A Quick and Dirty Sketch of a Toy Logic

J Strother Moore
January 9, 2001

Abstract

For the purposes of this paper, a “logic” consists of a syntax, a set of axioms
and some rules of inference. We define a simple Lisp-like logic, and then use
it to prove a few theorems. The logic is not very precisely described, it is far
too simple for our ultimate purposes, and it is not even sound! But presenting
it gives us a vehicle for exploring the issues involved in defining a useful logic
precisely.

1 Formal Logic
A logic is given by
e a syntax defining terms and formulas,
e an initial set of formulas called azioms, and
e some rules of inference allowing the derivation of new formulas from old.

A proof is a finite sequence of formulas called theorems. Each formula of the
sequence is either an axiom or is derived from previous formulas in the sequence
by a rule of inference. The last formula in the sequence is the theorem proved
by the proof.

Our syntax will introduce terms representing variables, constants, and func-
tion applications. For example the term (cons x y) represents the application
of the function symbol cons to the variable symbols x and y. Such a term is
more traditionally written cons(z,y).

Terms will be combined into formulas using the equality operator, =, and
the logical connectives -, V, — and A.

What do these symbols mean? Intuitively, if you have an assignment of
values to the variables and an assignment of functions to the function symbols,
then every term evaluates to some object: variables evaluate to their assigned
values and function applications evaluate to the result of applying the assigned
function to the values of the argument terms. Thus, under an assignments of
the variables and function symbols, every term has a value.

Every formula evaluates to either “true” or “false.” To say that the value

of (z = y) is true is to say that the value of the term z is the same as that of
the term y. To say that the value of (—¢) is true is to say that the value of ¢ is
false. To say that the value of (¢1 V ¢2) is true is to say that either the value
of ¢; is true or the value of ¢o is true. To say the value of (¢ — ¢2) is true is
to say either that the value of ¢; is false or the value of ¢2 is true. To say the
value of (¢1 A ¢2) is true is to say that the value of ¢; is true and the value of
@ is true.

Some formulas are “valid” or “always true” in the sense that they are true
no matter what values are assigned the variables in them. For example, (x = x)
is always true. Sois (cdr (car x)) = (cdr (car x)). Clearly, if there are an
infinite number of possible values for the variables, then you cannot determine
validity in finite time by trying all the possibilities.

But now consider the following “happy coincidence.” Suppose all the axioms
in some logic are valid (“always true”). And suppose the rules of inference
preserve validity. Such a logic is said to be “sound.” Then the theorems —
formulas derived from axioms and other theorems by rules of inference — are
always true!

But the axioms and rules of inference are entirely syntactic entities: the
axioms are just certain formulas and the rules are precisely described syntactic
transformations of formulas. And proofs are finite objects. Thus, if you are
given a formula in a sound logic and you want to establish that it is always
true, you can try to derive it as a theorem, i.e., you can try to prove it. If
you succeed you know the formula is always true! This is neat because a finite
syntactic object, a proof, has replaced an infinite number of tests.!

This is the last we will talk about “semantics” or meaning of our terms and
formulas. It suffices for our purposes merely to define the syntax of our terms
and formulas, specify the set of axioms, give the rules of inference, and then
learn how to find proofs.

4

2 Syntax

Formulas are built from terms. Terms are built from symbols. We first describe
the symbols, then we explain how to build up terms, and finally we explain how
to build formulas.

We use without definition the notion of a “symbol.” Examples of symbols
are x, y23, nil and count.

The constant symbols are the symbols t and nil. All other symbols are

1Suppose you fail to find a proof. What do you know about the truth of the formula?
In general, you’ve learned nothing. It could sometimes be false. Or it could in fact be a
theorem, and thus always true, but the proof has just eluded you. Or, perhaps, the formula is
always true but cannot be derived from the given axioms and rules because they are “weak”
or “incomplete.”

function symbol arity comment

equal 2 equality function

car 1 first component of a pair
cdr 1 second component of a pair
cons 2 constructs ordered pairs
consp 1 recognizes ordered pairs

if 3 if-then-else

Table 1: The Primitive Function Symbols

variable symbols. Function symbols are symbols that have an associated ar-
ity indicating how many arguments the corresponding function takes. For the
present purposes, the function symbols and their arities are given in Table 1.
But we will add new ones as we go.

A term is either a variable symbol, a constant symbol, or a sequence con-
sisting of a function symbol of arity n followed by n terms.

