
A Quick and Dirty Sketch of a Toy LogicJ Strother MooreJanuary 9, 2001AbstractFor the purposes of this paper, a \logic" consists of a syntax, a set of axiomsand some rules of inference. We de�ne a simple Lisp-like logic, and then useit to prove a few theorems. The logic is not very precisely described, it is fartoo simple for our ultimate purposes, and it is not even sound! But presentingit gives us a vehicle for exploring the issues involved in de�ning a useful logicprecisely.1 Formal LogicA logic is given by� a syntax de�ning terms and formulas,� an initial set of formulas called axioms, and� some rules of inference allowing the derivation of new formulas from old.A proof is a �nite sequence of formulas called theorems. Each formula of thesequence is either an axiom or is derived from previous formulas in the sequenceby a rule of inference. The last formula in the sequence is the theorem provedby the proof.Our syntax will introduce terms representing variables, constants, and func-tion applications. For example the term (cons x y) represents the applicationof the function symbol cons to the variable symbols x and y. Such a term ismore traditionally written cons(x,y).Terms will be combined into formulas using the equality operator, =, andthe logical connectives :, _, ! and ^.What do these symbols mean? Intuitively, if you have an assignment ofvalues to the variables and an assignment of functions to the function symbols,then every term evaluates to some object: variables evaluate to their assignedvalues and function applications evaluate to the result of applying the assignedfunction to the values of the argument terms. Thus, under an assignments ofthe variables and function symbols, every term has a value.1



Every formula evaluates to either \true" or \false." To say that the valueof (x = y) is true is to say that the value of the term x is the same as that ofthe term y. To say that the value of (:�) is true is to say that the value of � isfalse. To say that the value of (�1 _ �2) is true is to say that either the valueof �1 is true or the value of �2 is true. To say the value of (�1 ! �2) is true isto say either that the value of �1 is false or the value of �2 is true. To say thevalue of (�1 ^ �2) is true is to say that the value of �1 is true and the value of�2 is true.Some formulas are \valid" or \always true" in the sense that they are trueno matter what values are assigned the variables in them. For example, (x = x)is always true. So is (cdr (car x)) = (cdr (car x)). Clearly, if there are anin�nite number of possible values for the variables, then you cannot determinevalidity in �nite time by trying all the possibilities.But now consider the following \happy coincidence." Suppose all the axiomsin some logic are valid (\always true"). And suppose the rules of inferencepreserve validity. Such a logic is said to be \sound." Then the theorems |formulas derived from axioms and other theorems by rules of inference | arealways true!But the axioms and rules of inference are entirely syntactic entities: theaxioms are just certain formulas and the rules are precisely described syntactictransformations of formulas. And proofs are �nite objects. Thus, if you aregiven a formula in a sound logic and you want to establish that it is alwaystrue, you can try to derive it as a theorem, i.e., you can try to prove it. Ifyou succeed you know the formula is always true! This is neat because a �nitesyntactic object, a proof, has replaced an in�nite number of tests.1This is the last we will talk about \semantics" or meaning of our terms andformulas. It su�ces for our purposes merely to de�ne the syntax of our termsand formulas, specify the set of axioms, give the rules of inference, and thenlearn how to �nd proofs.2 SyntaxFormulas are built from terms. Terms are built from symbols. We �rst describethe symbols, then we explain how to build up terms, and �nally we explain howto build formulas.We use without de�nition the notion of a \symbol." Examples of symbolsare x, y23, nil and count.The constant symbols are the symbols t and nil. All other symbols are1Suppose you fail to �nd a proof. What do you know about the truth of the formula?In general, you've learned nothing. It could sometimes be false. Or it could in fact be atheorem, and thus always true, but the proof has just eluded you. Or, perhaps, the formula isalways true but cannot be derived from the given axioms and rules because they are \weak"or \incomplete." 2



