
Theorem Proving
for

Verification
the Early Days

J Strother Moore
Department of Computer Sciences

University of Texas at Austin

1

Prologue

When I look at the state of our science

today, I am amazed and proud of how far

we’ve come and what is routinely possible

today with mechanized verification.

But how did we get here?

2

& CLI

A personal perspective on the journey

Dickinson, Texas
−, 1966

’66−70

’70−73

Xerox PARC
& SRI
’74−81

University of
Edinburgh

MITUT Austin

3

Hope Park Square, Edinburgh, 1970

4

Hope Park Square, Edinburgh, 1970

Donald Michie
Bernard Meltzer
Bob Kowalski
Pat Hayes

Rod Burstall

5

Gordon Plotkin 1968

Donald Michie
Bernard Meltzer
Bob Kowalski
Pat Hayes

Hope Park Square, Edinburgh, 1970

Rod Burstall

6

Gordon Plotkin 1968

Donald Michie
Bernard Meltzer
Bob Kowalski
Pat Hayes

Hope Park Square, Edinburgh, 1970

Mike Gordon 1970
J Moore 1970

Rod Burstall

7

Alan Bundy 1971

Donald Michie
Bernard Meltzer
Bob Kowalski
Pat Hayes

Hope Park Square, Edinburgh, 1970

Gordon Plotkin 1968
Mike Gordon 1970
J Moore 1970

Bob Boyer 1971

Rod Burstall

8

Robin Milner 1973

Donald Michie
Bernard Meltzer
Bob Kowalski
Pat Hayes

Hope Park Square, Edinburgh, 1970

Gordon Plotkin 1968
Mike Gordon 1970
J Moore 1970

Bob Boyer 1971
Alan Bundy 1971

Rod Burstall

9

Our Computing Resources

64KB of RAM, paper tape input

10

11

Instead of debugging a program, one

should prove that it meets its

specifications, and this proof should be

checked by a computer program.

— John McCarthy, “A Basis for a

Mathematical Theory of Computation,”

1961

12

Theorem Proving in 1970

resolution: a complete, first-order, uniform

proof-procedure based on unification and

cut

13

x y zx y z{ } }{

14

v wux y z{ } }{

15

{ } }{

16

{x (F u (G v)),
 u (H z)}

Most General Unifier

{ } }{

17

Most General Unifier

{ } }{
{x (F u (G v)),
 u (H z)}

18

Most General Unifier

{ } }{
{x (F u (G v)),
 u (H z)}

19

{ }

20

{ }

Resolve

{ } }{

21

{ }

Resolve

{ } }{

22

Structure Sharing

clause: a record of the two parents and

binding environment

var
L/R

term
L/R

var
L/R

term
L/R

{ }

n

k

k n

Left Parent

Right Parent

Selected Lits

Most General Unifier

Memory

‘‘Frame’’
aka ‘‘clause’’

{ }

23

Structure Sharing

clauses are their own derivations

standardizing apart is implicit (free)

linear resolution can be done on a stack of

frames

resolvents cost fixed space plus a “binding

environment”
24

all terms are specific instances of original

ones

unifiers can be preprocessed

easy to attach pragmas (and other

metadata) to variables and clauses

25

Such observations encouraged in Edinburgh

the view that predicate calculus could be

viewed as a programming language

26

But Boyer and I were interested in

computational logic:

• a logic convenient for talking about

computation

• a logic designed for computationally

assisted proofs

27

So we invented a programming language

that was integrated into this resolution

framework

28

BAROQUE1

1Computational Logic: Structure Sharing and Proof of Program Properties, PhD Thesis, Moore, 1973.

“Baroque” was named after a bizarre chess-like game taught to us by Steve Crocker at the Firbush
Workshop 1972.

