Rewriting for Symbolic Execution of

State Machine Models

J Strother Moore

Department of Computer Sciences

University of Texas at Austin
Office: TAY 4.140A
Email: moore@cs.utexas.edu

http:/www.cs.utexas.edu/users/moore

A Computational Logic

Applicative Common Lisp

Simulation Models
s.a = new-a(x,s);
s.b = new-b(x,s);
s.c = new-c(x,s);
return s;

may be formalized in ACL2 (i.e., Lisp) as

(let ((s (update-a (new-a x s) s)))
(let ((s (update-b (new-b x s) s)))
(let ((s (update-c (new-c x s) s)))

ooooooooooooooooooo

Applicative Common Lisp

(let ((s (update-a (new-a x s) s)))
(let ((s (update-b (new-b x s) s)))
(let ((s (update-c (new-c x s) s)))
s)))

Applicative semantics allows theO'€m
proving about the model.

The SINgle-threaded use of s allows
destructive modification at runtime so the

formal model can be executed efficiently.

A Computational Logic

Applicative Common Lisp

Let Is just lambda application.

(let ((s (update-a (new-a x s) s)))

(let ((s) 8)))
(let ((s (update-c (new-c x s) s)))
s))) = {by abbreviation conventions}

(lambda (s x)
(lambda (= x)
(lambda (s) s)
(update-c (new-c x s) s)))
s) s) X))
(update a (new-a x s) s) x)

ooooooooooooooooo

Applicative Common Lisp

(let ((s (update-a (new-a x s) s)))
(let ((s) 8)))
(let ((s (update-c (new-c x s) s)))
s))) = {by Beta reduction}

(update-c
(new-c x
(update-a (new-a x s) s)
(update-a (new-a x s) s)))

(update-a (new-a x s) s)
(update-a (new-a x s) s)))

A Computational Logic

Applicative Common Lisp

(defun phasel (s)

(let ((s (update-a
(if (vO 1 (a 8))

(vi 1 (a s))
(v2 1 (a s)))

s)))

(let ((s (update-a
(if (vO 2 (a s))

(vi 2 (a s))
(v2 2 (a s)))

s)))
. S...)))

A Computational Logic

Applicative Common Lisp

(defun step (s)
(let ((s (phasel s)))
(let ((s (phase2 s)))

S...)))

A Computational Logic

Applicative Common Lisp

It Is not unusual for commercial simulation
models of microprocessors to have very
many assignment statements, 1.e., very deep
lambda-nesting.

At Rockwell-Collins Avionics, some of the
models we look at have 1lambda nesting of
depth 300 or more.

Beta reduction is not an option.

A Computational Logic

Applicative Common Lisp

The typical question asked of a symbolic
state expression is “what is the the value of
slot 7", e.g., for slot b,

(b (let ((s (update-a (new-a x s) s)))
(let ((s (update-b (new-b x s) s)))
(let ((s (update-c (new-c x s) s)))
s))))

A Computational Logic

Applicative Common Lisp

A Simplifying Convention
We number the slots, so

(defun b (s) (nth 2 s))
(defun update-a (u s) (update-nth 1 u s))

Key Theorem:
(nth i (update-nth j u s))

(if (=1 j) u (nth i s))

A Computational Logic

Applicative Common Lisp

Typicaly We want to si mp|ify,
(b (step s)), where, e.g.,

(defun b (s) (nth 2 s))
(defun update-a (u s) (update-nth 1 u s))
(defun phasel (s)
(let ((s (update-a (if) s)))
... S...))
(defun step (s)
(let ((s (phasel s)))
(let ((s (phase2 s)))

A Computational Logic

Applicative Common Lisp

The First Key ldea: Facets

Terms are represented by facets, which are
like 1ambda nests turned inside out.