function symbol arity commentequal 2 equality functioncar 1 �rst component of a paircdr 1 second component of a paircons 2 constructs ordered pairsconsp 1 recognizes ordered pairsif 3 if-then-elseTable 1: The Primitive Function Symbolsvariable symbols. Function symbols are symbols that have an associated ar-ity indicating how many arguments the corresponding function takes. For thepresent purposes, the function symbols and their arities are given in Table 1.But we will add new ones as we go.A term is either a variable symbol, a constant symbol, or a sequence con-sisting of a function symbol of arity n followed by n terms.Non-variable, non-constant terms denote the application of the indicatedfunction to n argument terms. Function applications are written by writingdown the applied function symbol and the argument terms, separating them bywhite space and enclosing the whole sequence in parentheses. Thus, (cons x(cdr y)) is a term denoting the application of the function cons to the twoarguments x and (cdr y). The �rst argument is a variable. The second denotesthe application of the function cdr to the variable y. In high school we learnedto write this term cons(x, cdr(y)).It is convenient to adopt the convention that (list x1 x2 ::: xn) abbrevi-ates the term (cons x1 (cons x2 ::: (cons xn nil):::)). Thus, for example,(list a b c) abbreviates (cons a (cons b (cons c nil))).Now we move on to formulas.An atomic formula is any sequence of the form (t1 = t2), where t1 and t2 areterms. A formula is either an atomic formula, or else of the form (:�), where �is a formula, or else of the form (�1 _ �2), where �1 and �2 are both formulas.Parentheses are often omitted from formulas (but never from terms) when noambiguity arises. For example, we might write the atomic formula ((cons x y)= (cons u v)) more simply as (cons x y) = (cons u v).A substitution is a mapping from variable symbols to terms. Technically, asubstitution is a set of ordered pairs. But we write them in a special way tomake clear what variables are being replaced by what. Here is the substitutionthat replaces the variable symbol x by (f x y) and the variable symbol y bythe variable symbol a: f x / (f x y) ; y / a g.To apply a substitution to a term (or formula), one uniformly replaces alloccurrences of the mapped variable symbols by the corresponding terms. Theterm (or formula) obtained by applying a substitution � to a term (or formula)� is denoted �=�. A term (or formula) is an instance of another if and only if3



the former can be obtained from the latter by applying a substitution.For example, let � be f x / (f x y) ; y / a g. Then (cons x (cdr (ha y)))/� is (cons (f x y) (cdr (h a a))) The term (cons (f x y) (cdr(h a a))) is an instance of (cons x (cdr (h a y))).Function and variable symbols are generally written in typewriter font.Italized Roman letters are generally used as meta-variables standing for termsand function symbols. Thus, if we say \the term (f x)" we mean the explicitterm representing the function symbol f applied to the variable symbol x. But ifwe say \a term of the form (f x)" we mean any term in which a unary functionsymbol, here denoted by f , is applied to any argument term x (which may ormay not be a variable symbol). We generally use Greek letters as meta-variablesstanding for formulas and for substitutions.When (t1 6= t2) is used as a formula it is an abbreviation for the formula(:(t1 = t2)). When (�1 ! �2) is used as a formula, it is an abbreviation for(:�1 _ �2). When (�1 ^ �2) is used as a formula, it is an abbreviation forthe formula :(:�1 _ :�2). When (�1 $ �2) is used as a formula, it is anabbreviation for the formula abbreviated by (�1 ! �2) ^ (�2 ! �1).When we use a term t where a formula is expected, we mean to use theformula t 6= nil instead. We call this our term-as-formula convention.For example, it is technically incorrect to refer to (p _ (car x)) as a \for-mula" | p and (car x) are terms. Such usage is understood to refer to theformula (p 6=nil _ (car x) 6=nil).3 AxiomsWe now identify all the formulas that are \axioms." We divide the axioms intotwo groups. The �rst group, called the \propositional equality" axioms, provideus with propositional calculus and equality. The second group, called the \Lispaxioms," introduce the properties of various function symbols.3.1 Propositional EqualityAny classical formalization of propositional calculus and equality will suit ourpurposes. So that this \toy logic" is self-contained we have included one suchformalization, essentially that of Shoen�eld [1]. Shoen�eld formalizes proposi-tional calculus with one axiom schema and four rules of inference. He introducesequality with three axiom schemas.Axiom Schema (the Propositional Axiom).(:� _ �)By this we mean every formula of the above form is an axiom.Axiom (Re
exivity).(x = x) 4



