Formal Methods:
Practice and Pedagogy

J Strother Moore
Department of Computer Sciences
The University of Texas at Austin

presented at

IX Jornadas de Ensenanza Universitaria de la Informatica
Cadiz, 9-11 July, 2003

Formal Methods

Instead of debugging a program, one should prove
that it meets its specifications, and this proof
should be checkedy a computer program.

— John McCarthy, “A Basis for a Mathematical
Theory of Computation,” 1961

Boyer-Moore Project

McCarthy’s “Theory of Computation”
Edinburgh Pure Lisp Theorem Prover

A Computational Logic
NQTHM
ACL?2
|
I B N B B S R R
1960 1970 1980 1990 2000

Boyer -]

Moore -]

Kaufmann |

The Expressiveness Spectrum

Prop Calc Set Theory
-
ACL2
BDD PVS
ZChaff HOL
SMV Coq

COSPAN

A Classic Challenge Theorem

Theorem: List concatenation (“append”) is
associative.

(equal (append (append a b) c)
(append a (append b c)))

VaVvb
ppend(append(a,b),c)

ppend(a,append(b,c)).

Examples

(cons 1 (cons 2 (cons 3 nil)))
= (1 2 3)

N

VAN

2 N
3 nil

(append (1 2 3) (append ’(4 5 6) (7 8 9)))
= (1234567 829)

The Definition of append

(defun append (x y)
(if (endp x)

y
(cons (car x)

(append (cdr x) y))))

(endp x) _, (append x y) = ¥

—(endp x) — (append x y) =
(cons (car x)
(append (cdr x) y))

A Few Axioms
t # nil

x = nil — (if x y z) =
x # nil — (if x y z) =
(car (cons x y)) = x
(cdr (cons x y)) =y
(endp nil) =t

(endp (cons x y)) = nil

(equal (append (append a b) c)
(append a (append b c)))

(equal (append (append a b) c)
(append a (append b c)))

Proof: by induction on a.

10

(equal (append (append a b) c)
(append a (append b c)))

Proof: by induction on a.

Base Case: (endp a).
(equal (append (append a b) c)

(append a (append b c)))

11

(equal (append (append a b) c)
(append a (append b c)))

Proof: by induction on a.
Base Case: (endp a).

(equal (append b c)
(append a (append b c)))

12

(equal (append (append a b) c)
(append a (append b c)))

Proof: by induction on a.
Base Case: (endp a).

(equal (append b c)
(append a (append b c)))

13

(equal (append (append a b) c)
(append a (append b c)))

Proof: by induction on a.
Base Case: (endp a).

(equal (append b c)
(append b c))

14

(equal (append (append a b) c)
(append a (append b c)))

Proof: by induction on a.

Base Case: (endp a).
(equal (append b c)

(append b c))

15

(equal (append (append a b) c)
(append a (append b c)))

Proof: by induction on a.

Base Case: (endp a).
T

16

(equal (append (append a b) c)
(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (append (append a b) c)

(append a (append b c)))

17

(equal (append (append a b) c)
(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (append (cons (car a)
(append (cdr a) b)) c)
(append a (append b c)))

18

(equal (append (append a b) c)
(append a (append b c)))

Proof: by induction on a.
Induction Step: (not (endp a)).

(equal (append (cons (car a)
(append (cdr a) b)) c)

(append a (append b c)))

19

(equal (append (append a b) c)
(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (cons (car a)

(append (append (cdr a) b) c))

(append a (append b c)))

20

(equal (append (append a b) c)
(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (cons (car a)
(append (append (cdr a) b) c))
(append a (append b c)))

21

(equal (append (append a b) c)
(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (cons (car a)
(append (append (cdr a) b) c))
(cons (car a)

(append (cdr a) (append b c))))

22

(equal (append (append a b) c)
(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (cons (car a)

(append (append (cdr a) b) c))
(cons (car a)

(append (cdr a) (append b c))))

23

(equal (append (append a b) c)
(append a (append b c)))

Proof: by induction on a.
Induction Step: (not (endp a)).
(equal

(append (append (cdr a) b) c)

(append (cdr a) (append b c)))

24

(equal (append (append a b) c)
(append a (append b c)))

Proof: by induction on a.
Induction Step: (not (endp a)).

(equal (append (append (cdr a) b) c)
(append (cdr a) (append b c)))

25

(equal (append (append a b) c)
(append a (append b c)))

Proof: by induction on a.
Induction Step: (not (endp a)).

