Proving Theorems about Java-like Byte Code

J Strother Moore*
May 24, 1999

Abstract

We describe a formalization of an abstract machine very similar to the Java Virtual Machine but far
simpler. We develop techniques for specifying the properties of classes and methods for this machine.
We develop techniques for mechanically proving theorems about classes and methods. We discuss two
such proofs, that of a static method implementing the factorial function and of an instance method that
destructively manipulates objects in a way that takes advantage of inheritance. We conclude with a brief
discussion of the advantages and disadvantages of this approach. The formalization and proofs are done
with the ACL2 theorem proving system.

1 Specification of the TJIVM

The Java Virtual Machine (JVM) [10] is a stack-based, object-oriented, type-safe byte-code interpreter on
which compiled Java programs are executed.

We develop a simplified JVM for the purpose of exploring verification issues related to proofs about
object-oriented byte code. We refer to our machine as a “toy JVM” or “TJVM.” Because we are interested
in formal, mechanically checked proofs, we formalize the TJVM in a formal, mechanized logic, namely ACL2:
A Computational Logic for Applicative Common Lisp. The tradition of formalizing machines in ACL2, and
its predecessor, Boyer and Moore’s Nqthm, is well established [1, 14, 11, 3, 5] and we follow in those well-
trodden footsteps. Indeed, our TJVM is just a simplification of Rich Cohen’s “defensive JVM,” [6], which
was formalized at Computational Logic, Inc., in the standard ACL2/Nqthm style. That style employs an
operational semantics, in which the state of the machine is represented as a Lisp object. An interpreter for
the machine’s programming language is defined as a Lisp function. The main purpose of this paper is to
illustrate how those established techniques can be applied in an object-oriented setting.

This paper provides a brief sketch of our TJVM. The details may be obtained at http://www.cs.utexas.-
edu/users/moore/publications/tjvm /index.html.

The state of the TJVM is a triple consisting of a call stack of “frames,” a heap, and a class table. A
frame contains four fields, a program counter, a variable binding environment called the locals of the frame,
an operand stack, and the byte code program of the method being evaluated. The heap is an association
of integer addresses to “objects,” which are “instances” of classes. An instance is a list of n tables, one
for each of the n superclasses of the object. Each table enumerates the fields of a given class and specifies
the contents of those fields in this particular instance. Finally, the class table is a list of class declarations,
each of which specifies a class name, the names of its superclasses, the names of its fields, and the “method
declarations” of the class. A method declaration specifies a method name, its formal parameters, and the
byte coded body of the method.

Readers familiar with the JVM will recognize the TJVM as a similar machine. Here is a Java program
for computing the factorial function.

*Department of Computer Sciences, University of Texas, Austin, TX 78712, moore@cs.utexas.edu.

public static int fact(int n){
if (n>0)
{return nxfact(n-1);}
else return 1;

}

Here is an example of a TJVM method declaration corresponding to the compiled code for fact above.
The comments (on the right, following the semi-colons) indicate the TJVM program counter of the instruction
and the JVM byte code produced by Sun’s Java compiler.

Fact:

("fact" (n)
(load n) ;0 iload 0
(ifle 8) ;1 ifle 12
(load n) ;2 iload 0
(load n) ;3 iload 0
(push 1) ;4 iconst_1
(sub) ; b isub
(invokestatic "Math" "fact" 1) ; 6 invokestatic <Method int fact(int)>
(mul) s 7 imul
(xreturn) ;8 ireturn
(push 1) ;09 iconst_1
(xreturn)) ; 10 ireturn

This method declaration, Fact, might be found in the class declaration of the "Math" class on the TJVM.
The name of the method is "fact". It has one formal parameter, n, and a byte code program of eleven
instructions. Fact is actually a Lisp constant whose first element is the string "fact", whose second element
is the list containing the single symbol n, etc.

We discuss later the correspondence between TJVM byte codes and JVM byte codes, but a shallow
correspondence is obvious. On the TJVM, methods refer to their local variables by name; on the JVM
methods refer to their locals by position. The “8” in the TJVM ifle instruction is an instruction offset by
which the program counter is incremented. The corresponding offset on the JVM counts bytes rather than
instructions and some JVM instructions take more than one byte. Finally, the JVM has typed instructions,
e.g., the JVM’s iload loads an integer-valued variable on the stack while the TJVM’s load loads any value.

When this program is invoked on the TJVM, one actual parameter, n, is popped from the operand stack
of the topmost frame of the TJVM call stack; a new frame is built and pushed onto the call stack of the
TJVM state. The new frame has program counter 0 and the eleven instructions above as the program. The
locals of the new frame bind n to the actual n. The operand stack of the new frame is empty.

The program operates as follows. The parenthesized numbers refer to program counter values. (0) The
local value, n, of n is pushed onto the operand stack. (1) The ifle instruction pops the operand stack and
compares the item obtained, here n, to 0. If n < 0, the program counter is incremented by 8; otherwise it
is incremented by 1. (9-10) In the former case, the program pushes a 1 on the operand stack and returns
one result to the caller. The JVM uses a special, single byte instruction for pushing the constant 1, while
the TJVM has one general-purpose push instruction for pushing any constant. (2) In the case that n > 0,
the program pushes n, (3-5) pushes n — 1 (by (3) pushing n and (4) 1 and (5) executing a sub which pops
two items off the operand stack and pushes their difference), (6) invokes this procedure recursively on one
actual, in this case, the n — 1 on the stack, obtaining one result, here (n — 1)!, which is pushed on the stack
in place of the actual, (7) multiplies the top two elements of the stack, and (8) returns that one result to the
caller.