Axiom Schema (Equality Axioms for Functions).For every function symbol f of arity n we add:((x1 = y1) !::: ((xn = yn) !(f x1 ::: xn) = (f y1 ::: yn)):::)An example of the above Equality Axiom is that for cons,((x1 = y1) ! ((x2 = y2) ! (cons x1 x2) = (cons y1 y2))).Axiom. (Equality Axiom for =)((x1=y1) ! ((x2=y2) ! ((x1=x2) ! (y1=y2)))):Recall that the rules of inference of our logic (not yet presented) will permitthe derivation of theorems from these axioms. The derivation of theorems isthe formal analogue of \reasoning." It may be hard to believe that the axiomspresented above can be combined using a few rules to do all propositional rea-soning and all reasoning about the equality of terms composed of uninterpretedfunction symbols. And yet that is the case! If this isn't already known to you,then just take it on faith for the moment. We will demonstrate how to dopropositional and equality reasoning with our axioms and rules after we have�nished introducing the other axioms and the rules.3.2 Lisp AxiomsWe have the following axioms describing the properties of particular constantsand function symbols.Axiom 1.t 6= nilAxiom 2.x = y ! (equal x y) = tAxiom 3.x 6= y ! (equal x y) = nilAxiom 4.x = nil ! (if x y z) = zAxiom 5.x 6= nil ! (if x y z) = y.Axiom 6.(consp (cons x y)) = t 5



Axiom 7.(consp nil) = nilAxiom 8.(consp t) = nilAxiom 9.(car (cons x y)) = xAxiom 10.(cdr (cons x y)) = yAxiom 11.(consp x) = t ! (cons (car x) (cdr x)) = x4 Rules of InferenceThe rules of inference are extraordinarily simple. The �rst �ve are taken from[1] and support propositional calculus and equality reasoning.Rules of Inference.� Expansion: derive (�1 _ �2) from �2;� Contraction: derive � from (� _ �);� Associativity: derive ((�1 _ �2) _ �3) from (�1 _ (�2 _ �3)); and� Cut: derive (�2 _ �3) from (�1 _ �2) and (:�1 _ �3).Rule of Inference. Instantiation:Derive �=� from �.Rule of Inference. De�nition:Derive (f v1 : : : vn) = body,provided that� f is a new function symbol of arity n (by new we mean f is not mentionedin any axiom or theorem heretofore introduced);� the vi are variable symbols; and� body is a term. 6



The rule of inference above permits us to de�ne a new function symbol by addinga new axiom.Rule of Inference. Induction:Derive � from� Base Case. ((consp x) = nil) ! �� Induction Step. ((consp x) = t) ^ �=�) ! �,where � is any substitution that replaces x by (cdr x). The substitution mayreplace other variables arbitrarily.Probably you are most familiar with induction in the setting of the naturalnumbers. To prove a conjecture for all natural numbers n, the base case requiresthat we prove it when n = 0. The induction step provides the conjecture for nas a hypothesis and requires us to prove it for n + 1. But we do not have thenatural numbers in this toy logic. We have lists built by cons and \recognized"by consp. Here, our base case is for non-conses, i.e., objects x not built by cons.Our induction step has us assume x is built by cons and gives us the hypothesisthat the conjecture holds for the cdr of x. We must prove that it holds for x.This formulation of induction is too weak to meet our needs in general, but willget us o� the ground with inductive proofs.5 Getting Started with Formal Proofs5.1 Propositional CalculusWe will start with some simple propositional calculus.2 First, we will prove thetheorem (P _ Q) ! (Q _ P). However, the formal proof of even so simple atheorem is very long if we limit ourselves to the rules of inference given, namelyExpansion, Contraction, Associativity, and Cut. We therefore start by derivingseveral new rules of inference.Derived Rule of Inference. (Commutativity of Or)Derive (� _ �) from (� _ �).Below we derive (� _ �) from (� _ �). The proof is presented as a sequenceof formulas, each of which is either an axiom or is given (in the case of a derivedrule of inference) or is derived by inference rules from previous formulas. Wenumber and justify each formula in the presentation below. Unless otherwisenoted, each rule of inference takes as its single premise the formula immediatelyabove.2Most of the propositional calculus proofs were contributed by N. Shankar.7