(equal (append (append (cdr a) b) c)
(append (cdr a) (append b c)))

26

(equal (append (append a b) c)
(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
T

27

(equal (append (append a b) c)
(append a (append b c)))

Proof: by induction on a.

Q.E.D.

28

(defun append (x y)
(if (endp x)

y
(cons (car x)

(append (cdr x) y))))

Induction and recursion are duals.

Theorem
(equal (append (append a b) c)
(append a (append b c)))

29

Demo 1

30

proposed definitions
conjectures and
advice

< rules

database

pr 0ofé

execution

— rules

environment

—_—=

definitions,

forms and theorems
and.
values advice

31

The Need for Formal Methods iIn
Practice

An elusive circuitry error is causing a chip used in
millions of computers to generate inaccurate results

— NY Times, “Circuit Flaw Causes Pentium Chip
to Miscalculate, Intel Admits,” Nov 11, 1994

Intel Corp. laSt week took a $475 million write-off

to cover costs associated with the divide bug in the
Pentium microprocessor’s floating-point unit — EE

Times, Jan 23, 1995

32

AMD K5 Algorithm FDIV(p, d, mode)

1. sdy = 1ookuP (@) lexact 17 8]
2. d, =d laway 17 32]
3. sddy = sdg X d, laway 17 32]

4. sd; = sdyg X comp(sdg,32) [trunc 17 32]
5. del = Sdl X dr [away 17 32]
6. sdy = sdy x comp(sdy,32) [trunc 17 32]

29. q3 = sdy X phs [trunc 17 24]

30. ggo = q2+ q3 [sticky 17 64]
3. 91 = qq2 + 1 [sticky 17 64]

32. fdiv = qq1 + q mode

33

Using the Reciprocal

36.
+ -17
+ 0034
+ -.000066
35833334
12 J430000000
432,
2
204
04
0408
0008
-.000792

-.000008

Reciprocal Calculation:
1/12 = 0.0833 =~ 0.083 = sd;

Quotient Digit Calculation:
0.083 x04B00 = 35.6900000 =~ 36.000000 = qq

0.083 x -2.0000 = -.1660000 ~ -.170000 = q;
0.083 X 0400 = .0033200 ~ .003400 = g2
0.083 x -.0008 = -.0000664 ~ -.000067 = g3

Summation of Quotient Digits:
go + q1 + g2 + g3 = 35.833333

34

Computing the Reciprocal

[[sdﬂ = sd(2-sd d)ﬂ

35

top 8 bits
of d

approx
inverse

top 8 bits
of d

approx
inverse

top 8 bits
of d

approx
inverse

top 8 bits
of d

approx
inverse

1.00000005
1.00000014
1.00000104
1.00000114
1.00001004
1.00001014
1.00001104
1.00001114
1.00010004
1.00010015
1.00010104

1.00101104
1.00101114
1.00110004
1.00110015
1.00110104
1.00110114
1.00111004
1.00111014
1.00111104
1.00111114

0.111111114
0.111111014
0.111110115
0.111110014
0.111101114
0.111101015
0.111101004
0.111100104
0.111100005
0.111011104
0.111011015

0.110110104
0.110110004
0.110101114
0.110101014
0.110101004
0.110100114
0.110100014
0.110100004
0.110011114
0.110011014

1.01000004
1.01000014
1.01000104
1.01000114
1.01001004
1.01001014
1.01001104
1.01001114
1.01010004
1.01010014
1.01010104

1.01101109
1.01101119
1.01110009
1.01110019
1.01110109
1.01110114
1.01111004
1.01111019
1.01111109
1.01111114

0.110011004
0.110010114
0.110010105
0.110010005
0.110001115
0.110001105
0.110001014
0.110001004
0.110000105
0.11000001+
0.110000004

0.101101004
0.101100115
0.101100104
0.101100014
0.101100004
0.101011115
0.101011105
0.101011015
0.101011004
0.101010115

-10000005
.10000014
.10000109
.10000114
.10001009
.10001014
.10001104
110001114
.10010004
.10010014
.10010109

P T = T e T o T S S G SOy S S S R

110101104
110101114
110110009
110110014
110110104
110110114
110111004
110111014
110111104
10111114

e N = e T = T e =

0.101010104
0.101010014
0.101010004
0.101010004
0.101001114
0.101001104
0.101001014
0.101001004
0.101000114
0.101000114
0.101000104