Non-variable, non-constant terms denote the application of the indicated
function to n argument terms. Function applications are written by writing
down the applied function symbol and the argument terms, separating them by
white space and enclosing the whole sequence in parentheses. Thus, (cons x
(cdr y)) is a term denoting the application of the function cons to the two
arguments x and (cdr y). The first argument is a variable. The second denotes
the application of the function cdr to the variable y. In high school we learned
to write this term cons(x, cdr(y)).

It is convenient to adopt the convention that (list x; 23 ... x,) abbrevi-
ates the term (cons z; (cons z3 ... (cons z, nil)...)). Thus, for example,
(1ist a b c) abbreviates (cons a (cons b (cons c nil))).

Now we move on to formulas.

An atomic formula is any sequence of the form (¢; = t2), where ¢; and t5 are
terms. A formula is either an atomic formula, or else of the form (—¢), where ¢
is a formula, or else of the form (@1 V ¢2), where ¢; and ¢2 are both formulas.
Parentheses are often omitted from formulas (but never from terms) when no
ambiguity arises. For example, we might write the atomic formula ((cons x y)
= (cons u v)) more simply as (cons x y) = (cons u v).

A substitution is a mapping from variable symbols to terms. Technically, a
substitution is a set of ordered pairs. But we write them in a special way to
make clear what variables are being replaced by what. Here is the substitution
that replaces the variable symbol x by (£ x y) and the variable symbol y by
the variable symbol a: { x < (f x y) ;y<a }.

To apply a substitution to a term (or formula), one uniformly replaces all
occurrences of the mapped variable symbols by the corresponding terms. The
term (or formula) obtained by applying a substitution ¢ to a term (or formula)
¢ is denoted ¢/o. A term (or formula) is an instance of another if and only if

the former can be obtained from the latter by applying a substitution.

For example, let 0 be { x <« (f x y) ; y <a }. Then (cons x (cdr (h
a y)))/ois (cons (f x y) (cdr (h a a))) The term (cons (f x y) (cdr
(h a a))) is an instance of (cons x (cdr (h a y))).

Function and variable symbols are generally written in typewriter font.
Italized Roman letters are generally used as meta-variables standing for terms
and function symbols. Thus, if we say “the term (£ x)” we mean the explicit
term representing the function symbol £ applied to the variable symbol x. But if
we say “a term of the form (f x)” we mean any term in which a unary function
symbol, here denoted by f, is applied to any argument term z (which may or
may not be a variable symbol). We generally use Greek letters as meta-variables
standing for formulas and for substitutions.

When (t; # t2) is used as a formula it is an abbreviation for the formula
(=(t1 = t2)). When (¢1 — ¢2) is used as a formula, it is an abbreviation for
(m¢1 V ¢2). When (¢1 A ¢2) is used as a formula, it is an abbreviation for
the formula —(=¢; V —¢2). When (¢; < ¢2) is used as a formula, it is an
abbreviation for the formula abbreviated by (¢1 — ¢2) A (¢ — ¢1).

When we use a term ¢ where a formula is expected, we mean to use the
formula ¢ # nil instead. We call this our term-as-formula convention.

For example, it is technically incorrect to refer to (p V (car x)) as a “for-
mula” — p and (car x) are terms. Such usage is understood to refer to the
formula (p#nil V (car x)#nil).

3 Axioms

We now identify all the formulas that are “axioms.” We divide the axioms into
two groups. The first group, called the “propositional equality” axioms, provide
us with propositional calculus and equality. The second group, called the “Lisp
axioms,” introduce the properties of various function symbols.

3.1 Propositional Equality

Any classical formalization of propositional calculus and equality will suit our
purposes. So that this “toy logic” is self-contained we have included one such
formalization, essentially that of Shoenfield [1]. Shoenfield formalizes proposi-
tional calculus with one axiom schema and four rules of inference. He introduces
equality with three axiom schemas.

Axiom Schema (the Propositional Aziom).

(mo vV @)

By this we mean every formula of the above form is an axiom.
Axiom (Reflezivity).

(z = =)

Axiom Schema (Equality Azioms for Functions).
For every function symbol f of arity n we add:

(= y1) -
((xn =yn) —

(f x1 ... xn) = (f y1 ... yn))...)
An example of the above Equality Axiom is that for cons,

((x1 = y1) = ((x2 = y2) — (comns x1 x2) = (comns yl y2))).