From the above description it should be clear how we define the semantics of the instructions illustrated
above. For example, here is the function which gives semantics to the add instruction, (add).

(defun execute-ADD (inst s)
(declare (ignore inst))
(make-state
(push (make-frame (+ 1 (pc (top-frame s)))
(locals (top-frame s))
(push (+ (top (pop (stack (top-frame s))))
(top (stack (top-frame s))))
(pop (pop (stack (top-frame s)))))
(program (top-frame s)))
(pop (call-stack s)))
(heap s)
(class-table s)))

This Lisp function — which in the ACL2 setting is taken as an aziom defining the expression (execute-ADD
inst s) — takes two arguments, the add instruction to be interpreted and the TJVM state s. Because the
TJVM add instruction has no operands, execute-ADD does not actually need the instruction and so inst
above is ignored. The function computes the state obtained from s by executing an add. The new state
contains a modified call stack but the same heap and class table as s. The call stack is modified by changing
only its topmost frame so that the program counter is incremented by one and the operand stack is modified
by popping two items off of it and pushing their sum. The locals and program of the frame are unchanged.
We call execute-ADD the semantic function for the TJVM add instruction.

Each instruction on the TJVM is defined by an analogous semantic function. The semantic function for
the instruction (new "class"), which constructs a new instance of the class named "class", is as follows.

(defun execute-NEW (inst s)
(let* ((class (argl inst))
(table (class-table s))
(obj (build-an-instance
(cons class
(class—decl—superclasses
(bound? class table)))
table))
(addr (length (heap s))))
(make-state
(push (make-frame (+ 1 (pc (top—frame s)))
(locals (top-frame s))
(push (list ’REF addr)
(stack (top-frame s)))
(program (top-frame s)))
(pop (call-stack s)))
(bind addr obj (heap s))
(class-table $))))

Informally, the function builds an uninitialized instance, obj, of the given class obtaining the class’ fields
and superclasses from the class table of the state. It also obtains a new address, addr, in the heap (namely,
the length of the current heap). It then modifies the top frame of the call stack by incrementing the program
counter and pushing onto the operand stack a reference to the new address, namely the list object (REF
addr). It modifies the heap by binding addr to the instance, obj.

The semantic function for the instruction (invokevirtual "class" "name" n) is shown below. Infor-
mally, the instruction obtains a reference, ref, to the “this” object of the invocation by looking down the
operand stack an appropriate distance, given n, the number of formals of the named method. It then obtains
the class, class, of the referenced object and uses the given method name and object class to determine the
nearest appropriate method, method. Let vars be the formal parameters of the resolved method, extended
with one additional formal, named this, and let prog be the byte code program for method.

(defun execute-INVOKEVIRTUAL (inst s)
(let* ((name (arg2 inst))
(n (arg3 inst))
(ref (top (popn n (stack (top-frame s)))))
(class (class-name-of-ref ref (heap s)))
(method
(lookup-method name
class
(class-table s)))
(vars (cons ’this (method-formals method)))
(prog (method-program method)))
(make-state
(push (make-frame 0
(reverse
(bind-formals (reverse wvars)
(stack (top-frame s))))
nil
prog)
(push (make-frame (+ 1 (pc (top-frame s)))
(locals (top-frame s))
(popn (length wvars)
(stack (top-frame s)))
(program (top-frame s)))
(pop (call-stack s))))
(heap s)
(class-table s))))

The instruction then modifies the existing top frame of the call stack by incrementing the program counter
and popping n + 1 items off the operand stack. It then pushes a new frame poised to execute the resolved
method, initializing the locals in the new frame by binding vars to the items just popped.

After defining a semantic function for each TJVM instruction, we define:

(defun do-inst (inst s)
(case (op-code inst)

(PUSH (execute-PUSH inst s))
(POP (execute-POP inst s))
(LOAD (execute-LOAD inst s))
(STORE (execute-STORE inst s))
(ADD (execute-ADD inst s))

(SUB (execute-SUB inst s))

(MUL (execute-MUL inst s))

(GOTO (execute-GOTO inst s))
(IFEQ (execute-IFEQ inst s))
(IFGT (execute-IFGT inst s))

(INVOKEVIRTUAL (execute-INVOKEVIRTUAL inst s))
(INVOKESTATIC (execute-INVOKESTATIC inst s))

(RETURN (execute-RETURN inst s))
(XRETURN (execute-XRETURN inst s))
(NEW (execute-NEW inst s))
(GETFIELD (execute-GETFIELD inst s))
(PUTFIELD (execute-PUTFIELD inst s))
(HALT s)

(otherwise s)))

so that (do-inst inst s) returns the state obtained by executing inst in state s. The definition enumerates
the instructions supported on the TJVM and calls the appropriate semantic function.

Each of the supported instructions is modeled after one or more JVM instructions. TJVM instructions
are generally simpler than their JVM counterparts. For example, we are not concerned with access attributes,

types, resource limitations, or exceptions on the TJVM. The TJVM classes provide for “instance fields” but
do not provide the JVM’s “static fields.” Unlike their counterparts on the JVM, our INVOKEVIRTUAL and
INVOKESTATIC do not take “signatures.” On the JVM, a method’s “this” object is in local variable 0; on
the TJVM it is an implicit formal parameter named this. Like its JVM counterpart, the method actually
invoked by our INVOKEVIRTUAL depends on the “this” object: both invoke the nearest method of the given
name found in the superclass chain of the object, but the JVM discriminates between candidate methods
via their signatures and we do not. That is, the JVM supports “overloading” and the TJVM does not.
The “single stepper” for the TJVM is

(defun step (s)
(do-inst (next-inst s) s))

where next-inst retrieves the instruction indicated by the program counter in the topmost frame of the call
stack.
The TJVM is then defined as an iterated step function:

(defun tjvm (s n)
(if (zp n)
s
(tjvm (step s) (- m 1))))

Thus (tjvm s n) is the result of applying step to s n times, or (step” s).

