Inductive Assertions and
Operational Semantics

J Strother Moore

Department of Computer Sciences
The University of Texas at Austin

October 27, 2003

Operational SemanticS

— was first formalizeby McCarthy in the early
1960s.

Choose some suitably expressive mathematical logic.

A machine state is an object (e.g., n-tuple) in the
logic, which typically includes programs.

A program is an object (e.g., sequence of
instructions).

The language semantics is given by a function on
states (e.g., an interpreter).

This function is defined (axiomatized) within the
logic.

A program property is stated as a formula (e.g.,

“there exists a k such that running the interpreter k
steps starting from sy produces a state, s, with the

desired property”).
A program property may be a theorem and may be

proved directly in the logic.

To prove program properties mechanically one
needs a theorem prover for the logic.

The Inductive Assertion Method

— was first formalizeldy Floyd and Hoare in the
nid 1960s.

’rogram text is annotated with assertion formulas
vritten in a given logic.

These assertions are sometimes called the program
specification.

Semantics is given by a process that transforms an
annotated program into a set of proof obligations.

Proof obligations are formulas in the logic.

Often, these proof obligations are called verification
conditions and the process is called a verification
condition generator or vcg.

If the proof obligations are theorems, the program is
said to satisfy its specification.

The satisfies statement is not a formula in the logic.

To prove such program specifications mechanically
one needs both the verification condition generator
and a theorem prover for the logic.

Program logics were proposeldy Hoare, Dijkstra

ind others to unify this story, but practically
peaking the method is decomposed into two steps:

» crawl over the annotated program text to

generate formulas (possibly simplifying the
intermediate formulas as you go), and then

» submit the generated proof obligations to a
theorem prover.

Comparisons

An operational semantics Is

e generally executable (hence, dual use),

e more easily validated against implementations
(e.g., compilers, etc),

e permits logical (rather than meta-logical) analysis
of semantics, and thus

e enables verification of system hierarchies.

The inductive assertion method

e factors out static analysis so the user can foCUs
on algorithmic invariants, thus

e specific program proofs are often simpler.

The Topic of this Talk

It is possible to unify these two approaches entirely
within the operational semantics framework.

Given a formal operational semantics and a theorem
prover for the logic, one can apply the inductive
assertion method directly.

No extra-logical machinery (e.g., vcg, wp, etc) is
necessary.

Caveat

As far as | know, this observation has never been
made before, though it is not deep.

All previous formal work that connects vcg to

operational semantics did so by defining 3Dd then
formally proving the correctness of a vcg first!

The classic work on inductive assertions frequently
referred to operational semantics to establish the
correctness of the vcg method.

It 1s known that the two are mathematically
equivalent.

10

There 1s no theoretical contribution here.

The contribution is entirely a practical one.

11

Program =

labels

a

program Tt paths assertions

- P(s) pre—condition
R \ f(s)

_ .-t - R(s) loop invariant
......... a(s)

_________ h(s)

HALT \ Q(s) post—condition

12

Operational SemanticS

A state, s, Is typically an object in the logic that
iIncludes such components as:

® PC — a program counter

e program — a representation of the code

e memory — mappin8 from program variables to
values

13

Operational SemanticS — Continued

The state transition function, steP, Maps fr_om
states to states by “executing the instruction at
the current pc.

The semantics of the programming language is

given by a function runwhich steps an initial state
some number of times or through some given inPut.

run (k,s) =) S it k=0
run (k — 1, step (s)) otherwise

14

Conventions

Let sy be a state initialized for the program of
Interest:

e prog(syg) =7 A pc(sy) = «

Let s; denote run (k, sg).

15

Formally Stated Correctness Theorems

Total:
Jk : P (So) — Q(Sk)
This is sometimes stated without the quantifier as

P (s) — Q(run (clock (s0), 50)).

Partial:

P (sg) N pc(sk) =7 — Q(sk).

16

Partial Correctness of Program =

labels program 1t paths assertions
o - P(s) pre—condition
T f(s)
B Lt R(s) loop invariant
--------- a(s)
_________ h(s)
Y HALT \ Q(s) post—condition

17

Verification Conditions

labels program 1t paths assertions
a P(s) pre—condition
R f(s)
B Lt R(s) loop invariant
--------- a(s)
_________ h(s)
Y HALT \ Q(s) post—condition

VCL. P(s) = R(f (s)),
VC2. R(s) At — R (g (s)), and
VC3. R(s) A=t — Q (h(s)).

18

Question
Can you prove
Theorem:

P (so) A pe(sk) =7 — Q (k).

from:

VC1. P(s) = R(f (s)),
VC2. R(s) Nt — R (g (s)), and
VC3. R(s) A=t — Q (h(s))?