Axiom. (Equality Aziom for =)
(x1=y1) — ((x2=y2) — ((x1=x2) — (y1=y2)))).

Recall that the rules of inference of our logic (not yet presented) will permit
the derivation of theorems from these axioms. The derivation of theorems is
the formal analogue of “reasoning.” It may be hard to believe that the axioms
presented above can be combined using a few rules to do all propositional rea-
soning and all reasoning about the equality of terms composed of uninterpreted
function symbols. And yet that is the case! If this isn’t already known to you,
then just take it on faith for the moment. We will demonstrate how to do
propositional and equality reasoning with our axioms and rules after we have
finished introducing the other axioms and the rules.

3.2 Lisp Axioms

We have the following axioms describing the properties of particular constants
and function symbols.

Axiom 1.

t # nil

Axiom 2.

x =y — (equal xy) = ¢t

Axiom 3.

x #y — (equal x y) nil

Axiom 4.
x =nil - (if xy z) =z

Axiom 5.
x #nil - (Af xy z) = y.

Axiom 6.
(consp (cons x y)) =t

Axiom 7.

(consp nil) = nil

Axiom 8.

(consp t) = nil

Axiom 9.

(car (cons x y)) = x

Axiom 10.
(cdr (cons x y)) =y

Axiom 11.

(consp x) = t — (cons (car x) (cdr x)) = x

4 Rules of Inference

The rules of inference are extraordinarily simple. The first five are taken from
[1] and support propositional calculus and equality reasoning.

Rules of Inference.
e Ezpansion: derive (¢ V ¢2) from ¢s;
e Contraction: derive ¢ from (¢ V ¢);
e Associativity: derive ((¢1 V ¢2) V ¢3) from (o1 V (¢p2 V ¢3)); and

e Cut: derive (¢2 V ¢3) from (¢1 V ¢2) and (=1 V @3).

Rule of Inference. Instantiation:
Derive ¢/o from ¢.

Rule of Inference. Definition:
Derive (f vy ... v,) = body,

provided that

e fis a new function symbol of arity n (by new we mean f is not mentioned
in any axiom or theorem heretofore introduced);

e the v; are variable symbols; and

e body is a term.

The rule of inference above permits us to define a new function symbol by adding
a new axiom.

Rule of Inference. Induction:
Derive ¢ from

e Base Case. ((consp z) =nil) — ¢
e Induction Step. ((consp z) =t) A ¢p/o) — &,

where ¢ is any substitution that replaces ¢ by (cdr x). The substitution may
replace other variables arbitrarily.

Probably you are most familiar with induction in the setting of the natural
numbers. To prove a conjecture for all natural numbers n, the base case requires
that we prove it when n = 0. The induction step provides the conjecture for n
as a hypothesis and requires us to prove it for n + 1. But we do not have the
natural numbers in this toy logic. We have lists built by cons and “recognized”
by consp. Here, our base case is for non-conses, i.e., objects & not built by cons.
Our induction step has us assume z is built by cons and gives us the hypothesis
that the conjecture holds for the cdr of x. We must prove that it holds for x.
This formulation of induction is too weak to meet our needs in general, but will
get us off the ground with inductive proofs.

5 Getting Started with Formal Proofs

5.1 Propositional Calculus

We will start with some simple propositional calculus.? First, we will prove the
theorem (P V Q) — (Q V P). However, the formal proof of even so simple a
theorem is very long if we limit ourselves to the rules of inference given, namely
Expansion, Contraction, Associativity, and Cut. We therefore start by deriving
several new rules of inference.

Derived Rule of Inference. (Commutativity of Or)
Derive (8 V a) from (a V B).

Below we derive (8 V «) from (a V B). The proof is presented as a sequence
of formulas, each of which is either an axiom or is given (in the case of a derived
rule of inference) or is derived by inference rules from previous formulas. We
number and justify each formula in the presentation below. Unless otherwise
noted, each rule of inference takes as its single premise the formula immediately
above.

2Most of the propositional calculus proofs were contributed by N. Shankar.