0.100110014
0.100110004
0.100101114
0.100101114
0.100101109
0.100101014
0.100101014
0.100101004
0.100100115
0.100100115

11000004
.11000014
.11000104
.11000114
.11001004
111001015
.11001109
11001114
.11010004
111010014
111010109

e o G S G S S e S

11101104
11101114
.11110004
111110014
11110104
11110114
11111004
11111014
11111109
11111114

e o S S G S S S

0.100100104
0.100100014
0.100100014
0.100100005
0.100011114
0.100011114
0.100011104
0.100011104
0.100011014
0.100011004
0.100011004

0.100001014
0.100001004
0.100001004
0.100000115
0.100000115
0.100000105
0.100000104
0.100000015
0.100000015
0.100000004

36

The Formal Model of the Code

(defun FDIV (p d mode)
(let*
(sd0 (eround (lookup d)
(dr (eround d
(sdd0 (eround (* sdO dr)
(sdl (eround (* sdO (comp sdd0 32))
(sddl (eround (* sdl dr)
(sd2 (eround (* sdl (comp sddl 32))

&ééQ (eround (+ g2 q3)
(qql (eround (+ qqg2 ql)
(fdiv (round (+ qql q0)

(or (first-error sdO0 dr sdd0 sdl sddl ...

fdiv)))

> (exact 17
’(away 17
’(away 17
>(trunc 17
’(away 17
>(trunc 17

>(sticky 17
’(sticky 17

mode)))
fdiv)

8)))
32)))
32)))
32)))
32)))
32)))

64)))
64)))

37

IEEE 754 Floating Point Standard

Elementary operations are to be performed as

though the infinitely precise (standard
mathematical) operation were performed and then
the result rounded to the indicated precision.

38

The K5 FDIV Theorem (1200 lemmas)

(defthm FDIV-divides

(implies (and (floating-point-numberp p 15 64)
(floating-point—-numberp d 15 64)

(not (equal d 0))
(rounding-modep mode))

(equal (FDIV p d mode)
(round (/ p d) mode))))

(by Moore, Lynch and Kaufmann, in 1995, before
the K5 was fabricated)

39

A Lemma from the FP Books

Lemma 7.3.2 (Sticky Plus)

Let x be a non-0 rational that fits in n > 0 bits, which is to say
trunc(z,n) = x. Let y be a rational whose exponent is at least two
smaller than that of z, 1 + e, < e;. Let k be a positive integer such that

n bits
A\
r Y

Cx

YYYYYYYYYYYyy -Yyyyyyyyyyyyyyy yyy - - .

Cy

\ - >

k ?)Ets

Then sticky(z + y,n) = sticky(x + sticky(y, k), n).

40

AMD Athlon 1997

All elementary floating-point operations,
FADD, FSUB, FMUL, FDIV, and FSQRT,
on the AMD Athlon were

e specified in ACL2 to be IEEE compliant,
e proved to meet their specifications, and

e the proofs were checked mechanically.

41

AMD Athlon FMUL

module FMUL; // sanitized from AMD Athlon(TM)

// by David Russinoff and Art Flatau
[/% %k ok ok sk sk sk ok ok ok sk ok K o ok ok ok o ok ok ok K ok ok kK 3 ok ok ok K ok ok sk 3k ok ok ok kK ok ok ok

// Declarations
/ /% 3k sk ok sk ok sk ok ok ok sk ok ok sk ok ok sk sk ok sk ok ok sk sk ok sk ok s ok sk sk ok ok ok sk ok sk sk ok sk ok sk ok ok ok ok

//Precision and rounding control:

‘define SNG 1°bO // single precision
‘define DBL 1°’b1l // double precision
‘define NRE 2’b00 // round to nearest
‘define NEG 2’b01 // round to minus infinity

‘define POS 2°b10 // round to plus infinity

42

//Parameters:

input x[79:0]; //first operand
input y[79:0]; //second operand
input rcl[1:0]; //rounding control
input pc; //precision control
output z[79:0]; //rounded product

//**

// First Cycle
[/% ok ok sk sk sk ok ok ok sk sk K o ok ok ok K ok ok ok K o ok ok kK ok ok ok 3 ok ok sk 3k ok ok ok 3 K ok ok ok

//0Operand fields:
sgnx = x[79]; sgny = yl[79];
expx[14:0] = x[78:64]; expyl[14:0] = y[78:64];