Theorem: P (sg) A pc(sy) =7 — Q (si)
Proof: Define

prog (s) = A P (s) if pc (s) =
Inv (s) = { Pro9(s) =m AR (s) if pe (s) =3

prog (s) =7 A Q (s) if pc (3) =

Inv (step (5)) otherwis€

Theorem: P (sg) A pc(sy) =7 — Q (si)
Proof: Define

[prog (s) =7 N P (s) if pc(s) =a
my(s) = P9 () =m A R(s) 'f pc(s) =0
prog (s) =7 A Q (s) c(s) =7

Tnv (steP (s)) ot erW|se

Objection: Is it consistent? Yes: Every tail-recursive

definition is witnessed by a total function.
(Manolios and Moore, 2000)

21

Theorem: P (sg) A pc(sy) =7 — Q (si)
Proof: Define

(s) =7 A P(s) if pc(s) = a
(s =) Pog(s) =mAR(s) ifpe(s) =0
prog (s) = A Q (s) if pc(s) =

InV (step (s)) otherwis€

It follows that

In® () _ 10 (step (8))-

We'll see the proof in a moment.

22

Theorem: P (sg) A pc(sy) =7 — Q (si)
Proof: Define

(s) =7 A P(s) if pc(s) =a
o) =] PRI =TARG) el =0
Tnv (steP (s)) ot erW|se

Inv (sg) — Inv (Sk)-

Lemma: Inv () —s Inv (step (5))
Proof: Immediate from def InV and VC1-VC3.

[prog (s) =7 A P (s) if pc(s) = a
o (s) =) Prog Es) = T A R(s) !f pc(s) =
i 2197:39(82})_(5)/\ v gt gr{fgl)se: !

VC1. P(s) — R(f (s)),

VC2. R(s) Nt — R (g (s)), and
VC3. R(s) A=t — Q (h(s))

L]

labels

program Tt

paths

a9(s)

f(s)

T —

assertions

P(s)

R(s)

h(s)

Q(s)

pre—condition

loop invariant

post—condition

25

A Demonstration

the ACL2 theorem prover

a pre-existing operational semantics for the JVM
a bytecode program to compute n/2

a direct proof of total correctness (with clock)

an inductive invariant proof of partial correctness
(without clock)

26

ACL2: A Computational Logic for
Applicative Common Lisp

database composed
of ‘*books’’ of definitions,
theorems, and advice

proposed definitions
conjectures and
advice
|
proofs
theorem QE D
prover —

Demo 1

27

Operational Semantics

(defun run (sChed s)
(if (endp sched)

S
(run (cdr sched)
(step (car sched) s))))

We have formalized the JVM in ACL2, i.e., defined
an executable JVM bytecode interpreter in Lisp. We
have tools to translate Java class files to ACL2
objects representing JVM states and we can run
them.

28

Our JVM State: < tt, hp, ct >

thread

Demo 2

pcC

local bindings

operand stack

program

thread || heap class

table table
thread id
call stack
scheduled?
heap ref

29

Code Proofs

Given an operational model, a common way to
brove code correct is to do direct total correctness
oroofs, using clock functions to characterize how
ong the program runs.

Demo 3

30

Partial Correctness

labels program 1t paths assertions
o P(s) pre—condition
R f(s)
B G S R(S) loop invariant
--------- a(s)
_________ h(s)
Y HALT \ Q(s) post—condition

VC1. P(s) = R(f (s)),
VC2. R(s)ANt— R(g(s)), and
VC3. R(s) A=t — @ (h(s)). Demo 4

31

How can we prove this from the V(Cs?

(defthm Partial-Correctness-of-Program-Pi

(implies

(and

(and

(equal n (n th s))
(in-pi th s)
(equal (pc (top-frame th s)) 0)
(<= 0 n)
(mono-threadedp th k)
(equal (pc (top-frame th (run k s))) 17))
(evenp n)
(equal (a th (run k s))
(/ n 2))))) Demo 5

32

Discussion
We did not write a VCG for the JVM.

We did not count instructions or define a “clock
function.”

We did not constrain the inputs so that the
program terminated.

We have also handled total correctness via the vcg
approach; a decreasing ordinal measure is provided
at each cut point. “Clock functions” can be
automaticaly generated and admitted from such
proofs.

33

Sandip Ray (forthcoming paper) shows how to mix
the “clock” approach with the inductive assertion
approach.

34

Other Examples

Nested loops are handled exactly as by standard
VCG methods.

public static int tfact(int n){ /* Factoriby repeated addition. * /
int i = 1; /* Verified using inductive assertions */
int b = 1; /* by Alan Turing, 1949. * /
while (i<=n){
int j = 1;
int a = b;
while (j < i) {
b = a+t+b;
jt++;
}s
1++;
}s

return b;

35

Recursive methods can be handled.

public static int fact(int n){
if (n>0)

{return nxfact(n-1);}
else return 1;

}

To handle recursive methods we

e modify run to terminate upon top-level return,
and

e add a standard invariant about the shape of the
JVM call stack.

36

Conclusion

If you have

e a theorem prover and

e a formal operational semantics,

you can prove formally stated partial program

correctness theorems using inductive assertions
without building or verifying 4 VCG.

37

)

Related Work

P. Y. Gloess, “Imperative Program Verification in
PVS,” Ecole Nationale Supérieure Electronique,
nformatique et Radiocommunications de Bordeaux,

1999.

P. Homeier and D. Martin, "A Mechanically
Verified Verification Condition Generator,” The
Computer Journal, 38(2), pp. 13141, July 1995.

Manolios and J Moore, “Partial Functions in
ACL2,” JAR 2003 (to appear).

38