Applicative Common Lisp

Consider the b slot of the term

(let ((y (f x 8))
())
(let ((X))
(phasel v s)))
= {the facet representation}
(phasel y s), (L(. «

(v < y)]

[(y <« (£ x 8))
(= <

(x < x)])

A Computational Logic

Applicative Common Lisp

Consider the b slot of the facet

(phasel y s), (L(<
(v < v)]
[(y <« (£ x 8))
(= <
(x < x)])

where
(defun phasel (u s)
(let ((s (update-b (h u s) s)))

s))

A Computational Logic

Applicative Common Lisp

the b slot of the facet

(update-b (h u s) s),
(h < y)
(s < 8)]
[(<
(v < v)]
[(y « (f x 8))
(= <«
<

(x < x)])

A Computational Logic

Applicative Common Lisp

the facet

(h u s), (k < y)

(s < s)]

[(<
)]

[(y « (f x 8))

A A A A

(x < x)])

A Computational Logic

Applicative Common Lisp

The Second Key Idea: Reconciliation

Sometimes we wish to return a facet
representing a term

(f a b)

where a and b are themselves represented
by facets o, 7, and 3, 73.

A Computational Logic

Applicative Common Lisp

To do this we reconcile the two facets:

compute elaborations of o and £,
say o and (',

and a common stack o,
such that a, 7, = a’,0 and 3,73 =, 0.

Then we return the facet (f & 37, o.

A Computational Logic

Applicative Common Lisp

The Third Key Idea: Caching or
Memoization

In one application, the algorithm was called
216,524 times.

The cache hit rate was 6.2%.

But without the cache the algorithm would
have required ~ 3 x 10%° calls.

Details are in the paper.

A Computational Logic

Applicative Common Lisp

Experiments

(defun phasel (s)
(let ((s (update-a (if (vO 1 (a s))

(vi 1 (a s))
(v2 1 (a s8)))
s)))
(let ((s (update-a (if (vO 2 (a s))
(vi 2 (a s))
(v2 2 (a s)))

s)))
.8 ...))) ; 6 levels

A Computational Logic

Applicative Common Lisp

(defthm b-phasel
(equal (b (phasel s))
(b s)))

(defthm b- haSel phaSel
(equal (b (phasel (phasel s)))
(b sg)

A Computational Logic

Applicative Common Lisp

(defun next-a (a)
(let ((a (if (vO 1 afvl 1 alv2 1 a))))
(let ((a (if (vO 2 alvl 2 alv2 2 a))))

a...))

-hm a-phasel
jual (a (phasel s))
(next-a (a s))))

A Computational Logic

Applicative Common Lisp

(defun phaseO (s)
(let ((s (update-b (a s) s)))

s))

(defun phase2 (s)
(let ((s (update-a (b s) s)))

s))

A Computational Logic

Applicative Common Lisp

(defun machine (g)

(let ((s (phaseO s)))
(let ((s (phasel s)))
(let ((s (phasel s)))
(let ((s (phase2 s)))

s)))))

A Computational Logic

Applicative Common Lisp

(defthm a-machine
(equal (a (machine s))

(a s)))

(defthm b-machine
(equal (b (machine s))

(a s)))

A Computational Logic

Applicative Common Lisp

Theorem old new
b-phasel 0.48 0.01
b-phasel-phasel 128.76 0.01
a-phasel 0.41 0.04
a-machine 139.39 0.02
b-machine 143.91 0.02

Figure 1: Seconds to Prove Theorems on 731 MHz Pentium llI

old = ACL2 without new algorithm
new = ACL2 with new algorithm

A Computational Logic

Applicative Common Lisp

Industrial Applications

At Rockwell-Collins, ACL2 is used to model
the microcode engine of avionics
MICroprocessors.

The ACL2 model of one microprocessor
executes at approximately 90% of the speed
of a hand-coded C model.

Applicative Common Lisp

Using this algorithm, integrated into ACL2’s
rewriter, it Is possible to symbolically step
the microcode engine.

Without this algorithm, i1t was impossible.

Applicative Common Lisp

Related Work

Hickey and Nogin's term module supports

delayed substitution, e.g., lambda-
expressions to represent instantiations. They

support more general operations on terms.
Facets are inherently more efficient.

In addition, our algorithm uses caching.

Applicative Common Lisp

Facets are suggestive but independent of

explicit substitution logics.

| view facets as an efficient ¢

ata structure
vlification

for implementing certain sim

strategies for conventional logics.

A Computational Logic

Applicative Common Lisp

Unrelated Work

We have an operational model of a JVM
subset (supporting 138 bytecodes) excluding
class loading and exceptions.

We have a mechanical translator from Java
to this JVM model via javac.

We have proved theorems about Java
programs, including mutual-exclusion and
multi- threadmg examples.

A Comput

Applicative Common Lisp