29

APP: (APP X Y) -> U

WHERE

(IF X

(CONS (CAR X)

(APP (CDR X) Y))

Y) -> U;

END;

30

We could prove such things as:

∃ X : (LENGTH (APP X NIL)) = 2

(APP NIL X) = X

(MEMBER E (APP (CONS E A) B))

31

But we could not prove

(APP (APP A B) C) = (APP A (APP B C))

(LENGTH (APP A B)) = (+ (LENGTH A) (LENGTH B))

32

To prove these theorems the underlying

mathematical logic must support

• recursion

• induction

• rewriting

Users lacking support for these techniques

often added (inconsistent) axioms

33

Verification work in the 1970s was focused

on programming language semantics

But to prove anything interesting about

the data manipulated by programs, you

need recursion, induction, and equality in

the logic

34

We therefore abandoned resolution and set

out to build a theorem prover specifically

for a computational logic

35

6.3 Design Philosophy of the Program2

The program was designed to behave properly on

simple functions. The overriding consideration was

that it should be automatically able to prove theorems

about simple LISP function[s] in the straightforward way

we prove them.

2Computational Logic: Structure Sharing and Proof of Program Properties, PhD Thesis, Moore, 1973.

36

A Few Axioms

t 6= nil

x = nil → (if x y z) = z

x 6= nil → (if x y z) = y

(car (cons x y)) = x

(cdr (cons x y)) = y

(endp nil) = t

(endp (cons x y)) = nil

37

(defun ap (x y)

(if (endp x)

y

(cons (car x)

(ap (cdr x) y))))

(ap ’(1 2 3) ’(4 5 6))

= ’(1 2 3 4 5 6)

38

Proper Treatement of Definitions, 1972

To specify programs one needs to extend

the logical theory by the introduction of

new functions and predicates

But this should be done via conservative

extension mechanisms, not the assumption

of arbitrary axioms

39

Symbolic Evaluation, 1972

(length (ap (cons e a) b))

The key “proof technique” would be

rewriting via symbolic evaluation

40

Symbolic Evaluation, 1972

(length (if (endp (cons e a))

b

(cons (car (cons e a))

(ap (cdr (cons e a)) b))))

41

Symbolic Evaluation, 1972

(length (if (endp (cons e a))

b

(cons (car (cons e a))

(ap (cdr (cons e a)) b))))

42

Symbolic Evaluation, 1972

(length (if NIL

b

(cons (car (cons e a))

(ap (cdr (cons e a)) b))))

43

Symbolic Evaluation, 1972

(length (if NIL

b

(cons (car (cons e a))

(ap (cdr (cons e a)) b))))

44

Symbolic Evaluation, 1972

(length (cons (car (cons e a))

(ap (cdr (cons e a)) b)))

45

Symbolic Evaluation, 1972

(length (cons (car (cons e a))

(ap (cdr (cons e a)) b)))

46

Symbolic Evaluation, 1972

(length (cons e

(ap (cdr (cons e a)) b)))

47

Symbolic Evaluation, 1972

(length (cons e

(ap (cdr (cons e a)) b)))

48

Symbolic Evaluation, 1972

(length (cons e

(ap a b)))

49

Symbolic Evaluation, 1972

(length (cons e

(ap a b)))

50

Symbolic Evaluation, 1972

(+ 1 (length (ap a b)))

51

Symbolic Evaluation, 1972

conditional rewriting (with recursive

definitions and axioms)

IF as the main propositional connective

typing as theorem proving mechanism

52

Controlling Recursive Functions, 1972

(ap (ap a b) c)

53

Controlling Recursive Functions, 1972

(ap (ap a b) c)

54

Controlling Recursive Functions, 1972

(ap (if (endp a)

b

(cons (car a)

(ap (cdr a) b)))

c)

If (cdr a) is already in the problem, keep

the expansion. Otherwise...

55

Recursion and Induction, 1972

(ap (ap a b) c)

56

Recursion and Induction, 1972

(ap (ap a b) c)

Consider induction on a by (cdr a)

The recursive definitions suggest plausible

induction schemes

57

(equal (ap (ap a b) c)

(ap a (ap b c)))

58

(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: induct on a by (cdr a).

59

(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: induct on a by (cdr a).