Proof.1. (� _ �) Given2. (:(�) _ �) Propositional Axiom3. (� _ �) Cut, lines 1 and 2Q.E.D.What exactly is going on here? We have shown that from (� _ �) we canderive (�_�) by applying the primitive rules, the Propositional Axiom and Cut.Thus, in the future, if we have derived a formula (�1 _ �2) we can, in the nextline, derive (�2_�1) and attribute the derivation to the new rule Commutativityof Or, in the knowledge that we could convert the resulting \proof" into a proofby substituting for that single line the steps above.We now derive several other useful rules, using Commutativity of Or:Derived Rule of Inference. (Or Insertion 1)Derive � _ (
 _ �) from (� _ �).Proof.1. (� _ �) Given2. (� _ �) Commutativity of Or3. (
 _ (� _ �)) Expansion4. ((
 _ �) _ �) Associativity5. � _ (
 _ �) Commutativity of OrQ.E.D.Derived Rule of Inference. (Or Insertion 2)Derive � _ (� _ 
) from (� _ �).Proof.1. (� _ �) Given2. (� _ �) Commutativity of Or3. (� _ (
 _ �)) Or Insertion 14. ((� _ 
) _ �) Associativity5. � _ (� _ 
) Commutativity of OrQ.E.D.Derived Rule of Inference. (Or Implication)Derive (� _ �)! 
 from (�! 
) and (� ! 
).Proof. 8



1. � ! 
 Given2. :� _ 
 Abbreviation3. :(� _ �) _ (� _ �) Propositional Axiom4. (:(� _ �) _ �) _ � Associativity5. � _ (:(� _ �) _ �) Commutativity of Or6. (:(� _ �) _ �) _ 
 Cut, lines 5 and 27. 
 _ (:(� _ �) _ �) Commutativity of Or8. (
 _ :(� _ �)) _ � Associativity9. � _ (
 _ :(� _ �)) Commutativity of Or10. �! 
 Given11. :� _ 
 Abbreviation12. :� _ (
 _ :(� _ �)) Or Insertion 213. (
 _ :(� _ �)) _ (
 _ :(� _ �)) Cut, lines 9 and 1214. (
 _ :(� _ �)) Contraction15. :(� _ �) _ 
 Commutativity of Or16. (� _ �)! 
 AbbreviationQ.E.D.We are �nally in a position to prove our �rst theorem!Theorem. (P _ Q)! (Q _ P).Before we prove this, note that technically this is not a formula becauseterms P and Q are used as formulas. We understand the \formula" above tomean (P 6= nil _ Q 6= nil) ! (Q 6= nil _ P 6= nil). But we use our term-as-formula convention freely in the proof below.Proof.1. :P _ P Propositional Axiom2. :P _ (Q _ P) Or Insertion 13. P! (Q _ P) Abbreviation4. :Q _ Q Propositional Axiom5. :Q _ (Q _ P) Or Insertion 26. Q! (Q _ P) Abbreviation7. (P _ Q)! (Q _ P) Or-Implication, lines 3 and 6Q.E.D.The following classic derived rule is very useful.Derived Rule of Inference. (Modus Ponens)Derive � from � and �! �.Proof. 9



1. � Given2. � _ � Expansion3. � _ � Commutativity of Or4. �! � Given5. :� _ � Abbreviation6. � _ � Cut, lines 3 and 57. � ContractionQ.E.D.There are, of course, many other derived rules of inference about propo-sitional calculus. Among them are versions of the tautology theorem (\everyvalid propositional formula has a proof"), the deduction law (\assume as giventhe hypotheses of an implication and prove the conclusion"), and case analysis(\prove the theorem under an exhaustive set of cases").Having shown how to \get o� the ground" using Shoen�eld's system, we willhenceforth use such propositional rules and results freely. You are free to usesuch results in your proofs for this class. Readers unfamiliar with propositionalcalculus are urged to consult a logic textbook, e.g., [1].5.2 EqualityWe next prove a simple theorem about the equality predicate. We are not somuch interested in the theorem as in the proof, because it suggests the proof ofthe commonly used derived rule of \substitution of equals for equals."Theorem.A = B ! (CAR (CDR A)) = (CAR (CDR B))Proof.1. A = B ! (CDR A) = (CDR B) Instantiation ofEquality Axiom for CDR2. : (A = B) _ (CDR A) = (CDR B) Abbreviation3. (CDR A) = (CDR B) _ : (A = B) Commutativity of Or4. (CDR A) = (CDR B) ! (CAR (CDR A)) = (CAR (CDR B))Instantiation ofEquality Axiom for CAR5. : ((CDR A) = (CDR B)) _ (CAR (CDR A)) = (CAR (CDR B))Abbreviation6. : (A = B) _ (CAR (CDR A)) = (CAR (CDR B))Cut, lines 3 and 57. A = B ! (CAR (CDR A)) = (CAR (CDR B))AbbreviationQ.E.D.By induction on the structure of terms we can derive the following powerfuland widely used rule of inference: 10