Proof.
1. (aVvp) Given
2. (=(a)Va) Propositional Axiom
3. (BVa) Cut, lines 1 and 2
Q.E.D

What exactly is going on here? We have shown that from (a V) we can
derive (BVa) by applying the primitive rules, the Propositional Axiom and Cut.
Thus, in the future, if we have derived a formula (¢; V ¢2) we can, in the next
line, derive (¢2 V ¢1) and attribute the derivation to the new rule Commutativity
of Or, in the knowledge that we could convert the resulting “proof” into a proof
by substituting for that single line the steps above.

We now derive several other useful rules, using Commutativity of Or:

Derived Rule of Inference. (Or Insertion 1)
Derive a V (v V B8) from (a V 3).

Proof.
1. (aVvp) Given
2. (BVa) Commutativity of Or
3. (yVvV(BVa)) Expansion
4. ((yVvPB)Va) Associativity
5. aV(yVpP) Commutativity of Or

Derived Rule of Inference. (Or Insertion 2)
Derive a V (8 V) from (a V 3).

Proof.
1. (aVvp) Given
2. (BVa) Commutativity of Or
3. (BV(yVa)) OrlInsertion 1
4. ((BV~y)Va) Associativity
5. aV(BV7y) Commutativity of Or

Derived Rule of Inference. (Or Implication)
Derive (aV 8) — v from (o —) and (6 — 7).

Proof.

1. B—vy Given
2. =8vVvy Abbreviation
3. —(avp)V(aVvp) Propositional Axiom
4. (=(aVB)Va)Vp Associativity
5. BV (=(aVB)Va) Commutativity of Or
6. (—(aVvB)Va)Vy Cut, lines 5 and 2
7. yV(~(aVvP)Va) Commutativity of Or
8 (yVa(aVvp)Va Associativity
9. aV(yV-(laVp)) Commutativity of Or
10. a— v Given
11. —aVy Abbreviation
12, —aV(yV-(aVp)) Or Insertion 2
13. (yV=(aVvp)V(yV-(aVvp)) Cut,lines 9 and 12
14. (yV-(aVp) Contraction
15. =(aVp)Vy Commutativity of Or
16. (aVp) =7y Abbreviation

Q.E.D.

We are finally in a position to prove our first theorem!

Theorem. (PV Q) — (QVP).

Before we prove this,

note that technically this is not a formula because

terms P and Q are used as formulas. We understand the “formula” above to
mean (P # nilV Q # nil) — (Q # nil VP # nil). But we use our term-as-
formula convention freely in the proof below.

Proof.

1

N otk W

-PVP

-PV (QVP)
P— (QVP)
-QVvQ
-QV(QVP)
Q—(QVP)
(PVQR) = (QVP)
Q.E.D.

Propositional Axiom

Or Insertion 1

Abbreviation

Propositional Axiom

Or Insertion 2

Abbreviation
Or-Implication, lines 3 and 6

The following classic derived rule is very useful.

Derived Rule of Inference. (Modus Ponens)
Derive § from a and o — S.

Proof.

1. « Given
2. BVa Expansion
3. aVvp Commutativity of Or
4. a—p Given
5. —aV @ Abbreviation
6. BVp Cut, lines 3 and 5
7. B Contraction
Q.E.D.

There are, of course, many other derived rules of inference about propo-
sitional calculus. Among them are versions of the tautology theorem (“every
valid propositional formula has a proot”), the deduction law (“assume as given
the hypotheses of an implication and prove the conclusion”), and case analysis
(“prove the theorem under an exhaustive set of cases”).

Having shown how to “get off the ground” using Shoenfield’s system, we will
henceforth use such propositional rules and results freely. You are free to use
such results in your proofs for this class. Readers unfamiliar with propositional
calculus are urged to consult a logic textbook, e.g., [1].

5.2 Equality

We next prove a simple theorem about the equality predicate. We are not so
much interested in the theorem as in the proof, because it suggests the proof of
the commonly used derived rule of “substitution of equals for equals.”

Theorem.
A =B — (CAR (CDR A)) = (CAR (CDR B))
Proof.
1. A=B — (CDR A) = (CDR B) Instantiation of

Equality Axiom for CDR
2. - (A=B)V (CDR A) = (CDR B) Abbreviation
(CDR A) = (CDR B) V = (A =B) Commutativity of Or
4. (CDR A) = (CDR B) — (CAR (CDR A)) = (CAR (CDR B))
Instantiation of
Equality Axiom for CAR
5. - ((CDR A) = (CDR B)) V (CAR (CDR A)) = (CAR (CDR B))
Abbreviation
6. —(A=B)V (CAR (CDR A)) = (CAR (CDR B))
Cut, lines 3 and 5
7. A=B — (CAR (CDR A)) = (CAR (CDR B))
Abbreviation

w

Q.E.D.