Base Case: (endp a).

(equal (ap (ap a b) c)

(ap a (ap b c)))

60

(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: induct on a by (cdr a).

Base Case: (endp a).

(equal (ap b c)

(ap a (ap b c)))

61

(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: induct on a by (cdr a).

Base Case: (endp a).

(equal (ap b c)

(ap a (ap b c)))

62

(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: induct on a by (cdr a).

Base Case: (endp a).

(equal (ap b c)

(ap b c))

63

(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: induct on a by (cdr a).

Base Case: (endp a).

(equal (ap b c)

(ap b c))

64

(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: induct on a by (cdr a).

Base Case: (endp a).

T

65

(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: induct on a by (cdr a).

Induction Step: (not (endp a)).

(equal (ap (ap a b) c)

(ap a (ap b c)))

66

(equal (ap (ap (cdr a) b) c) {Ind Hyp}

(ap (cdr a) (ap b c)))

Proof: induct on a by (cdr a).

Induction Step: (not (endp a)).

(equal (ap (ap a b) c)

(ap a (ap b c)))

67

(equal (ap (ap (cdr a) b) c) {Ind Hyp}

(ap (cdr a) (ap b c)))

Proof: induct on a by (cdr a).

Induction Step: (not (endp a)).

(equal (ap (cons (car a)

(ap (cdr a) b)) c)

(ap a (ap b c)))

68

(equal (ap (ap (cdr a) b) c) {Ind Hyp}

(ap (cdr a) (ap b c)))

Proof: induct on a by (cdr a).

Induction Step: (not (endp a)).

(equal (ap (cons (car a)

(ap (cdr a) b)) c)

(ap a (ap b c)))

69

(equal (ap (ap (cdr a) b) c) {Ind Hyp}

(ap (cdr a) (ap b c)))

Proof: induct on a by (cdr a).

Induction Step: (not (endp a)).

(equal (cons (car a)

(ap (ap (cdr a) b) c))

(ap a (ap b c)))

70

(equal (ap (ap (cdr a) b) c) {Ind Hyp}

(ap (cdr a) (ap b c)))

Proof: induct on a by (cdr a).

Induction Step: (not (endp a)).

(equal (cons (car a)

(ap (ap (cdr a) b) c))

(ap a (ap b c)))

71

(equal (ap (ap (cdr a) b) c) {Ind Hyp}

(ap (cdr a) (ap b c)))

Proof: induct on a by (cdr a).

Induction Step: (not (endp a)).

(equal (cons (car a)

(ap (ap (cdr a) b) c))

(cons (car a)

(ap (cdr a) (ap b c))))

72

(equal (ap (ap (cdr a) b) c) {Ind Hyp}

(ap (cdr a) (ap b c)))

Proof: induct on a by (cdr a).

Induction Step: (not (endp a)).

(equal (cons (car a)

(ap (ap (cdr a) b) c))

(cons (car a)

(ap (cdr a) (ap b c))))

73

(equal (ap (ap (cdr a) b) c) {Ind Hyp}

(ap (cdr a) (ap b c)))

Proof: induct on a by (cdr a).

Induction Step: (not (endp a)).

(equal

(ap (ap (cdr a) b) c)

(ap (cdr a) (ap b c)))

74

(equal (ap (ap (cdr a) b) c) {Ind Hyp}

(ap (cdr a) (ap b c)))

Proof: induct on a by (cdr a).

Induction Step: (not (endp a)).

(equal (ap (ap (cdr a) b) c)

(ap (cdr a) (ap b c)))

75

(equal (ap (ap (cdr a) b) c) {Ind Hyp}

(ap (cdr a) (ap b c)))

Proof: induct on a by (cdr a).

Induction Step: (not (endp a)).

(equal (ap (ap (cdr a) b) c)

(ap (cdr a) (ap b c)))

76

(equal (ap (ap (cdr a) b) c) {Ind Hyp}

(ap (cdr a) (ap b c)))

Proof: induct on a by (cdr a).

