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Simulation Models
s.a = new-a(x,s);
s.b = new-b(x,s);
s.c = new-c(x,s);
return s;

may be formalized in ACL2 (i.e., Lisp) as

(let ((s (update-a (new-a x s) s)))
(let ((s (update-b (new-b x s) s)))
(let ((s (update-c (new-c x s) s)))

ooooooooooooooooooo
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(let ((s (update-a (new-a x s) s)))
(let ((s (update-b (new-b x s) s)))
(let ((s (update-c (new-c x s) s)))
s)))

Applicative semantics allows theO'€m
proving about the model.

The SINgle-threaded use of s allows
destructive modification at runtime so the

formal model can be executed efficiently.
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Let Is just lambda application.

(let ((s (update-a (new-a x s) s)))

(let (( s) 8)))
(let ((s (update-c (new-c x s) s)))
s))) = {by abbreviation conventions}

(lambda ( s x)
(lambda ( = x)
(lambda ( s) s)
(update-c (new-c x s) s)))
s) s) X))
(update a (new-a x s) s) x)

ooooooooooooooooo
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(let ((s (update-a (new-a x s) s)))
(let (( s) 8)))
(let ((s (update-c (new-c x s) s)))
s))) = {by Beta reduction}

(update-c
(new-c x
(update-a (new-a x s) s)
(update-a (new-a x s) s)))

(update-a (new-a x s) s)
(update-a (new-a x s) s)))
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(defun phasel (s)

(let ((s (update-a
(if (vO 1 (a 8))

(vi 1 (a s))
(v2 1 (a s)))

s)))

(let ((s (update-a
(if (vO 2 (a s))

(vi 2 (a s))
(v2 2 (a s)))

s)))
. S...)))
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(defun step (s)
(let ((s (phasel s)))
(let ((s (phase2 s)))

S...)))
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It Is not unusual for commercial simulation
models of microprocessors to have very
many assignment statements, 1.e., very deep
lambda-nesting.

At Rockwell-Collins Avionics, some of the
models we look at have 1lambda nesting of
depth 300 or more.

Beta reduction is not an option.
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The typical question asked of a symbolic
state expression is “what is the the value of
slot 7", e.g., for slot b,

(b (let ((s (update-a (new-a x s) s)))
(let ((s (update-b (new-b x s) s)))
(let ((s (update-c (new-c x s) s)))
s))))
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A Simplifying Convention
We number the slots, so

(defun b (s) (nth 2 s))
(defun update-a (u s) (update-nth 1 u s))

Key Theorem:
(nth i (update-nth j u s))

(if (=1 j) u (nth i s))
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Typicaly We want to si mp|ify,
(b (step s)), where, e.g.,

(defun b (s) (nth 2 s))
(defun update-a (u s) (update-nth 1 u s))
(defun phasel (s)
(let ((s (update-a (if ... ... ... ) s)))
... S...))
(defun step (s)
(let ((s (phasel s)))
(let ((s (phase2 s)))
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The First Key ldea: Facets

Terms are represented by facets, which are
like 1ambda nests turned inside out.
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Consider the b slot of the term

(let ((y (f x 8))
( ))
(let (( X ))
(phasel v s)))
= {the facet representation}
(phasel y s), (L(. «

(v < y)]

[(y <« (£ x 8))
(= <

(x < x)])
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Consider the b slot of the facet

(phasel y s), (L( <
(v < v)]
[(y <« (£ x 8))
(= <
(x < x)])

where
(defun phasel (u s)
(let ((s (update-b (h u s) s)))

s))
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the b slot of the facet

(update-b (h u s) s),
(h < y)
(s < 8)]
[( <
(v < v)]
[(y « (f x 8))
(= <«
<

(x < x)])
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the facet

(h u s), (k < y)

(s < s)]

[ ( <
) ]

[(y « (f x 8))

A A A A

(x < x)])
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The Second Key Idea: Reconciliation

Sometimes we wish to return a facet
representing a term

(f a b)

where a and b are themselves represented
by facets o, 7, and 3, 73.
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To do this we reconcile the two facets:

compute elaborations of o and £,
say o and (',

and a common stack o,
such that a, 7, = a’,0 and 3,73 =, 0.

Then we return the facet (f & 37, o.
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The Third Key Idea: Caching or
Memoization

In one application, the algorithm was called
216,524 times.

The cache hit rate was 6.2%.

But without the cache the algorithm would
have required ~ 3 x 10%° calls.

Details are in the paper.
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Experiments

(defun phasel (s)
(let ((s (update-a (if (vO 1 (a s))

(vi 1 (a s))
(v2 1 (a s8)))
s)))
(let ((s (update-a (if (vO 2 (a s))
(vi 2 (a s))
(v2 2 (a s)))

s)))
.8 ...))) ; 6 levels
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(defthm b-phasel
(equal (b (phasel s))
(b s)))

(defthm b- haSel phaSel
(equal (b (phasel (phasel s)))
(b sg)
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(defun next-a (a)
(let ((a (if (vO 1 afvl 1 alv2 1 a))))
(let ((a (if (vO 2 alvl 2 alv2 2 a))))

a...))

-hm a-phasel
jual (a (phasel s))
(next-a (a s))))
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(defun phaseO (s)
(let ((s (update-b (a s) s)))

s))

(defun phase2 (s)
(let ((s (update-a (b s) s)))

s))
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(defun machine (g)

(let ((s (phaseO s)))
(let ((s (phasel s)))
(let ((s (phasel s)))
(let ((s (phase2 s)))

s)))))
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(defthm a-machine
(equal (a (machine s))

(a s)))

(defthm b-machine
(equal (b (machine s))

(a s)))
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Theorem old new
b-phasel 0.48 0.01
b-phasel-phasel 128.76 0.01
a-phasel 0.41 0.04
a-machine 139.39 0.02
b-machine 143.91 0.02

Figure 1: Seconds to Prove Theorems on 731 MHz Pentium llI

old = ACL2 without new algorithm
new = ACL2 with new algorithm
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Industrial Applications

At Rockwell-Collins, ACL2 is used to model
the microcode engine of avionics
MICroprocessors.

The ACL2 model of one microprocessor
executes at approximately 90% of the speed
of a hand-coded C model.
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Using this algorithm, integrated into ACL2’s
rewriter, it Is possible to symbolically step
the microcode engine.

Without this algorithm, i1t was impossible.
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Related Work

Hickey and Nogin's term module supports

delayed substitution, e.g., lambda-
expressions to represent instantiations. They

support more general operations on terms.
Facets are inherently more efficient.

In addition, our algorithm uses caching.
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Facets are suggestive but independent of

explicit substitution logics.

| view facets as an efficient ¢

ata structure
vlification

for implementing certain sim

strategies for conventional logics.
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Unrelated Work

We have an operational model of a JVM
subset (supporting 138 bytecodes) excluding
class loading and exceptions.

We have a mechanical translator from Java
to this JVM model via javac.

We have proved theorems about Java
programs, including mutual-exclusion and
multi- threadmg examples.

A Comput

Applicative Common Lisp