By induction on the structure of terms we can derive the following powerful
and widely used rule of inference:

10

Derived Rule of Inference. (Substitution of Equals for Equals)
If a = b has been proved and formula (3 is obtained from formula « by replacing
some occurrences of @ in a by b, then (8 is provable iff « is provable.
By combining this rule with the deduction law we can substitute b for selected
occurrences of a in ¢ when trying to prove a formula of the form (a = b) — ¢.
Henceforth, we freely use equality reasoning in our proofs.

6 Defining the Propositional Functions

To use formal logic to model some system it is usually necessary to extend the
logic by defining new concepts. This is done by adding new axioms with the
Definition rule of inference, sometimes called the Definitional Principle.

Below are definitions, defining five new function symbols. Implicitly, we
should extend the “arity table” (Table 1) appropriately.

Defining Axiom
(not p) = (if p nil t)

Defining Axiom
(and p @) = (if p (if g t nil) nil)

Defining Axiom
(or p q) = (if p t (if g t nil))

Defining Axiom
(implies p q) = (if p (if g t nil) t)

Defining Axiom
(iff p q) = (and (implies p q) (implies q p))
Now let’s prove a few key theorems about these new symbols.

Theorem. (if cases)
(if x y z) =u ¢ (x#nil — y=u) A (x=nil — z=u)

Proof.
Name the formula above *1. The proof of *1 is by case analysis on x=nil.

Case 1. x=nil.
In this case, by Axiom 4, (if x y z) = z. Thus, the left-hand side of *1 is
z=u. The right-hand side becomes

nil#nil — y=u) A (nil=nil — z=u)
y

By propositional calculus and equality, this is equivalent to z=u.

11

Case 2. x # nil.
By Axiom 5, the left-hand side of *1 is equivalent to y=u. By propositional

calculus and equality, the right-hand side also equivalent to y=u.
Q.E.D.

Theorem. (implies is implication)

(implies p q)# nil + (p#nil — q#nil)

Proof.

We will repeatedly replace the left-hand side of the above equivalence by equiva-

lent formulas until the result is identical to the right-hand side. By the definition
of implies (Axiom 15), the left-hand side above is equivalent to

(if p (if q t nil) t)#nil
which, by if cases, is equivalent to
(p#nil — (if q t nil)#nil) A (p=nil — t#nil).
By Axiom 1 and propositional calculus, the above is equivalent to
p#nil — (if g t nil)#nil.
Applying if cases again produces
p#nil — ((q#nil — t#nil) A (gq=nil — nil#nil))
which, by Axiom 1 and propositional calculus with equality, is equivalent to
(p#nil — q#nil).
Q.E.D.

This style of proof is so common that we frequently abbreviate it as follows.

(if p (if q t nil) t)#nil

—

(p#nil — (if q t nil)#nil) A (p=nil — t#nil).
—

p#nil — (if q t nil)#nil.

—

p#nil — ((q#nil — t#nil) A (g=nil — nil#nil))

“

(p#nil — q#nil)

We omit the explanatory justifications when they are sufficiently “obvious.”

Derived Rule of Inference. (Term based Modus Ponens)
The term g may be derived as a theorem if the term p is a theorem and the term
(implies p q) is a theorem. The proof is trivial, given implies is implies.

Theorem. (not case)

12

(not p) #nil < p=nil
Proof. By the definition of not (Axiom 12), the left-hand side is equivalent
to (if p nil t)#nil which, by if cases, is equivalent to

(p #nil — nil #nil) A (p=nil — t #nil).

But by Axiom 1 and propositional calculus with equality, this is equivalent to
p=nil. Q.E.D.

Theorem. (equal is equality)
(equal x y) #nil <& x=y
Proof. That the left-hand side implies the right is merely the contrapositive

of Axiom 3. That the right-hand side implies the left follows from Axioms 1
and 2 by equality reasoning. Q.E.D.

Analogous theorems hold for not, and, or and iff.