The TJVM can be viewed as a simplification of the JVM. The TJVM is in fact a simplification of Rich
Cohen’s “defensive JVM”, [6], which includes many more JVM instructions and deals carefully with the
preconditions assumed for each instruction. In principle, Cohen’s specification could be used to analyze
whether a given byte code verifier is sufficient to guarantee the absence of certain classes of runtime errors.
Both the TJVM and the defensive JVM omit major aspects of the JVM, including floating point numbers,
arrays, multiple threads, exceptions, and native methods. All but native methods could be formalized in an
implementation independent way, following the basic approach.

2 Example TJVM Executions

Having defined the TJVM in Lisp, it is possible to execute it on concrete data. Consider the byte code for
the "fact" program shown earlier in the constant Fact. Let Math-class denote the list constant partially
displayed below.

Math-class:
("Math" ("Object") () (... Fact ...)).

This is a class declaration for a class called "Math" which is an extension of the class named "Object"

(literally, the declaration says that the superclass chain of "Math" is the list containing only the class named

"Object"). The "Math" class contains no fields and its methods are those listed and include Fact.
Consider the TJVM state

So:
(make-state
(push (make-frame O
nil
nil
> ((push 5)
(invokestatic "Math" "fact" 1)
(halt)))

nil)
nil
’(Math-class))

This state is poised to execute the three instruction program above, starting with the (push 5) at program
counter 0. Note that the program pushes 5 on the stack and then invokes "fact". The class table for the
state includes our Math-class, so "fact", here, means the byte code given in Fact.

The Lisp expression (top (stack (top-frame (tjvm sg 52)))) steps so 52 times, and then recovers
the topmost item on the operand stack of the topmost frame of the call stack. Evaluating this expression
produces 120, which is indeed 5!.

How did we know to take 52 steps? The answer is: by analysis of the code in Fact. The following
function, which we call the “clock function” for "fact", returns the number of TJVM instructions required
to execute (invokestatic "Math" "fact" 1) on n. The function was written based on an inspection of
the byte code in Fact.

(defun fact-clock (n)
(if (zp n)
5
(++ 7
(fact-clock (- n 1))
2)))

Here, ++ is just the normal arithmetic addition function. Fact-clock has been written this way (rather than
5+ 9n) to make it obvious how such functions are generated. To execute a call of "fact" on 5 evidently
takes 50 TIVM cycles (including the call). Thus, the program in sq takes 52 cycles.

3 Proofs about TJVM Programs

Of more interest than mere execution is the following theorem we can prove about "fact".

Theorem. "fact" is correct:

Suppose sg is a TJVM state whose next instruction is (invokestatic "Math" "fact" 1), where
the meaning of the name "Math" in the class table is our Math-class. Let n be the top of
the operand stack in the topmost frame of the call stack of sg and suppose n is a natural
number. Then the TJVM state obtained by stepping sg (fact-clock n) times is state so with
the program counter incremented by one and the n on the operand stack replaced by n!. The
heap is unchanged.

This informal statement can be phrased formally as follows.

Theorem. "fact" is correct:
(implies (and (equal (next-inst so)
> (invokestatic "Math" "fact" 1))
(equal (assoc-equal "Math" (class-table sg))
Math-class)
(equal n (top (stack (top-frame sg))))
(natp n))
(equal
(tjvm so (fact-clock m))
(make-state
(push (make-frame (+ 1 (pc (top-frame sp)))
(locals (top-frame sgp))
(push (fact n)
(pop (stack (top-frame sp))))
(program (top-frame so)))
(pop (call-stack sp)))
(heap sg)
(class-table s(p))))

The theorem states the total correctness of the "fact" byte code. Weaker theorems can be stated and
proved, but we here focus on theorems of this kind because they are easiest to prove.

We proved this theorem in a very straightforward manner using ACL2. The proof takes 0.33 seconds on
a 200 MHz Sun Ultra 2. The theorem only looks complicated because the notation is unfamiliar!

ACL2 is an automatic theorem prover in the sense that its behavior on any given proof attempt is
determined by its state immediately prior to the attempt, together with goal-specific hints provided by the
user. Of great importance is the set of lemmas the system has already proved. Those lemmas determine how
ACL2 simplifies expressions. To configure ACL2 to prove theorems about TJVM we followed the example
described in [3]. Roughly speaking, we did the following:

e We proved half a dozen simple arithmetic lemmas; we could have loaded any of several standard ACL2
arithmetic “books.”

e We proved lemmas that let ACL2 manipulate the data structures used on the TJVM, including stacks,
frames, and states, as abstract data structures. One such theorem is (top (push z stack)) = z.
We then “disabled” the definitions of the primitive stack, frame, and state functions so that their
“implementations” in terms of conses were not visible.

e We proved the standard theorem for expanding the single step function, step, when the next-inst is
explicit. We then disabled the step function. This prevents case explosion on what the next instruction
is.