Induction Step: (not (endp a)).

T

77

(equal (ap (ap a b) c)

(ap a (ap b c)))

Proof: induct on a by (cdr a).

Q.E.D.

78

Heterogenous Proof Techniques, 1972

Irrelevance

Equality

Destructor Elimination

User

Generalization

Induction

Simplification

pool

Elimination of

formula

79

Lemmas, 1975

Allow the user to guide the proof by

suggesting lemmas to prove first

(interactive theorem proving above the

proof-checker level)

Mathematical facts are transformed into

rules affecting the operation of the system

and used automatically

80

key lemma

proof

axiom

theorem

rule of inference

main theorem

81

Q.E.D.

of ‘‘books’’ of definitions,
database composed

theorems, and advice

User

proofs

M
em

ory
G

ates
A

rith
V

ectors

prover

proposed definitions
conjectures and
advice

theorem

82

Q.E.D.

of ‘‘books’’ of definitions,
database composed

theorems, and advice

User

proofs

M
em

ory
G

ates
A

rith
V

ectors

prover

proposed definitions
conjectures and
advice

theorem

83

Q.E.D.

of ‘‘books’’ of definitions,
database composed

theorems, and advice

User

proofs

M
em

ory
G

ates
A

rith
V

ectors

prover

proposed definitions
conjectures and
advice

theorem

84

Q.E.D.

theorems, and advice
of ‘‘books’’ of definitions,
database composed

User

proofs

M
em

ory
G

ates
A

rith
V

ectors

prover

proposed definitions
conjectures and
advice

theorem

85

Efficient Representation of Constants

and Calculation, 1978

(CINT (PUSHF 15) ; SIFT Dispatcher

(PUSHM 1 13) ; BDX 930 Assembler

(PUSHM 0 0)

(LOAD 0 ACLK)

SCHG (TRA 1 15)

(LDM 15 15 STACK)

(PUSHM 0 1)

(JSS* ASCHE)

(TRA 15 12)

(POPM 0 0)

(POPM 1 13)

(POPF 15)

(CONT ES)

(RET 0))

86

Operational Semantics, 1978
To capture the semantics of the instruction set, we encoded

in our logic a recursive function that describes the state

changes induced by each instruction. Thirty pages are

required . . . (in terms of certain still undefined bit-level

functions such as the 8-bit signed addition function). We

encountered difficulty getting the mechanical theorem

prover to process such a large definition. However, the

system was improved and the function was eventually

admitted. We still anticipate great difficulty proving

anything about the function because of its large size.

– On why it is impossible to prove that the BDX90 dispatcher implements

a time-sharing system, Boyer and Moore, 1983

87

Integrated Decision Procedures, 1978

Decision procedures should be integrated

into the rewriter

• IF-based normalization as a decision

procedure for propositional calculus, 1972

• typing, 1973–. . .

• equality, 1978

• linear arithmetic, 1978–. . .

88

Irrelevance

User

Equality

Destructor Elimination

Generalization

Induction

Elimination of

congruence−based rewriting

evaluation
propositional calculus
BDDs
equality
uninterpreted function symbols
rational linear arithmetic
rewrite rules
recursive definitions
back− and forward−chaining
metafunctions

Simplification

89

Meta-Theoretic Extensibility, 1979

Theorem provers are written in Lisp

The logic is Lisp

Allow the user to code, verify, and use new

techniques

90

Kaufmann

1960 1970 1980 1990 2000

McCarthy’s ‘‘Theory of Computation’’

ACL2

Edinburgh Pure Lisp Theorem Prover

A Computational Logic

NQTHM

Boyer

Moore

91

Theorems Proved

applications

1960 1970 1980 1990 2000

simple list processing

academic math and cs

commercial

92

1980s Academic Math

• undecidability of the halting problem

(18 lemmas)

• invertibility of RSA encryption

(172 lemmas)

93

• Gauss’ law of quadratic reciprocity

[Russinoff]

(348 lemmas)