These theorems, together with our term-as-formula convention, justify our
naming these new functions the “propositional functions.” For example, by the
convention, when the term

(implies (and p (equal x y)) r)

is used as a formula, it is equivalent to

(implies (and p (equal x y)) r) # nil

which is equivalent, by the theorems just mentioned, to
((p # nil) A (x=y)) — r #nil

which, by our convention, may be abbreviated

p AN E=y)) =>r

Henceforth, we will reason about the propositional functions equal, if, not,
and, or, implies and iff with the same casual ease we use with propositional
calculus and equality.

7 Computing with Axioms and Substitutions

The proof of the following theorem shows how we can “compute” within the
logic. Computation is just the systematic use of function definition axioms and
the replacement of equals by equals.

Theorem.

(and t (or nil t)) = t.

13

Proof.

(and t (or nil t))

(and t (if nil t (if t t nil)))

(and t (if t t nil))

(and t t)

(if t (if t t nil) nil)

(if t t nil)

t
Q.E.D.

The basic idea is to focus repeatedly on the innermost function application
whose arguments are all constants, “expand” it by replacing it by the instanti-
ated “body” of its definition, and then “reduce” the more primitive expression
using the basic axioms and the definitions of its “subroutines.”

We often compress proofs as above into “one liners.” We might say “(and
t (or nil t)) = t, by computation (or evaluation).”

8 A Simple Recursive Definition
Consider the new axiom:

Defining Axiom
(true x) = (if (comsp x) (true (cdr x)) t)

This function always returns t. But let’s start our investigation of the func-
tion by proving a simple lemma about it.

Theorem.

(true (cons x y)) = (true y).

Proof.

(true (cons x y))
= {by the definition of true }
(if (consp (comns x y))
(true (cdr (coms x y)))
t)
= {by Axiom 6 and equality}

14

(if t

(true (cdr (coms x y)))

t)
= {by Axiom 5 and equality}
(true (cdr (coms x y)))
= {by Axiom 10 and equality}
(true y)
Q.E.D.

This style of proof essentially the same as “computation” but is sometimes
called symbolic computation or symbolic evaluation to acknowledge the presence
of variable symbols in the “data.”

Similarly, we can prove

Theorem.
(true (list x y z)) =t

Proof.

(true (list x y z))

= {by the 1list abbreviation}
(true (cons x (cons y (cons z nil))))

= {by symbolic computation}
(true (cons y (cons z nil)))

= {by symbolic computation}
(true (cons z nil))

= {by symbolic computation}
(true nil)

= {by computation}

t

Q.E.D.

We would generally just compress this to one line and say “(true (list x y
z)) =t by symbolic computation.”

Obviously, we can show by symbolic computation that true returns t on any
argument of the form (list z; ... z,). But how do we show that it returns t
on all 7 We might start the proof as follows:

Theorem.
(true x) = t

Proof.

Case 1. (consp x) = nil. (true x) = t by computation.

Case 2. (consp x) # nil. (true x) = (true (cdr x)), by symbolic com-
putation.

15

Case 2.1. (consp (cdr x)) = nil. (true (cdr x)) = t by computation.
Case 2.2. (consp (cdr x)) # nil. (true (cdr x)) = (true (cdr (cdr
x))) by symbolic computation.

Case 2.2.1. (consp (cdr (cdr x))) = nil. ...

But this “proof” will clearly require an infinite number of case splits and so
won’t succeed. Induction is required to prove this theorem and the failed proof
attempt clearly suggests why.

Induction is like case analysis but provides, in the “interesting” case (the
second case above), an additional hypothesis about (cdr x). And in the second
case above, we reduce our proof obligation from (true x) to (true (cdr x))
because true is defined recursively.

9 A Simple Inductive Proof

Theorem.
(true x) = t

Proof.

The proof is by induction on x, i.e., substitution o is { x <« (cdr x) }.

Base Case.

((consp x) = nil) — (true x) = t.

This is obvious by computation. Here is the “obvious” proof. Using the deduc-
tion law, we can assume the hypothesis and prove the conclusion under that
assumption. That is,

(consp x) = nil {Given as induction case analysis}

Then we work on the conclusion, by reducing the left-hand side to the right.

(true x) {left-hand side}
= {by symbolic computation}
t. {right-hand side}

Induction Step.
(((consp x) = t) A ((truep (cdr x)) = t)) — (truep x) = t
This too is obvious by symbolic computation. But here is the “obvious” proof.