e We defined the standard “clock addition” function, ++, which is really just natural number addition, and
disabled it. This allows us to define clock function in the structured style illustrated fact-clock and
prevents the arithmetic rules from rearranging the expressions and destroying the structural “hints”
implicit in the definitions. We proved the rules that allow tjvm expressions to be decomposed ac-
cording to their clock expressions. For example, (tjvm s (++ i 7)) is rewritten to (tjvm (tjvm s
1) 7). Thus, when ACL2 encounters, for example, (tjvm so (++ 7 (fact-clock (- n 1)) 2)) it
decomposes it into a run of length seven, followed by a run of length (fact-clock (- n 1)), followed
by a run of length two, and each run must be fully simplified to a symbolic state before the next can
be simplified (because of the way the step function has been limited).

e Finally we prove the standard “memory management” rules, which in the case of the TJVM tell us the
algebra of association lists (used to bind variables, associate programs with method names, method
names with methods, fields with their contents, etc.).

Having so configured ACL2, the theorem about "fact" above is proved by giving the theorem prover a
single hint, namely to do the induction that unwinds the code in "fact".

It is important to realize that the theorem above about "fact" contributes to the further configuration
of ACL2 in this capacity. The lemma causes the following future behavior of ACL2: Suppose the system
encounters an expression of the form (tjvm a (fact-clock ()) to simplify. Then it first determines
whether the next instruction of the state o is (invokestatic "Math" "fact" 1) where the meaning of
"Math" in « is our Math-class, and whether 3 is on top of the operand stack of o and is a natural number.
If so, it replaces (tjvm a (fact-clock ()) by the corresponding make-state expression in which the
program counter has been incremented by one and § has been replaced by (fact f3).

Thus, after this lemma about "fact" is proved, the theorem prover no longer looks at the code for
"fact". It steps over (invokestatic "Math" "fact" 1) as though it were a primitive instruction that
computes the factorial of the top of the stack.

The verification of a system of methods is no harder than the combined verification of each method in the
system. This remark, while trivial, has profound consequences if one clearly views the software verification
problem as the specification and verification of the component pieces.

4 More Example TJVM Executions

The "fact" method does not affect the heap. That is, it does not create any new objects or modify existing
objects. How does our verification strategy cope with that? We will consider a simple example of a heap
modifying method. But we first illustrate such methods by simple execution. Consider the following TJVM
class declaration for a class named "Point", which extends the "Object" class and has two fields, named
"x" and "y". Instances of the "Point" class represent points in the Cartesian plane.

Point-class:

("Point" ("Object")
("x" y")
(xIncrement

inBox))

Notice that the class has two methods. The first is defined by the list constant:

xIncrement:

("xIncrement" (dx)
(load this) ;
(load this) ;
(getfield "Point" "x")
(load dx) ;
(add) H
(putfield "Point" "x") ;
(return)) ;

Do WD = O

We discuss this method now and will display the second constant, inBox, later.

The method "xIncrement" is an “instance method.” It has an implicit formal parameter, this, and one
explicit parameter, dx. When "xIncrement" is called with invokevirtual, two items are expected on the
operand stack of the caller. The deeper of the two is expected to be an instance of some class and is used to
select which method named "xIncrement" is actually run. That instance object is bound to the parameter
this in the newly built frame and the other item on the stack is bound to the variable dx.

The byte code above increments the "x" field of this by the amount dx. Ignore for a moment the load
instruction at 0. Instructions 1 and 2 push the contents of the "x" field onto the operand stack. Instruction
3 pushes dx and instruction 4 adds the two together, leaving the sum on the stack. The load instruction we
ignored above, at 0, has pushed a reference to the this object onto the stack, now just under the sum. The
putfield at 5 deposits the sum into the "x" field of that object, changing the heap. The return at 6 returns
(no results) to the caller (i.e., this method is of return type “void”). It is convenient whenever we define a
method to define the corresponding clock function for it. In the case of "xIncrement", which consists seven
primitive, non-branching byte codes, the clock function is constant and returns 8. (Our convention is that
the clock for a method includes the cycle for the byte code that invokes it.)

Before discussing the inBox method, we consider an extension to the "Point" class, called the "Colored-
Point" class. Here is the list constant denoting the TJVM declaration of that class.

ColoredPoint-class:

("ColoredPoint" ("Point" "Object")
("color")
(setColor
setColorBox))

The class extends "Point" (and thus "Object") and provides the new field "color" and two methods. The
first is called "setColor" and is defined below. It sets the "color" of a "ColoredPoint". The clock for this
method returns 5.

setColor:
("setColor" (c)
(load this)
(load c)
(putfield "ColoredPoint" "color")
(return))

Consider the TJVM state

S1:
(make-state
(push
(make-frame 0
*((p . nil))
nil
’((new "ColoredPoint")
(store p)
(load p)
(push -23)
(invokevirtual "ColoredPoint" "xIncrement" 1)
(load p)
(push "Green")
(invokevirtual "ColoredPoint" "setColor" 1)
(load p)
(halt)))
nil)
nil
’ (Point-class
ColoredPoint-class))

This state is poised to execute the ten instruction program above, with one local, p, which is initially nil.
The class table of the state contains both "Point" and its extension "ColoredPoint". Inspection of the
code above shows that it creates a new "ColoredPoint" and stores it into p. It then invokes "xIncrement"
to increment the "x" field of p by -23 and invokes "setColor" to set the "color" field of p to "Green". Of
interest is the fact that the first method is in the class "Point" and the second is in the class "ColoredPoint".
The "ColoredPoint" p inherits the fields and methods of its superclass, "Point".