Derived Rule of Inference. (Substitution of Equals for Equals)If a = b has been proved and formula � is obtained from formula � by replacingsome occurrences of a in � by b, then � is provable i� � is provable.By combining this rule with the deduction law we can substitute b for selectedoccurrences of a in � when trying to prove a formula of the form (a = b)! �.Henceforth, we freely use equality reasoning in our proofs.6 De�ning the Propositional FunctionsTo use formal logic to model some system it is usually necessary to extend thelogic by de�ning new concepts. This is done by adding new axioms with theDe�nition rule of inference, sometimes called the De�nitional Principle.Below are de�nitions, de�ning �ve new function symbols. Implicitly, weshould extend the \arity table" (Table 1) appropriately.De�ning Axiom(not p) = (if p nil t)De�ning Axiom(and p q) = (if p (if q t nil) nil)De�ning Axiom(or p q) = (if p t (if q t nil))De�ning Axiom(implies p q) = (if p (if q t nil) t)De�ning Axiom(iff p q) = (and (implies p q) (implies q p))Now let's prove a few key theorems about these new symbols.Theorem. (if cases)(if x y z) = u $ (x 6=nil ! y=u) ^ (x=nil ! z=u)Proof.Name the formula above *1. The proof of *1 is by case analysis on x=nil.Case 1. x=nil.In this case, by Axiom 4, (if x y z) = z. Thus, the left-hand side of *1 isz=u. The right-hand side becomes(nil6=nil ! y=u) ^ (nil=nil ! z=u)By propositional calculus and equality, this is equivalent to z=u.11



Case 2. x 6= nil.By Axiom 5, the left-hand side of *1 is equivalent to y=u. By propositionalcalculus and equality, the right-hand side also equivalent to y=u.Q.E.D.Theorem. (implies is implication)(implies p q) 6= nil $ (p 6=nil ! q 6=nil)Proof.We will repeatedly replace the left-hand side of the above equivalence by equiva-lent formulas until the result is identical to the right-hand side. By the de�nitionof implies (Axiom 15), the left-hand side above is equivalent to(if p (if q t nil) t) 6=nilwhich, by if cases, is equivalent to(p 6=nil ! (if q t nil)6=nil) ^ (p=nil ! t 6=nil).By Axiom 1 and propositional calculus, the above is equivalent top 6=nil ! (if q t nil)6=nil.Applying if cases again producesp 6=nil ! ((q6=nil ! t 6=nil) ^ (q=nil ! nil6=nil))which, by Axiom 1 and propositional calculus with equality, is equivalent to(p 6=nil ! q 6=nil).Q.E.D.This style of proof is so common that we frequently abbreviate it as follows.(if p (if q t nil) t) 6=nil$(p 6=nil ! (if q t nil)6=nil) ^ (p=nil ! t 6=nil).$p 6=nil ! (if q t nil)6=nil.$p 6=nil ! ((q6=nil ! t 6=nil) ^ (q=nil ! nil6=nil))$(p 6=nil ! q 6=nil)We omit the explanatory justi�cations when they are su�ciently \obvious."Derived Rule of Inference. (Term based Modus Ponens)The term q may be derived as a theorem if the term p is a theorem and the term(implies p q) is a theorem. The proof is trivial, given implies is implies.Theorem. (not case) 12