• Gödel’s First Incompleteness Theorem

[Shankar]

(1741 lemmas)

94

1980s Academic CS

• The CLInc Verified Stack:

– microprocessor: gates to machine code

[Hunt]

– assembler-linker-loader

(3326 lemmas)

– compilers [Young, Flatau]

– operating system [Bevier]

95

00100100000011

Procedure Mult(var

loop
 if K le 0

var K: int:= 0;

0111010100011

0011101001001010
0101110111110011

0111010001001111

fabricated

by mechanically

checked proofs

formal models related

FM9001 device

INPUTS A,B,C;
OUTPUTS SUM, CARR
LEVEL FUNCTION;
DEFINE
T0(SUM1,CARRY1)=H
 (SUM,CARRY2) =

die plot produced by LSI Logic, Inc, from
verified NDL via conventional CAD tools

Micro-Gypsy

Piton
assembly language

FM9001
machine code

Formal NDL
netlist

96

1990s

• FDIV on AMD K5

[Moore-Kaufmann-Lynch]

• AMD Athlon floating point

[Russinoff-Flatau]

• AMD process: all FPUs are to be

mechanically verified

97

1990s

• Motorola 68020 and Berkeley C String

Library [Yu]

• Motorola CAP DSP [Brock-Hunt]

• Rockwell Collins microarchitectural

equivalence [Hardin-Greve-Wilding]

98

2000s

• IBM Power4 divide and square root

[Sawada]

• Rockwell Collins AAMP7 Separation

Kernel Microcode [Greve, et al]

• Rockwell Collins/Green Hills OS Kernel

[Greve, et al]

99

• Sun Microsystems JVM [Liu]

• Centaur Technology (VIA) Media Unit

[Hunt, Swords]

• Milawa: a Verified Stack of Theorem

Provers [Davis]

100

Milawa Stack
Level

 2 Propositional reasoning

 3 Rules about primitive functions

 4 Miscellaneous ground work

 7 Case splitting

 9 Evaluation and unconditional rewriting

10 Conditional rewriting

11 Induction and other tactics

 5 Assumptions and clauses

 6 Factoring, splitting help

 8 Audit trails (in prep for rewriting)

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

	 	 	 	 		 	 	 	 		 	 	 	 		 	 	 	 		 	 	 	 	

� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �

 1 Primitive proof checker

101

Proof Sizes (Gigabytes∗)

Level Defs Thms Max Sz Sum Sz

1 201 2,015 2.8 51.4

2 87 514 2.7 72.3

3 230 815 4.9 63.9

4 168 991 9.2 152.9

5 192 1,071 3.7 74.6

6 55 402 6.0 26.2

7 83 749 3.5 7.5

8 184 1,059 5.6 54.4

9 427 2,475 1.5 12.3

10 82 616 1,934.3 2,713.9

11 233 1,157 0.2 21.4

∗ 1 cons = 8 bytes

102

103

Editing

<one character buffer>

FUNCTION RESOLVE CL1 I CL
VARS LEFTTERM LEFTI RIGHTTERM RIGHTI;
GETLIT(I,CL1) −> LEFTTERM −> LEFTI;
GETLIT(J,CL2) −> RIGHTTERM −> RIGHTI;
CONSCLAUSE(CL1,I,CL2,J,
 LITCNT(CL1)+LITCNT(CL2)−2,
 MAXINDEX(CL1)+MAXINDEX(CL2),
 NIL) −> BNDEV;
IF HD(LEFTTERM) /= HD(RIGHTTERM) AND
 UNIFY(HD(TL(LEFTERM)),LEFTI,
 HD(TL(RIGHTTERM),RIGHTI+MAXINDEX(CL1))
 THEN BNDEV; TRUE;
 ELSE FALSE; CLOSE;
END;

Input File Output File

FUNCTION ...

