proj p s)))(binding 'CTR (umem (urun (proj p s)(proj-oracle p s L))))))By the Commutative Diagram Corollary and the de�nitions of CTR andproj, the conclusion of Crux' is (< (CTR s) (CTR (mrun s L))), which isthe conclusion we wish to prove. Therefore, it remains only to show that thehypotheses of Lemma imply those of Crux'. The �rst hypothesis is easy: if poccurs six times in L then the length of (proj-oracle p s L) is seven. Thesecond we get from the Preorder Projection Corollary: if s is a good stateand p is a process of s, then (proj-oracle p s L) is ascending from (proj ps). The third follows trivially. Q.E.D.The diagram in Figure 2 illustrates the proof. The oracle L has a distin-guished process p. The m-states shown are labelled s and (mrun s L). Theymap, respectively, to the u-states u and (urun s M). The oracle L maps toM as (proj-oracle p s L). By the Preorder Projection Corollary, M isascending. We wish to prove that ctr < ctr0, where ctr is the value of CTR inthe memory of s and ctr0 is the value in (mrun s L). The value of CTR in u isalso ctr. By the Commutative Diagram Corollary, ctr0 is the value of CTRin (urun s M). But by Crux, ctr < ctr0.The Lemma requires that the selected p occur exactly six times in the oracle.What if it occurs more times? Then the counter still strictly increases becausethe �rst six occurrences give us a strict increase and subsequent occurrences donot reduce the counter (by weak monotonicity). So we haveLemma'.(implies (and (good-statep s)(processp p s)(<= 6 (occurrences p L)))(< (CTR s)(CTR (mrun s L))))We may therefore address ourselves to the problem of �nding, in su�cientlylong oracles, a p that occurs six or more times.11
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8 ConclusionIt is illuminating to contrast our proof with the previously mentioned work byJoshi. Joshi's proof of the safety property in Unity is virtually identical to ourACL2 proof of that property, modulo the di�erences between the two logics.Roughly speaking, both proofs merely consider every possible step by everyprocess and show in every case that the counter cannot decrease.Joshi's proof of our main theorem appears fundamentally di�erent from ours.In Unity, our main theorem is stated as a \leads to" property. It is proved byJoshi using a well-foundedness argument. He de�nes a measure on (what wewould call) m-states and a well-founded relation on that measure. The mea-sure is essentially the lexicographic combination of two measures, the numberof processes for which old=CTR and a vector of size n containing the programcounters of the n processors (normalized so that the CAS instruction has thelowest program counter). Joshi then proves that any step by any process de-creases this measure according to the obvious lexicographic ordering.3 Thus, themain work in Joshi's progress proof is at the multiprocessor level: the system isviewed globally and the measure is responsible for providing a coherent view ofthe e�ects of any step by any process.In contrast, the program-speci�c work in our proof, namely the proof ofCrux, is carried out at the uniprocessor level. We reason about the sequentialexecution of a single, selected process. The process we select is not necessarilythe one responsible for ultimately incrementing the counter. Indeed, our proofdoes not identify the responsible process.We can reason locally because our Commutative Diagram Corollarygives us a way to project the system's global behavior into the view from anyselected process. The e�ects of the other processes are captured in the safetyproperty and then transformed, via functional instantiation to our PreorderProjection Corollary, which provides us with a local view of the global mem-ory from the perspective of the selected process.Whether our approach can be adapted to more interesting concurrent sys-tems remains to be seen. This is our �rst experiment. If this is a promisingapproach it can probably be used in other formal systems. Just as the ACL2and Unity proofs of the safety property are essentially the same, one can wellimagine carrying out a proof of this nature with Unity after the derivation of anappropriate derived rule of inference for Unity. However, it is important thatthe formal logic employed have the expressive power to de�ne such concepts asour ascendingp.We have illustrated a method of proving a theorem about a system of concur-rent programs. The method allows one to reason accurately about the behaviorof a multiprocess system by reasoning about the sequential computation carried3Joshi actually proves a stronger theorem than ours. He omits our \good state" initialcondition. To do this, he has to elaborate his measure with a third component, which recordshow many processes have read CTR. 13



out by a selected process against a memory that is changed externally. We �ndthis method appealing primarily because it corresponds closely to the \naive"way of reasoning about such programs. That is, the naive approach, if formal-ized carefully, provides a rigorous veri�cation methodology. Indeed, it can bemechanically checked by a pre-existing tool.9 AcknowledgmentsI thank Bobby Blumofe for bringing the non-blocking counter algorithm to myattention. I also thank Rajeev Joshi and Pete Manolios, who provided valuablefeedback on an early draft of this paper.10 Appendix: Background on ACL2ACL2 stands for \A Computational Logic for Applicative Common Lisp." ACL2is both a mathematical logic and system of mechanical tools which can be used toconstruct proofs in the logic. The logic formalizes a subset of Common Lisp. TheACL2 system is essentially a re-implemented extension, for applicative CommonLisp, of the