(not p) 6=nil $ p=nilProof. By the de�nition of not (Axiom 12), the left-hand side is equivalentto (if p nil t) 6=nil which, by if cases, is equivalent to(p 6=nil ! nil 6=nil) ^ (p=nil ! t 6=nil).But by Axiom 1 and propositional calculus with equality, this is equivalent top=nil. Q.E.D.Theorem. (equal is equality)(equal x y) 6=nil $ x=yProof. That the left-hand side implies the right is merely the contrapositiveof Axiom 3. That the right-hand side implies the left follows from Axioms 1and 2 by equality reasoning. Q.E.D.Analogous theorems hold for not, and, or and iff.These theorems, together with our term-as-formula convention, justify ournaming these new functions the \propositional functions." For example, by theconvention, when the term(implies (and p (equal x y)) r)is used as a formula, it is equivalent to(implies (and p (equal x y)) r) 6= nilwhich is equivalent, by the theorems just mentioned, to((p 6= nil) ^ (x=y)) ! r 6=nilwhich, by our convention, may be abbreviated(p ^ (x=y)) ! rHenceforth, we will reason about the propositional functions equal, if, not,and, or, implies and iff with the same casual ease we use with propositionalcalculus and equality.7 Computing with Axioms and SubstitutionsThe proof of the following theorem shows how we can \compute" within thelogic. Computation is just the systematic use of function de�nition axioms andthe replacement of equals by equals.Theorem.(and t (or nil t)) = t. 13



Proof.(and t (or nil t))=(and t (if nil t (if t t nil)))=(and t (if t t nil))=(and t t)=(if t (if t t nil) nil)=(if t t nil)=tQ.E.D.The basic idea is to focus repeatedly on the innermost function applicationwhose arguments are all constants, \expand" it by replacing it by the instanti-ated \body" of its de�nition, and then \reduce" the more primitive expressionusing the basic axioms and the de�nitions of its \subroutines."We often compress proofs as above into \one liners." We might say \(andt (or nil t)) = t, by computation (or evaluation)."8 A Simple Recursive De�nitionConsider the new axiom:De�ning Axiom(true x) = (if (consp x) (true (cdr x)) t)This function always returns t. But let's start our investigation of the func-tion by proving a simple lemma about it.Theorem.(true (cons x y)) = (true y).Proof.(true (cons x y))= fby the de�nition of true g(if (consp (cons x y))(true (cdr (cons x y)))t)= fby Axiom 6 and equalityg14



(if t(true (cdr (cons x y)))t)= fby Axiom 5 and equalityg(true (cdr (cons x y)))= fby Axiom 10 and equalityg(true y)Q.E.D.This style of proof essentially the same as \computation" but is sometimescalled symbolic computation or symbolic evaluation to acknowledge the presenceof variable symbols in the \data."Similarly, we can proveTheorem.(true (list x y z)) = tProof.(true (list x y z))= fby the list abbreviationg(true (cons x (cons y (cons z nil))))= fby symbolic computationg(true (cons y (cons z nil)))= fby symbolic computationg(true (cons z nil))= fby symbolic computationg(true nil)= fby computationgtQ.E.D.We would generally just compress this to one line and say \(true (list x yz)) = t by symbolic computation."Obviously, we can show by symbolic computation that true returns t on anyargument of the form (list x1 ::: xn). But how do we show that it returns ton all x? We might start the proof as follows:Theorem.(true x) = tProof.Case 1. (consp x) = nil. (true x) = t by computation.Case 2. (consp x) 6= nil. (true x) = (true (cdr x)), by symbolic com-putation. 15



Case 2.1. (consp (cdr x)) = nil. (true (cdr x)) = t by computation.Case 2.2. (consp (cdr x)) 6= nil. (true (cdr x)) = (true (cdr (cdrx))) by symbolic computation.Case 2.2.1. (consp (cdr (cdr x))) = nil. :::But this \proof" will clearly require an in�nite number of case splits and sowon't succeed. Induction is required to prove this theorem and the failed proofattempt clearly suggests why.Induction is like case analysis but provides, in the \interesting" case (thesecond case above), an additional hypothesis about (cdr x). And in the secondcase above, we reduce our proof obligation from (true x) to (true (cdr x))because true is de�ned recursively.9 A Simple Inductive ProofTheorem.(true x) = tProof.The proof is by induction on x, i.e., substitution � is f x / (cdr x) g.Base Case.((consp x) = nil) ! (true x) = t.This is obvious by computation. Here is the \obvious" proof. Using the deduc-tion law, we can assume the hypothesis and prove the conclusion under thatassumption. That is,(consp x) = nil fGiven as induction case analysisgThen we work on the conclusion, by reducing the left-hand side to the right.(true x) fleft-hand sideg= fby symbolic computationgt. fright-hand sidegInduction Step.(((consp x) = t) ^ ((truep (cdr x)) = t)) ! (truep x) = tThis too is obvious by symbolic computation. But here is the \obvious" proof.(consp x) = t fGiven as induction case analysisg(true (cdr x)) = t fGiven as induction hypothesisgWe now work on the concludion of the induction step:(true x) fleft-hand sideg= fby symbolic computationg(true (cdr x))= fby induction hypothesisgt. fright-hand sideg16