Had the "ColoredPoint" class overridden the method "xIncrement" by including the definition of such
a method, then the program above would have invoked that method rather than the one in "Point", since
the method is selected by searching through the superclass chain of the this object of the invocation, which
is here p, an object of class "ColoredPoint".

Consider, s’;, the result of running the TJVM on s; for 21 steps,

s’
(tjvm s; 21).

“21” is obtained by adding up the clocks for each instruction above.

Of interest is (deref (top (stack (top-frame s’;))) (heap s’y)). This expression dereferences the
topmost item on the operand stack of s’;, with respect to the heap of that state. The topmost item on the
stack is, of course, the reference that is the value of the local p. That reference was created by new at the
beginning of the program. Dereferencing it through the final heap produces the “logical meaning” of p at
the conclusion of the program. The result is

(("ColoredPoint" ("color" . "Green"))
("Point" ("X" . _23) (uyu . o))
("Object"))

This is an instance in the ACL2 semantics of the TJVM. It represents an object of class "ColoredPoint".
It enumerates the fields of that class and of all its superclasses and specifies the value of each field. We

see that at the conclusion of the program above the "color" of the object is set to "Green", the "x" field
(in the "Point" superclass) is set to -23 as a result of our "xIncrement" and the "y" field is set to (the
“uninitialized” value) 0. The "Object" class in the TJVM has no fields.

5 Proving Theorems about Objects
Our "Point" class contains a second method, called "inBox", which determines whether its this object is

within a given rectangle in the plane. The rectangle is specified by two points, p1 and p2, which are the
lower-left and upper-right corners of the box. Here is the definition of the method.

inBox:
("inBox" (pl p2)
(load p1) HE
(getfield "Point" "x") ;o1
(load this) ;2
(getfield "Point" "x") ;3
(sub) ;4
(ifgt 21) HE S
(load this) ; 6
(getfield "Point" "x") HE
(load p2) ;8
(getfield "Point" "x") ;09
(sub) ; 10
(ifgt 15) i 11
(load p1) ;12
(getfield "Point" "y") ; 13
(load this) ; 14
(getfield "Point" "y") ; 15
(sub) ; 16
(ifgt 9) s 17
(load this) ; 18
(getfield "Point" "y") ; 19
(load p2) ; 20
(getfield "Point" "y") ;21
(sub) ;22
(ifgt 3) ;23
(push 1) ; 24
(xreturn) ; 25
(push 0) ; 26
(xreturn)) ;27

This is a straightforward compilation (for the TJVM) of the following Java (which is written in a slightly
awkward style to make the correspondence with the byte code more clear).

public boolean inBox(Point pl, Point p2){
if (pl.x <= this.x &
this.x <= p2.x &
pl.y <= this.y &
this.y <= p2.y)
{return true;}
else {return false;}}

We will specify and prove the correctness of this method in a moment. But we must develop some Lisp
functions for dealing with points and in so doing illustrate our preferred style for dealing with TJVM objects
in general, at the logical level.

Consider the two Lisp functions below for retrieving the x- and y-coordinates of a point.

10

(defun Point.x (ref s)
(field-value "Point" "x" (deref ref (heap s))))

(defun Point.y (ref s)
(field-value "Point" "y" (deref ref (heap s))))

Observe that they take the TIJVM state, s, as arguments. That is because we apply them to references to
Points, not to instances. Had we chosen the latter course, we would have defined Point.x as

(defun Point.x (p)
(field-value "Point" "x" p))

but would have to call it by writing (Point.x (deref ref (heap s))). We belabor this point for a reason:
when defining the Lisp concepts necessary to speak formally about TJVM objects should we focus on
references or on instances? If we focus on references, we must also have available the state, or at least the
heap, with respect to which those references are to be dereferenced. This is the choice we have made and
yet it seems complicated.

The problem with focusing on instances is that instances may contain references. Thus, even if we focus
on instances the heap is still relevant. This does not arise with "Point" instances because their fields do
not contain references. But consider the class "LinkedList", with two fields, "head" and "next". Suppose
the "next" field generally contains a (reference to a) "LinkedList" instance. Then a typical instance of
"LinkedList" might be:

(("LinkedList" ("head" . 1) ("next" . (REF 45)))
("Object™)).

Since the object itself might be “circular” we cannot, in general, replace (REF 45) by the instance to which
it dereferences. Thus, we see that while instances may be more convenient than references for simple classes
like "Point", they are no more convenient than references in general.

We therefore chose references because it tends to induce a uniform style in the definition of the logical
functions for manipulating objects, that style being to dereference the reference with respect to the state,
use the resulting instance and then recursively deal with the interior references. This means that the Lisp
formalization of the semantics of a TJVM method may very closely resemble the algorithm implemented by
the byte code. This is convenient because the verification of a method generally takes place in two steps. In
the first step we prove that the interpretation of the byte code produces the same TJVM state transformation
as described at a higher level by the Lisp function. In the second step we prove that the Lisp function enjoys
some desirable properties. The first step is complicated by the semantics of the byte code interpreter and so
it is convenient for the Lisp to be “close” to the byte code. Once we have gotten away from the byte code
to the simpler applicative Lisp world, we deal with the complexity of proving that the Lisp “does the right
thing.”

In this paper we do not further consider instances that reference other instances.

