Finite Set Theory in ACL2

J Strother Moore

Department of Computer Sciences

University of Texas at Austin
Office: TAY 4.140A
Email: moore@cs.utexas.edu

http:/www.cs.utexas.edu/users/moore

A Computational Logic

Applicative Common Lisp

Abstract of this Talk

e Prelude: The ACL2 baCKground

e Sets in Lisp, e.g., to use to state code
properties, Invariants, etc.

e Some of the Issues in adding sets to ACL2.

e Some of the Theorems in our finite set the®ry
package.

e An Application: Disk Paxos

A Computational Logic

Applicative Common Lisp

An Example of Qur Finite Set Theory

(implies
(and (mem (apply phase p) (brace 1 2))
(= disk’
(except disk d p (apply @ibck p)))
(= diskswritten’

(except diskswritten p
(union (apply diskswritten p)
(brace d))))
(invariant phase p disk ...))
(invariant phase p disk’ ...))

A Computational Logic

Applicative Common Lisp

Lisp’s “Set” Functions

e member and subsetp ignore order and
duplications.

e (member e x) checks that e is equal to some
element of x.

e (subsetp x y) checks that every element of

X IS a member of y.

e equal Is primitive.

A Computational Logic

Applicative Common Lisp

The Inadequacy of Lisp’s “Set” Functions

(member (1 2) ’((2 1))) — false€

(subsetp ’((1 2)) ’((2 1))) = false

But
{1, 2} € {{2, 1}}

U, 2 € 12 11

A Computational Logic

Applicative Common Lisp

We want

e (set-member e x) to check that e is
set-€gual to some element of x.

e (set-subsetp x y) to check that every
element of x is a set-member of y.

e (set-equal x y) to mean that x Is a
set-subsetp of y and vice versa.

A Computational Logic

Applicative Common Lisp

Some lIssues

Mutual Recursion

® (set-member e x) checks that e is
to some element of x.

e (set-subsetp x y) checks that every
element of x is a of y.

e (set-equal x y) means that x is a
of y and vice versa.

A Computational Logic

Applicative Common Lisp

ACL2 can handle mutual recursion, but offers
little @UTOmatic support.

Moreover, if £ and g are mutually-recursive,
properties of £ must typically be strengthened to
include properties of g in order to prove them by

mathematical induction (whether using ACL2 or
not).

A Computational Logic

Applicative Common Lisp

We explored several approache> and eventually
decided to avoid mytual recursion.

We defined (canonicalize x) to canonicalize
a list representing a set.

(defun set-equal (x y)
(equal (canonicalize x)
(canonicalize y)))

set-member and set-subsetp are defined by
simple recursion.

A Computational Logic

Applicative Common Lisp

IsSué: Equality v. Set-equality

The ACL2 prover is based on rewriting e o
replacement of equals by equals.

How do we make it replace set-equals by
set-equals?

A Computational Logic

Applicative Common Lisp

Suppose ACL2 has proved that set-equal is an
equivalence relation.

Suppose ACL2 has proved

Theorem :
(set-equal (set-union a b)
(s€t-union b a))

Remember: (set-union a b) may not be
equal to (set-union b a).

A Computational Logic

Applicative Common Lisp

TheOrem .
(set-equal (set-union a b)
(s€t-union b a))

How can we get ACL2 to rewrite

(gs€t-member e (set-union « 3))

to

(gs€t-member e (set-union 3 a))

e.g., to use the Theorem above as a rewrite rule
even though it does not express an equality?

A Computational Logic

Applicative Common Lisp

Prove the congruence lemma:
(implies (set-equal x y)

(iff (set—member e x)
(se€t-member e y)))

ACL2 supports congruenced-based rewriting.

When the ACL2 rewriter is invoked, it is told to
maintain a given sense of equivalence.

A Computational Logic

Applicative Common Lisp

The congruence lemma:

(implies ()
(iff (set-member e)
(set-member e)))

gives rise to this CONgruence table

(set-member u)

u equal equal
equal

A Computational Logic

Applicative Common Lisp

TheOrem .
(set-equal (set-union a b)
(s€t-union b a))

Rewrite
(set-member e)
/]\
[iff]
/]\
[]

(s€t-union a b) — (get-union b a)

A Computational Logic

Applicative Common Lisp

Issue: The Ur-Elements

Is everything a set?

E.g.,2={0, 1}

or do we wish to allow ACL2 objects in sets,

e.g., {1, "Hello world", ILOAD, (1 2)}7

A Computational Logic

Applicative Common Lisp

We allow arbitrary ACL2 objects to be in sets.

To “embed” our arithmetic into sets greatly
diminished the power of the system.

The system spent most of its time converting
from the set representation of numbers to the
ACL2 representation.

Many numbers, e.g., 2147483648, were
impossible to represent.

A Computational Logic

Applicative Common Lisp

In our representation, lists are treated as sets by
the set theory functions.

{1, "Hello world", ILOAD, (1 2)}

Is representeldy the list

(1 "Hello world" ILOAD (:UR-CONS (1 2)))

That constant Is set-equal to

("Hello world" 1 ILOAD ILOAD (:UR-CONS (1 2)))

A Computational Logic

Applicative Common Lisp

Some Other Issues

e names of the set-theory functions ()
e set builder notation ()

e nondeterministic choice (

See the paper.

A Computational Logic

Applicative Common Lisp

Some Theorems (in the "S" package)

(= (union a bfunion b a))
(= (union (union a b) cfunion a (union b c)))
(union a nil) a)
- (card a) (card (union a b)))
‘f (mem (choose a) a) (not (emptyp a)))

(domain (union f g))
(union (domain f) (domain g)))

A Computational Logic

Applicative Common Lisp

Application

Carlos Pacheco (recently graduated UT
undergraduate) has implemented a translator
from (the non-temporal logic fragment of) TLA

to ACL2.

He used ACL2 to prove two of the six invariants
in the Lamport-Gafni proof of the correctness of
the Disk Paxos algorithm.

See his Honors Thesis http: //www.cs.utexas.-
edu/ftp/pub/techreports/tr01-16.ps.Z.

A Computatio g

Applicative Common Lisp