43

RTL ‘ I ‘- ‘proofs‘

\ RTL sim l

\
PN

fabrication

44

The Athlon FMUL Theorem

(let ((ideal (rnd (* (hat x) (hat y))
(mode rc)
(precision pc)))
(z (fmul x y rc pc)))
(implies (and (normal-encoding-p x (extfmt))
(normal-encoding-p y (extfmt))
(member rc (list 0 1 2 3))
(member pc (list 0 1))
(repp ideal (extfmt)))

(and (normal-encoding-p z (extfmt))
(= (hat z) ideal))))

45

The ACL2 proofs uncovered bugs that had
remained hidden through hundreds of millions of
test cases in RTL simulators.

The bugs were fixed and the new RTL verified
before the Athlon was fabricated.

This work was done primarily by David Russinoff
and Art Flatau, of AMD.

46

Other Work at AMD

AMD is using ACL2 to reason about
multi-processor implementations, at the algorithm
level and close to the RTL level.

They have proved a progress theorem about a
model hand-derived from the RTL.

They have proved correctness at the algorithm level
of a mechanism related to speculative reads.

New bugs (which were undetected after simulation)
have been found and fixed before tapeout.

47

Other Commercial Work
e FDIV on AMD K5 (Moore-Kaufmann-Lynch)

e AMD Athlon floating point (Russinoff-Flatau)

e Motorola 68020 and Berkeley C String Library
(Yu)

48

Motorola 68020 and the C String
Library

/* copy char from[] to to[] */

char *

strcpy(to, from)
register char *to, *from;

{ char *save = to;
for (; *to = *from; ++from, ++to);
return(save) ;

;

gcc -0 ...

49

0x2558
0x255c
0x2560
0x2564
0x2566
0x2568

<strcpy~>:
<strcpy+4>:
<strcpy+38>:
<strcpy+12>:
<strcpy+14>:
<strcpy+16>:

linkw fp,#0

moveal fp@(8),al
moveal fp@(12),al
movel a0O,dl

bra 0x256c <strcpy+20>
adqw #1,al

0x256a <strcpy+18>: adqw #1,a0
x256¢c <strcpy+20>: moveb al@,d0

50

Other Commercial Work

e Motorola 68020 and Berkeley C String Library
(Yu)

e Motorola CAP DSP (Brock)

51

Motorola CAP DSP

| ow_dat a

hi gh_dat a

addr 3t 00
pwr _on_r eset

PROGRAM ce_bar
r_wbar

SEQUENCER/ e

DEDCODER t abar
hr _bar

¢ 11
|

xslys

|
I
R N A T

aol/ sol

—— 1BIT
1 2x20BITS

|| eamrTs

serial _clk

serial _data

52

ROM containing
50 microcoded
DSP algorithms

Pipelined Sequential
microarchitecture microcode ISA

(If no hazards)

53

Other Commercial Work

e Motorola CAP DSP (Brock)
e IBM 4758 secure co-processor (Austel)

e Union Switch and Signal safety-critical checker
(Bertolli)

54

IBM PCI Cryptographic Coprocessor
Tup

security
rating - '

The security model was formalized in ACL2 and
certain properties were proved to obtain FIPS 140-1
Level Four certification.

55

Other Commercial Work

o -
* IBM 4758 secure co-processor (Austel)

e Union Switch and Signal safety-critical checker
(Bertolli)

e Rockwell Collins / alile Systems JEM1
(Hardin-Greve-Wilding)

e Java and the JVM (UT Austin with Sun and
others)

56

Java and the JVM

Tim Lindholm + Frank Yellin

The Java® Virtual
Machine Spedification
Second Edition

The Java Series "2 Mathary

@ Sun

; JVM in ACL2

(defun make-state (tt hp ct)
)

(defun step (th s)
)

(defun run (sched s)
(if (endp sched)
S
(run
(cdr sched)
(step (car sched) s))))

57

Demo 2

58

sighals—
step

Sstate -
[] - -

f

(defun run (signals state)
(if (endp signals)
state
(run (cdr signals)
(step (car signals) state))))

59

Our State: < tt, hp,ct >

thread

pcC

local bindings

operand stack

program

thread || heap class

table table
thread id
call stack
scheduled?
heap ref

60

(defun step (th s)
(if (equal (call-stack-status th s)
> SCHEDULED)
(do-inst (next-inst th s) th s)
s))

In our case, th is a thread identifier and is treated
as a ‘signal.”