We next consider the "inBox" method and focus on its “clock function.” How many TJVM cycles are
required to execute an invocation of that method? We can express the clock function for "inBox" with:

(defun inBox-clock (this p1 p2 S)
(cond ((> (Point.x p; s)

(Point.x this s))

9)

((> (Point.x this s)
(Point.x p3 s))

15)

((> (Point.y p1 s)
(Point.y this s))

21)

(t 27)))

11

Despite the apparent simplicity of the "inBox" method, the time it takes depends not only on the inputs this,
p1, and pg, but on the state in which it is called. This is unavoidable since the very meaning of references
to objects change as the heap changes.

What theorem might we wish to prove about "inBox"? The obvious theorem is that it returns 1 or 0
(the TJVM and JVM “booleans”) according to whether the this object is within the box defined by p1 and
p2. We define the Lisp function inBox as follows:

(defun inBox (this p1 p2 $)

(and (<= (Point.x p1 s)
(Point.x this s))
(<= (Point.x this s)
(Point.x p2 s))
(<= (Point.y p1 s)
(Point.y this s))
(<= (Point.y this s)
(Point.y p2 s))))

Observe that the Lisp inBox predicate is dependent upon the TJVM state with respect to which the TJVM
objects are dereferenced. Again, this is unavoidable. Even though the references to the three points in
question are constants, the x-y locations of the denoted points may change over time and whether a point
is in a given box is, quite literally, a function of the TJVM state. (Indeed, the locations may be changed
even by methods that are not directly passed these three references because other objects in the heap may
contain these references.)

Before we state the correctness of the "inBox" method formally we do so informally. Our first statement,
below, is just an approximation, modeled on the theorem we proved about "fact".

First Approximation Suppose sg is a TJVM state whose next instruction is (invokevirtual
"Point" "inBox" 2), where the meaning of the name "Point" in the class table is our Point-
class. Let this be the third item on the operand stack, let p; be the second item, and let ps be
the topmost item. Then the TJVM state obtained by stepping sy (inBox-clock this p; ps Sg)
times is state just sg with the program counter incremented by one and the three items removed
from the operand stack and replaced by 1 or 0 according to whether (inBox this p; p2 So).
The heap is unchanged.

This approximation is inadequate in two respects. First, we are not concerned with the just the instruction
(invokevirtual "Point" "inBox" 2) but in any instruction of the form (invokevirtual class "inBox"
2). A careful reading of the semantic function for invokevirtual reveals that the semantics is independent of
the first operand of the instruction! The actual method invoked is the one named "inBox" in the superclass
chain of the “this” object, not the method named "inBox" in the class named in the invokevirtual
instruction.! Therefore, rather than require that (next-inst sg) be (invokevirtual "Point" "inBox"
2) we require that it be a list whose first, third and fourth elements are invokevirtual, "inBox" and 2,
respectively.

The second change to this approximation is that we must insist that the method found by looking up the
superclass chain of this be inBox. In particular, just because we invoke "inBox" in a TJVM state in which
"Point" is defined as above, do we know that the resolved method will be inBox? No! The superclass chain
of this might include a class that overrides "inBox" and defines it a different way. If we add the hypothesis
that the resolved method is inBox then we may delete the hypothesis, in our approximation above, requiring
that "Point" be as defined here: it does not matter how "Point" is defined as long as the resolved method
is our inBox.

Theorem. "inBox" is correct: Suppose sg is a TJVM state whose next instruction is of the
form (invokevirtual class "inBox" 2). Let this be the third item on the operand stack, let

IThis is also true of the JVM invokevirtual instruction. The reason invokevirtual has that operand is so that in a JVM
implementation the given class name can be used to find a “dispatch vector” associated with the named class to shortcut the
search up the superclass chain.

12

p1 be the second item, and let ps be the topmost item. Suppose the nearest method named
"inBox" in the superclass chain of this is inBox. Then the TJVM state obtained by stepping sg
(inBox-clock this p1 pa Sp) times is state so with the program counter incremented by one
and the three items removed from the operand stack and replaced by 1 or 0 according to whether
(inBox this p1 p2 So). The heap is unchanged.

Here is the formal rendering of the theorem:

Theorem. "inBox" is correct:

(implies (and (consp (next-inst sg))
(equal (car (next-inst sp)) ’invokevirtual)
(equal (caddr (next-inst sp)) "inBox")
(equal (cadddr (next-inst sg)) 2)

(equal this (top (pop (pop (stack (top-frame sg))))))
(equal p; (top (pop (stack (top-frame sp)))))
(equal p2 (top (stack (top-frame sp))))

(equal (lookup-method "inBox"
(class-name-of-ref this (heap sp))
(class-table sg))
inBox))
(equal
(tjvm so (inBox-clock this pi1 p2 So))
(make-state
(push (make-frame (+ 1 (pc (top-frame s0)))
(locals (top-frame sg))
(push (if (inBox this p1 p2 so) 1 0)
(popn 3 (stack (top-frame sp))))
(program (top-frame so)))
(pop (call-stack $p)))
(heap sg)
(class-table sp))))

This theorem is proved by straightforward symbolic evaluation, i.e., the repeated unfolding of the definition
of tjvm, together with Boolean and arithmetic simplification.

Once proved, how is this theorem used? Suppose the theorem prover’s rewriter encounters a call of tjvm
in which the second argument is an inBox-clock expression. (Previously proved rules about tjvm will insure
that arithmetic combinations of such expressions are decomposed into appropriate nests of tjvm expressions
applied to these clock functions.) Then the rewriter tries to establish that the next-inst of the TJVM
state is an invokevirtual of "inBox" and the resolved method named "inBox" in the superclass chain of
the this object is inBox. These actions are caused by backchaining. The three hypotheses equating this,
p1, and p» to stack expressions are not restrictive: they are established by binding this, p1, and psy to the
corresponding expressions. Provided the hypotheses are established, the rewriter then replaces the target
call of tjvm by a new state expression in which the program counter is advanced by one, the three actuals of
"inBox" are removed from the stack and the appropriate value is pushed. Thus, as with our earlier theorem
about "fact", this theorem configures ACL2 to simplify a call of "inBox" almost as though it were a built-in
TJVM instruction whose semantics is given in terms of the Lisp function inBox.