Q.E.D.Eventually, proofs such as this will be described in one line such as \theproof is by induction on x." But for the moment proofs should be written atthe level of detail shown above.
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10 ProblemsNot all of the \theorems" below are theorems! If you are asked to prove a non-theorem, you should, at least, exhibit a counterexample, i.e., show values forthe variables that make the value of the formula nil. Often these non-theoremswill suggest theorems to you. That is, there is a germ of an interesting idea inthe non-theorem and it just needs to be said more precisely to be valid. Whenyou see the \interesting idea" in a non-theorem, re-state it as a theorem. Thenprove it!You may �nd that the logic is too weak to allow you to prove certain things.If so, propose improvements.You may �nd that the logic is too strong { i.e., allows you to prove thingsyou should not be able to prove. If so, propose re�nements.Problem 1.1. De�ne the function app to concatenate two arbitrarily long lists,i.e., (app (list x1 ::: xn) (list y1 ::: yk)) is equal to (list x1 ::: xn y1::: yk).Problem 1.2. Prove (app nil y) = y.Problem 1.3. Prove (app (list a b c) (list x y)) = (list a b c xy).Problem 1.4. Prove that app is associative.Problem 1.5. State and prove that \nil is a right identity for app."Problem 1.6. Here is a de�nition.De�ning Axiom(rev x)=(if (consp x)(app (rev (cdr x)) (list (car x)))nil)What is the value of (rev (list a b c d))?Problem 1.7 Prove (rev (rev x)) = x.Problem 1.8. Here is a de�nition.De�ning Axiom(rev1 x a)=(if (consp x)(rev1 (cdr x) (cons (car x) a))a)What is the value of (rev1 (list a b c d) nil)?18



Problem 1.9. Prove (rev1 x nil) = (rev x).Problem 1.10. De�ne (mem e x) to return t or nil according to whether eis an element of the list x.Problem 1.11. Prove (mem e (app a b)) = (or (mem e a) (mem e b)).Problem 1.12. De�ne (subsetp x y) to return t or nil according to whetherevery element of the list x is an element of the list y.Problem 1.13. Prove that subsetp is re
exive.Problem 1.14. Prove that subsetp is transitive.Problem 1.15. Prove (subsetp a (app a b)).Problem 1.16. Prove (subsetp b (app a b)).Problem 1.17. Here is a de�nition.De�ning Axiom(f x)=(if (consp x)(app (f (car x)) (f (cdr x)))(list x))Explain what this function computes. Think of (cons a b) as a binary treewhose left branch is the subtree a and whose right branch is the subtree b.Problem 1.18. What does this function do?De�ning Axiom(mcf x a)=(if (consp x)(mcf (car x)(mcf (cdr x) a))(cons x a))Problem 1.19. Prove (mcf x nil) = (f x).Problem 1.20. De�ne (occ e x) to return t or nil according to whether eoccurs as a tip of the binary tree x.Problem 1.21. Prove (mem e (f x)) = (occ e x).Problem 1.22. The length of x is 0 if x is not a cons and is one more than thelength of (cdr x), otherwise. De�ne (< x y) to return t or nil according towhether the length of x is less than that of y.Problem 1.23. Prove that < is transitive.19



Problem 1.24. De�ne (del e x) to be the list obtained by deleting the �rstoccurrence of e (as an element) from the list x, or x if e does not occur as anelement of x.Problem 1.25. Prove that (mem e x) implies that (< (del e x) x).Problem 1.26. De�ne (perm a b) to be t or nil according to whether thesequence of elements in list a is a permutation of the sequence of elements inlist b.Problem 1.27. Prove (perm x x).Problem 1.28. Prove that (perm x y) implies (perm y x).Problem 1.29. Prove that perm is transitive.Problem 1.30. We say a sequence is ordered if successive element, ei and ei+1stand in the relation (< ei ei+1). De�ne the predicate ordered to recognizeordered lists.Problem 1.31. De�ne (sort a) so that it returns an ordered permutation ofa.References[1] J. R. Shoen�eld. Mathematical Logic. Addison-Wesley, Reading, Ma.1967.
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