2

<Command>

104

Editing

Search: 2

FUNCTION RESOLVE CL1 I CL
VARS LEFTTERM LEFTI RIGHTTERM RIGHTI;
GETLIT(I,CL1) −> LEFTTERM −> LEFTI;
GETLIT(J,CL2) −> RIGHTTERM −> RIGHTI;
CONSCLAUSE(CL1,I,CL2,J,
 LITCNT(CL1)+LITCNT(CL2)−2,
 MAXINDEX(CL1)+MAXINDEX(CL2),
 NIL) −> BNDEV;
IF HD(LEFTTERM) /= HD(RIGHTTERM) AND
 UNIFY(HD(TL(LEFTERM)),LEFTI,
 HD(TL(RIGHTTERM),RIGHTI+MAXINDEX(CL1))
 THEN BNDEV; TRUE;
 ELSE FALSE; CLOSE;
END;

2

Input File Output File

FUNCTION RESOLVE CL1 I CL

FUNCTION ...

2

105

Editing

Insert 2 J;

FUNCTION RESOLVE CL1 I CL
VARS LEFTTERM LEFTI RIGHTTERM RIGHTI;
GETLIT(I,CL1) −> LEFTTERM −> LEFTI;
GETLIT(J,CL2) −> RIGHTTERM −> RIGHTI;
CONSCLAUSE(CL1,I,CL2,J,
 LITCNT(CL1)+LITCNT(CL2)−2,
 MAXINDEX(CL1)+MAXINDEX(CL2),
 NIL) −> BNDEV;
IF HD(LEFTTERM) /= HD(RIGHTTERM) AND
 UNIFY(HD(TL(LEFTERM)),LEFTI,
 HD(TL(RIGHTTERM),RIGHTI+MAXINDEX(CL1))
 THEN BNDEV; TRUE;
 ELSE FALSE; CLOSE;
END;

Input File Output File

FUNCTION RESOLVE CL1 I CL

FUNCTION ...

2

106

Editing

Insert 2 J;

FUNCTION RESOLVE CL1 I CL
VARS LEFTTERM LEFTI RIGHTTERM RIGHTI;
GETLIT(I,CL1) −> LEFTTERM −> LEFTI;
GETLIT(J,CL2) −> RIGHTTERM −> RIGHTI;
CONSCLAUSE(CL1,I,CL2,J,
 LITCNT(CL1)+LITCNT(CL2)−2,
 MAXINDEX(CL1)+MAXINDEX(CL2),
 NIL) −> BNDEV;
IF HD(LEFTTERM) /= HD(RIGHTTERM) AND
 UNIFY(HD(TL(LEFTERM)),LEFTI,
 HD(TL(RIGHTTERM),RIGHTI+MAXINDEX(CL1))
 THEN BNDEV; TRUE;
 ELSE FALSE; CLOSE;
END;

Input File Output File

FUNCTION RESOLVE CL1 I CL2 J;

FUNCTION ...

2

107

Editing

Search FUNCTION

FUNCTION RESOLVE CL1 I CL
VARS LEFTTERM LEFTI RIGHTTERM RIGHTI;
GETLIT(I,CL1) −> LEFTTERM −> LEFTI;
GETLIT(J,CL2) −> RIGHTTERM −> RIGHTI;
CONSCLAUSE(CL1,I,CL2,J,
 LITCNT(CL1)+LITCNT(CL2)−2,
 MAXINDEX(CL1)+MAXINDEX(CL2),
 NIL) −> BNDEV;
IF HD(LEFTTERM) /= HD(RIGHTTERM) AND
 UNIFY(HD(TL(LEFTERM)),LEFTI,
 HD(TL(RIGHTTERM),RIGHTI+MAXINDEX(CL1))
 THEN BNDEV; TRUE;
 ELSE FALSE; CLOSE;
END;

Input File Output File

FUNCTION RESOLVE CL1 I CL2 J;

FUNCTION ...