We have glossed over a minor difficulty with the application of the lemma. Note that the state so occurs
twice in the left-hand side of the concluding equality. In actual applications, the states matching these two
occurrences of sg may not be identical. The first is the state of the TJVM at the time of the invokevirtual
and the second is the state at the time the clock expression for the superior computation was computed. We
handle this possibility by providing a corollary to the above rule in which the two occurrences of sy are given
different names, so and s;, and we add an additional hypothesis requiring the proof that the inBox-clock
of these two states be identical.

13

We finally turn to a theorem about a method that modifies an object, i.e., that modifies the heap. This
is the second method of the "ColoredPoint" class:

setColorBox:
("setColorBox" (pl p2 color)
(load this)
(load p1)
(load p2)
(invokevirtual "ColoredPoint" "inBox" 2)
(ifeq 4)
(load this)
(load color)
(putfield "ColoredPoint" "color")
(return))

This void instance method takes three arguments, two points and a color. If the “this” object is in the box
specified by the two points, the method sets the color of the “this” object to the specified color. The clock
function for "setColorBox" is

(defun setColorBox-clock (this p1 p2 ¢ 8)
(declare (ignore c))
(++ 4
(inBox-clock this p1 pa 8)
(if (inBox this p1 p2 s)
5
2)))

The primary effect of invoking "setColorBox" is to produce a new heap. That heap is described by

(defun setColorBox-heap (this pi p2 ¢ §)
(if (inBox this p1 p2 $)
(let ((instance (deref this (heap s)))
(address (cadr this)))

(bind
address
(set-instance-field "ColoredPoint" "color" c¢ instance)
(heap s)))

(heap s)))

The theorem stating the correctness of "setColorBox" is

Theorem. "setColorBox" is correct:

(implies (and (consp (next-inst sg))
(equal (car (next-inst sp)) ’invokevirtual)
(equal (caddr (next-inst sp)) "setColorBox")
(equal (cadddr (next-inst sg)) 3)

(equal this (top (pop (pop (pop (stack (top-frame s0)))))))
(equal p; (top (pop (pop (stack (top-frame sp))))))
(equal p2 (top (pop (stack (top-frame sp)))))

(equal color (top (stack (top-frame sg))))

(equal (lookup-method "inBox"
(class-name-of-ref this (heap sp))
(class-table sg))
inBox)
(equal (lookup-method "setColorBox"
(class-name-of-ref this (heap $op))
(class-table sg))

14

setColorBox))
(equal
(tjvm so (setColorBox-clock this p1 p2 color so))
(make-state
(push (make-frame (+ 1 (pc (top-frame sp)))
(locals (top-frame sg))
(popn 4 (stack (top-frame sg)))
(program (top-frame so)))
(pop (call-stack sp)))
(setColorBox-heap this pi1 p2 color sg)
(class-table s0))))

This theorem is exactly analogous to the one about "inBox". The effect of the theorem is to configure ACL2

so that when it sees a tjvm expression with the setColorBox-clock it increments the program counter by

one, pops four things off the operand stack, and sets the heap to that described by setColorBox-heap.
Such a move is interesting by virtue of the following easy-to-prove lemma about that heap:

Theorem.
(implies (and (refp ref)
(refp this))
(equal (deref ref
(setColorBox-heap this p1 p2 color s))
(if (and (equal ref this)
(inBox this p1 p2 $))
(set-instance-field "ColoredPoint" "color" color
(deref this (heap s)))
(deref ref (heap s)))))

This theorem specifies the key property of the new heap. It defines how to dereference an arbitrary reference,
ref, with respect to the new heap. If ref is the this object of the "setColorBox" invocation, and that
object is within the specified box, then the dereferenced object is the result of setting the "color" of the
same object in the old heap. Otherwise, dereferencing with respect to the new heap produces the same
result as dereferencing with respect to the old heap. Thus, setColorBox-heap is just a succinct symbolic
representation of the heap produced by "setColorBox" and whenever references arise with respect to it,
they are eliminated and replaced by modified instances obtained through the old heap.

While we have not illustrated classes that chain instances together or instance methods that are recursive
or iterative, these aspects of the TJVM should raise no problems not predicted by our handling of the recursive
factorial and the simple instance methods shown. That is not to say that such proofs are trivial, only that
their nature is entirely predictable from what has been shown here. The expectation is that the ACL2 user
able to do the proofs shown would be able to develop the techniques necessary to do proofs of this more
involved nature.

6 Conclusion

We have shown how a simple version of the Java Virtual Machine can be formalized in the applicative
Common Lisp supported by the ACL2 theorem prover. We have discussed how ACL2 can be configured
to make it straightforward to reason about static and instance methods, including recursive methods and
methods which modify objects in the heap.

The use of “clock functions” to characterize the length of TJVM computations follows a standard
paradigm in interpreter-based proofs. Clock expressions allow the user to structure the proof. Every addend
in a ++-nest gives rise to a single call of tjvm which must be simplified. Thus, by choice of an appropriate
clock expression one can decompose proofs into the segments about which one is prepared to reason by
specially-tailored lemmas. To the extent that one can decompose a computation mechanically into such re-
gions, one can mechanically generate clock expressions to control the proof decomposition. Clock expressions

15

compose in the obvious way with invokevirtual and invokestatic. Iterative computations are handled
similarly.