(consp x) =t {Given as induction case analysis}
(true (cdr x)) =t {Given as induction hypothesis}

We now work on the concludion of the induction step:
(true x) {left-hand side}

= {by symbolic computation}
(true (cdr x))

= {by induction hypothesis}
t. {right-hand side}

16

Q.E.D.

Eventually, proofs such as this will be described in one line such as “the
proof is by induction on x.” But for the moment proofs should be written at
the level of detail shown above.

17

10 Problems

Not all of the “theorems” below are theorems! If you are asked to prove a non-
theorem, you should, at least, exhibit a counterexample, i.e., show values for
the variables that make the value of the formula nil. Often these non-theorems
will suggest theorems to you. That is, there is a germ of an interesting idea in
the non-theorem and it just needs to be said more precisely to be valid. When
you see the “interesting idea” in a non-theorem, re-state it as a theorem. Then
prove it!

You may find that the logic is too weak to allow you to prove certain things.
If so, propose improvements.

You may find that the logic is too strong — i.e., allows you to prove things
you should not be able to prove. If so, propose refinements.

Problem 1.1. Define the function app to concatenate two arbitrarily long lists,
ie., (app (list z1 ... z,) (1ist y1 ... yg)) is equal to (list z; ... =, y1
yk)-

Problem 1.2. Prove (app nil y) =y.

Problem 1.3. Prove (app (list a b ¢) (1list x y)) = (list a b ¢ x
y)-

Problem 1.4. Prove that app is associative.

Problem 1.5. State and prove that “nil is a right identity for app.”

Problem 1.6. Here is a definition.

Defining Axiom
(rev x)

(if (comsp x)
(app (rev (cdr x)) (list (car x)))
nil)

What is the value of (rev (list a b ¢ d))7
Problem 1.7 Prove (rev (rev x)) = x.
Problem 1.8. Here is a definition.

Defining Axiom
(revl x a)

(if_ (consp x)
(revl (cdr x) (comns (car x) a))

a)

What is the value of (revli (1ist a b ¢ d) nil)?

18

Problem 1.9. Prove (revl x nil) = (rev x).

Problem 1.10. Define (mem e x) to return t or nil according to whether e
is an element of the list x.

Problem 1.11. Prove (mem e (app a b)) = (or (mem e a) (mem e b)).

Problem 1.12. Define (subsetp x y) to return t or nil according to whether
every element of the list x is an element of the list y.

Problem 1.13. Prove that subsetp is reflexive.

Problem 1.14. Prove that subsetp is transitive.
Problem 1.15. Prove (subsetp a (app a b)).
Problem 1.16. Prove (subsetp b (app a b)).
Problem 1.17. Here is a definition.

Defining Axiom
(f x)

(if_ (consp x)
(app (f (car x)) (£ (cdr x)))
(1ist x))

Explain what this function computes. Think of (cons a b) as a binary tree
whose left branch is the subtree a and whose right branch is the subtree b.

Problem 1.18. What does this function do?

Defining Axiom
(mcf x a)

(if (comnsp x)
(mcf (car x)
(mcf (cdr x) a))
(cons x a))

Problem 1.19. Prove (mcf x nil) = (f x).

Problem 1.20. Define (occ e x) to return t or nil according to whether e
occurs as a tip of the binary tree x.

Problem 1.21. Prove (mem e (f x)) = (occ e x).

Problem 1.22. The length of x is 0 if = is not a cons and is one more than the
length of (cdr x), otherwise. Define (< x y) to return t or nil according to
whether the length of x is less than that of y.

Problem 1.23. Prove that < is transitive.

19

Problem 1.24. Define (del e x) to be the list obtained by deleting the first
occurrence of e (as an element) from the list x, or x if e does not occur as an
element of x.

Problem 1.25. Prove that (mem e x) implies that (< (del e x) x).

Problem 1.26. Define (perm a b) to be t or nil according to whether the
sequence of elements in list a is a permutation of the sequence of elements in
list b.

Problem 1.27. Prove (perm x x).
Problem 1.28. Prove that (perm x y) implies (perm y x).
Problem 1.29. Prove that perm is transitive.

Problem 1.30. We say a sequence is ordered if successive element, e; and e; 1
stand in the relation (< e; e;+1). Define the predicate ordered to recognize
ordered lists.

Problem 1.31. Define (sort a) so that it returns an ordered permutation of
a.

References

[1] J. R. Shoenfield. Mathematical Logic. Addison-Wesley, Reading, Ma.
1967.

20