2

108

Editing

N

FUNCTION RESOLVE CL1 I CL
VARS LEFTTERM LEFTI RIGHTTERM RIGHTI;
GETLIT(I,CL1) −> LEFTTERM −> LEFTI;
GETLIT(J,CL2) −> RIGHTTERM −> RIGHTI;
CONSCLAUSE(CL1,I,CL2,J,
 LITCNT(CL1)+LITCNT(CL2)−2,
 MAXINDEX(CL1)+MAXINDEX(CL2),
 NIL) −> BNDEV;
IF HD(LEFTTERM) /= HD(RIGHTTERM) AND
 UNIFY(HD(TL(LEFTERM)),LEFTI,
 HD(TL(RIGHTTERM),RIGHTI+MAXINDEX(CL1))
 THEN BNDEV; TRUE;
 ELSE FALSE; CLOSE;
END;

Input File Output File

FUNCTION RESOLVE CL1 I CL2 J;

FUNCTION ...

2

Search FUNCTION

VARS LEFTTERM LEFTI RIGHTTERM RIGHTI;
GETLIT(I,CL1) −> LEFTTERM −> LEFTI;
GETLIT(J,CL2) −> RIGHTTERM −> RIGHTI;
CONSCLAUSE(CL1,I,CL2,J,
 LITCNT(CL1)+LITCNT(CL2)−2,
 MAXINDEX(CL1)+MAXINDEX(CL2),
 NIL) −> BNDEV;
IF HD(LEFTTERM) /= HD(RIGHTTERM) AND
 UNIFY(HD(TL(LEFTERM)),LEFTI,
 HD(TL(RIGHTTERM),RIGHTI+MAXINDEX(CL1))
 THEN BNDEV; TRUE;
 ELSE FALSE; CLOSE;
E

109

Editing

N

FUNCTION RESOLVE CL1 I CL
VARS LEFTTERM LEFTI RIGHTTERM RIGHTI;
GETLIT(I,CL1) −> LEFTTERM −> LEFTI;
GETLIT(J,CL2) −> RIGHTTERM −> RIGHTI;
CONSCLAUSE(CL1,I,CL2,J,
 LITCNT(CL1)+LITCNT(CL2)−2,
 MAXINDEX(CL1)+MAXINDEX(CL2),
 NIL) −> BNDEV;
IF HD(LEFTTERM) /= HD(RIGHTTERM) AND
 UNIFY(HD(TL(LEFTERM)),LEFTI,
 HD(TL(RIGHTTERM),RIGHTI+MAXINDEX(CL1))
 THEN BNDEV; TRUE;
 ELSE FALSE; CLOSE;
END;

Input File Output File

FUNCTION RESOLVE CL1 I CL2 J;

FUNCTION ...

2

Search FUNCTION

VARS LEFTTERM LEFTI RIGHTTERM RIGHTI;
GETLIT(I,CL1) −> LEFTTERM −> LEFTI;
GETLIT(J,CL2) −> RIGHTTERM −> RIGHTI;
CONSCLAUSE(CL1,I,CL2,J,
 LITCNT(CL1)+LITCNT(CL2)−2,
 MAXINDEX(CL1)+MAXINDEX(CL2),
 NIL) −> BNDEV;
IF HD(LEFTTERM) /= HD(RIGHTTERM) AND
 UNIFY(HD(TL(LEFTERM)),LEFTI,
 HD(TL(RIGHTTERM),RIGHTI+MAXINDEX(CL1))
 THEN BNDEV; TRUE;
 ELSE FALSE; CLOSE;
E

110

A Better Search Facility

Clearly, we needed a better string searching

algorithm, but that is another story...

Of interest now is a better text editor!

How can we represent the document with a

small memory footprint?

111

A Better Search Facility

Clearly, we needed a better string searching

algorithm, but that is another story...

Of interest now is a better text editor!

How can we represent the document with a

small memory footprint?

structure sharing!