61

Our State: < tt, hp,ct >

thread

pcC

local bindings

operand stack

program

thread || heap class

table table
thread id
call stack
scheduled?
heap ref

62

(defun do-inst (inst th s)
(case (op-code inst)

(AALOAD
(AASTORE
(ALOAD
(ALOAD_O
(ALOAD_1
(ALOAD_2
(ALOAD_3

cel))

(execute—-AALOAD inst th s))
(execute-AASTORE inst th s)
(execute—-ALOAD inst th s))
(execute-ALOAD_X inst th s
(execute-ALOAD_X inst th s
(execute-ALOAD_X inst th s
(execute-ALOAD_X inst th s

)

0))
1))
2))
3))

63

The JVM Spec from Sun

iload_0
Operation

Load int from local variable 0
Format

iload_0
Form

26 (Oxla)
Operand Stack

. = ..., value

Description
The |ocal variable at 0 must contain an int.

64

The value of the local variable at 0 is pushed
onto the operand stack.

Note: ILOAD o ... ILOAD_3 are 1-byte
specializations of the 3-byte ILOAD n.

65

(defun execute-ILOAD (inst th s)
; inst = (ILOAD n)
(let ((n (argl inst)))
(modfy th s
:pc (+ (inst-length inst)
(pc (top—frame th s)))
:stack (push (nth n
(locals (top-frame th s)))
(stack (top—-frame th s))))))

66

Some Java

class Demo {

public static int fact(int n){
if (n>0) {return n*fact(n-1);}
else return 1;

}

public static void main(String[] args){
int n = Integer.parselnt(args[0], 10);
System.out.println(fact(n));
return;

.

67

Java

javac

.class

jvm2acl2

i =

lisp | Iy

Theorems

“fact(5)=120"

.) ‘fact(n)=n!"

68

Demo 3

69

Performance

The ACL2 function run is an executable formal
model of the JVM.

On a 728 MHz processor, we get about 75K
bytecodes/second.

With optimization, we get about 3M bytecodes/sec.

70

% java Demo 20
-2102132736

ACL2 >(acl2-Demo 20)
-2102132736

ACL2 >(! 20)
2432902008176640000

ACL2 >(int-fix (! 20))
-2102132736

71

Conjecture

Our Java fact method computes the
twos-complement integer representely the
ow-order 32 bits of the actual factorial.

72

Demo 4

73

Pedagogy

What are the lessons here for undergraduate
Computer Science majors?

e Mechanized formal analysis of digital artifacts is
sometimes possible and effective.

e Formal specifications can serve as prototypes and
simulators.

e Formal specification of correctness often requires
definition of new concepts.

74

e Formal proof is facilitatedy structured code
development and compositional reasoning.

» There is an illuminating duality between induction
and recursion.

e Code analysis techniques are separable from
language semantic techniques. E.g., operational
semantics can be used directly to support
Floyd-Hoare style code proofs.

e Jool support for formal methods is available
across a wide spectrum of applications.

75

e Formal methods is not a panacea but just one of
the tools available to the system designer.

76

Undergraduate “Formal Methods”
Courses at UT Austin

e 313Kogic, Sets and Functions — introduction to
mathematical logic (year 1).

» 337 Theory in Programming Practic® — illustrative

examples of the use of formal analysis in Program
design (year 2).

* 336 Analysis of Programs — code analysis and
proof techniques (year 2).

77

e 341 Automata Theory — automata and formal
languages (year 3).

e 378 Computer-Aided Verification — model
CheCking (year 4)

® 378 Formal p1, el of the JVM — theorem proving
(year 4).

There are also a regular stream of topics classes on

security, distributed programming, and hardware
verification.

78

An Entertaining Puzzle: The Thread
Game

C
1

process A: process B:
repeat{ repeat{

C=C+C;} C=C+C;}
3 3

read C read C

read C ~tomic read C

add add

write C write C
I I

Theorem? For every positive integer n there is an interleaving of A and B

steps that produces C = n.

79

References
Computer-Aided Reasoning: An Approach,
Kaufmann, Manolios, Moore, Kluwer Academic

Publishers, 2000.

Computer-Aided Reasoning: ACL2 Case Studies,

Kaufmann, Manolios, Moore (eds.), Kluwer
Academic Publishers, 2000.

http://www.cs.utexas.edu/users/moore/acl2

80