While both clock expressions and the Lisp functions describing the semantics of TJVM methods might
appear complicated, it is crucial to remember the compositional nature of specifications and proofs. Once
the clock expression for a method has been written and the corresponding specification has been proved, it is
not necessary to think about or reveal in subsequent proofs the details of the methods used as “subroutines.”

The use of clocks encourages a focus on terminating computations. However, by adding a flag to the
TJVM state indicating whether the computation halted normally or “ran out of time” it is possible to phrase
partial correctness results in this framework, in which theorems have the additional hypothesis of “provided
n is sufficient to guarantee termination.” Furthermore, one can use explicit clocks, as we do, but address
oneself to non-terminating computations and still characterize the state produced at certain points in the
infinite computation.

Our toy JVM ignores many aspects of the JVM, as noted earlier, including the omission of many byte
code instructions, the finiteness of resources, error handling, exceptions, and multiple threads. Many of these
aspects could be incorporated into a formal model. Some, such as the inclusion of additional byte codes,
would not affect the complexity of proofs at all. The others would preserve the basic character of the theorems
and proofs described here but, in some cases, would require the explicit statement of additional hypotheses
to insure the sufficiency of available resources and the absence of errors. New proof machinery would have
to be created (via the proofs of suitable lemmas) to enable ACL2 to reason about TJVM computations in
which exceptions are thrown or multiple threads are used.

Our experience, notably that reported in Young’s dissertation, [13] and in the author’s work on Piton
[11], is that when dealing with resource limitations and exceptions it is best to produce several layers
of abstraction, each formally related to the next by lemmas, one of which is free of those concepts and
corresponds to our tjvm. That is, we see a model like our TJVM as being a component of a stack of abstract
machines that enables formal discussion of programming language concepts not included in tjvm.

The most problematic aspect of our formalization may appear to be the fact that TJVM objects cannot
be represented by (the non-circular) objects of applicative Common Lisp, necessitating the “reference versus
instance” debate summarized here and the explicit provision of the heap in our specification functions. It
cannot be denied that this is a complication. Similar problems have been dealt with in Flatau’s dissertation
[7]. However, we do not think this can be avoided simply because it reflects the underlying reality of object
oriented programming.

7 Acknowledgments
I am especially grateful to Rich Cohen, who patiently explained his ACL2 model of his “defensive” Java

Virtual Machine, upon which my TJVM is modeled. I am also very grateful to the undergraduates at UT
to whom I have taught the TJVM, as well as my teaching assistant for that course last year, Pete Manolios.

References

[1] W. R. Bevier, W. A. Hunt, J S. Moore, and W. D. Young. Special Issue on System Verification.
Journal of Automated Reasoning, 5(4):409-530, December, 1989.

[2] R. S. Boyer and J S. Moore. A Computational Logic. Academic Press: New York, 1979.

[3] R. S. Boyer and J S. Moore. Mechanized Formal Reasoning about Programs and Computing
Machines. In R. Veroff (ed.), Automated Reasoning and Its Applications: Essays in Honor of Larry
Wos, MIT Press, 1996.

[4] R. S. Boyer and J S. Moore. A Computational Logic Handbook, Second Edition, Academic Press:
London, 1997.

16

[5] B. Brock, M. Kaufmann and J S. Moore, “ACL2 Theorems about Commercial Microprocessors,”
in M. Srivas and A. Camilleri (eds.) Proceedings of Formal Methods in Computer-Aided Design
(FMCAD’96), Springer-Verlag, pp. 275-293, 1996.

[6] R. M. Cohen, The Defensive Java Virtual Machine Specification, Version 0.53, Electronic Data
Systems, Corp, Austin Technical Services Center, 98 San Jacinto Blvd, Suite 500, Austin, TX
78701 (email: cohen@aus.edsr.eds.com).

[7] A.D. Flatau, A verified implementation of an applicative language with dynamic storage allocation,
PhD Thesis, University of Texas at Austin, 1992.

[8] M. Kaufmann and J Strother Moore “An Industrial Strength Theorem Prover for a Logic Based
on Common Lisp,” IEEE Transactions on Software Engineering, 23(4), pp. 203213, April, 1997

[9] M. Kaufmann and J Strother Moore “A Precise Description of the ACL2 Logic,” http://-
www.cs.utexas.edu/users/moore/publications/km97a.ps.Z, April, 1998.

[10] T. Lindholm and F. Yellin The Java Virtual Machine Specification, Addison-Wesley, 1996.

[11] J S. Moore. Piton: A Mechanically Verified Assembly-Level Language. Automated Reasoning
Series, Kluwer Academic Publishers, 1996.

[12] G. L. Steele, Jr. Common Lisp The Language, Second Edition. Digital Press, 30 North Avenue,
Burlington, MA 01803, 1990.

[13] W. D. Young, A Verified Code-Generator for a Subset of Gypsy, PhD Thesis, University of Texas
at Austin” 1988.

[14] Y. Yu. Automated Proofs of Object Code For a Widely Used Microprocessor. PhD thesis, Univer-
sity of Texas at Austin, 1992. Lecture Notes in Computer Science, Springer-Verlag (to appear).
ftp:/ /ftp.cs.utexas.edu/pub/techreports/tr93-09.ps.Z.

17