112

metadata

1

1

2

FUNCTION RESOLVE CL1 I CL2
VARS LEFTTERM LEFTI RIGHTTERM RIGHTI;
GETLIT(I,CL1) −> LEFTTERM −> LEFTI;
GETLIT(J,CL2) −> RIGHTTERM −> RIGHTI;
CONSCLAUSE(CL1,I,CL2,J,
 LITCNT(CL1)+LITCNT(CL2)−2,
 MAXINDEX(CL1)+MAXINDEX(CL2),
 NIL) −> BNDEV;
IF HD(LEFTTERM) /= HD(RIGHTTERM) AND
 UNIFY(HD(TL(LEFTERM)),LEFTI,
 HD(TL(RIGHTTERM),RIGHTI+MAXINDEX(CL1))
 THEN BNDEV; TRUE;

END;
 ELSE FALSE; CLOSE;

FUNCTION ...

2

Piece Table

NIL

113

metadata

1

1

2

FUNCTION RESOLVE CL1 I CL2
VARS LEFTTERM LEFTI RIGHTTERM RIGHTI;
GETLIT(I,CL1) −> LEFTTERM −> LEFTI;
GETLIT(J,CL2) −> RIGHTTERM −> RIGHTI;
CONSCLAUSE(CL1,I,CL2,J,
 LITCNT(CL1)+LITCNT(CL2)−2,
 MAXINDEX(CL1)+MAXINDEX(CL2),
 NIL) −> BNDEV;
IF HD(LEFTTERM) /= HD(RIGHTTERM) AND
 UNIFY(HD(TL(LEFTERM)),LEFTI,
 HD(TL(RIGHTTERM),RIGHTI+MAXINDEX(CL1))
 THEN BNDEV; TRUE;

END;
 ELSE FALSE; CLOSE;

FUNCTION ...

3

2

" J; @This function produces
the resolvent of CL1 (lit I)
with CL2 (lit J)@"

4

5

Piece Table

NIL

114

Piece Table1

1

2

2

FUNCTION RESOLVE CL1 I CL2
VARS LEFTTERM LEFTI RIGHTTERM RIGHTI;
GETLIT(I,CL1) −> LEFTTERM −> LEFTI;
GETLIT(J,CL2) −> RIGHTTERM −> RIGHTI;
CONSCLAUSE(CL1,I,CL2,J,
 LITCNT(CL1)+LITCNT(CL2)−2,
 MAXINDEX(CL1)+MAXINDEX(CL2),
 NIL) −> BNDEV;
IF HD(LEFTTERM) /= HD(RIGHTTERM) AND
 UNIFY(HD(TL(LEFTERM)),LEFTI,
 HD(TL(RIGHTTERM),RIGHTI+MAXINDEX(CL1))
 THEN BNDEV; TRUE;

END;
 ELSE FALSE; CLOSE;

FUNCTION ...

3

3

4

3

5

" J; @This function produces
the resolvent of CL1 (lit I)
with CL2 (lit J)@"

4

5

115

The Piece Table

small memory footprint

easy undoing

provision for metadata

116

The Piece Table

When I moved to Xerox PARC, I explained

the Piece Table to Charles Simonyi and

Butler Lampson

Lampson had independently discovered it

They subsequently used it in the Bravo

text editor
117

It migrated to Microsoft Word

It is still the representation used in Word

118

Lessons

• heuristics and some user guidance can

put intractable problems within reach

• apply your methods to problems at the

largest scale you can – and absorb the

lessons

119

• understand the value of demonstrating

what is possible – but don’t think your

work ends there (it has taken decades to

get into the tool flow of microprocessor

design)

• believe in your dreams – and act on them

120

Acknowledgements

This personal retrospective has ingored the

many other theorem prover communities

where great work is also being done

The “Boyer-Moore community” has grown

too numerous to list all the key players, but

I’d like to especially thank Bob Boyer,

Matt Kaufmann, and Warren Hunt.

121

References
Computer-Aided Reasoning: An Approach,

Kaufmann, Manolios, Moore, Kluwer Academic

Publishers, 2000.

Computer-Aided Reasoning: ACL2 Case Studies,

Kaufmann, Manolios, Moore (eds.), Kluwer

Academic Publishers, 2000.

http://www.cs.utexas.edu/users/moore/acl2

122