so-called \Boyer-Moore theorem prover" Nqthm [1, 2].10.1 The LogicThe ACL2 logic is a �rst-order, essentially quanti�er-free logic of total recursivefunctions providing mathematical induction and two extension principles: onefor recursive de�nition and one for \encapsulation."The syntax of ACL2 is a subset of that of Common Lisp. Formally, an ACL2term is either a variable symbol, a quoted constant, or the application of an n-ary function symbol or lambda expression, f , to n terms, written (f t1 ::: tn).This syntax is extended by Common Lisp's facility for de�ning constant symbolsand macros.The rules of inference are those of Nqthm, namely propositional calculuswith equality together with instantiation and mathematical induction on theordinals up to �0 = !!!::: .The axioms of ACL2 describe �ve primitive data types: the complex ra-tionals, characters, strings, symbols, and ordered pairs or lists. The complexrationals are complex numbers with rational components and hence include therationals, the integers and the naturals. Symbols are logical constants denot-ing words, such as CAS and mstep. Symbols are in \packages" which provide aconvenient way to have disjoint name spaces. SMITH::mstep is a di�erent sym-bol than JONES::mstep; but if the user has selected "SMITH" as the \currentpackage" then the former symbol can be written more succinctly as mstep.Essentially all of the Common Lisp functions on the above data types areaxiomatized or de�ned as functions or macros in ACL2. By \Common Lisp14



functions" here we mean the programs speci�ed in [18] that are (i) applicative,(ii) not dependent on state, implicit parameters, or data types other than thosein ACL2, and (iii) completely speci�ed, unambiguously, in a host-independentmanner. Approximately 170 such functions are axiomatized or de�ned.Common Lisp functions are partial; they are not de�ned for all possibleinputs. In ACL2 we complete the domains of the Common Lisp functions andprovide a \guard mechanism" by which one can establish that the completionprocess does not a�ect the value of a given expression. See [9].Finally, ACL2 has two extension principles: de�nition and encapsulation.Both preserve the consistency of the extended logic. The de�nitional principleinsures consistency by requiring a proof that each de�ned function terminates.This is done, as in Nqthm, by the identi�cation of some ordinal measure of theformals that decreases in recursion.The encapsulation principle allows the introduction of new function symbolsconstrained by axioms to have certain properties. Consistency is preserved byrequiring the exhibition of witness functions proved to have the alleged proper-ties. One may then de�ne functions and prove theorems about the constrainedsymbols. The functional instantiation mechanism, essentially the same as de-scribed in [3] for Nqthm, then allows the derivation of new theorems from oldones by the apparently higher order act of replacing constrained and de�nedfunction symbols by other function symbols | with the obligation of provingthat the new symbols satisfy the constraints on the old.10.2 The SystemLike Nqthm, ACL2's theorem prover orchestrates a variety of proof techniques.As suggested by Figure 3, the user puts the formula to be proved into a pool. Thesimpli�er, the most important proof technique, draws a formula from the pooland either \simpli�es" it | replacing it in the pool by the several new formulassu�cient to prove it | or passes it to the next proof technique. The simpli�eremploys many di�erent proof techniques, including conditional (back chaining)rewrite rules, congruence-based rewriting, e�cient ground term evaluation, for-ward chaining, type-inference, the OBDD propositional decision procedure, arational linear arithmetic decision procedure, and user-de�ned, machine-veri�edmeta-theoretic simpli�ers.Roughly speaking, as the formula moves clockwise around the ring in Fig-ure 3 it becomes more general. Eventually, if all else fails, the induction mech-anism is applied.The proof techniques are extensions of those used by Nqthm; see [1]. Mostof the techniques are rule-driven. The rules are derived from previously provedtheorems. For example, if the user has instructed ACL2 to prove that appendis associative(equal (append (append x y) z) 15
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Figure 3: The Orchestration of Proof Techniques(append x (append y z)))and to use that fact as a :rewrite rule (from left to right), then | after theassociative law is proved | the simpli�er will right-associate all append-nests.ACL2, like Nqthm, \overloads" formulas so that in addition to their usuallogical interpretation the system interprets them as rules. The behavior of thesystem is determined by the rules (theorems) in its database. The data base maybe con�gured by the user by including various certi�ed \books" of previouslyproved rules. New rules can be added only by causing ACL2 to prove thecorresponding theorem. See Figure 4. The user is therefore responsible forcodifying a proof strategy as a set of theorems. The system is responsible forsoundness.10.3 ApplicationsAmong the signi�cant proof projects carried out with ACL2 are� the veri�cation of the oating-point division and square root microcodefor the AMD K5TM[13, 15],� the veri�cation of the IEEE compliance of the RTL for the AMD K7TMoating-point addition, subtraction, multiplication, division and squareroot [16],� the ACL2 modeling of the Motorola CAP digital signal processor and itsuse to prove that a pipeline hazard detection predicate was correct andthat several DSP microcode applications were correct [4],16
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