Inductive Assertions and Operational Semantics

J Strother Moore

Department of Computer Sciences
University of Texas at Austin
Austin, TX 78712-1188, USA
E-mail: moore@cs.utexas.edu

Abstract. This paper shows how classic inductive assertions can be
used in conjunction with an operational semantics to prove partial cor-
rectness properties of programs. The method imposes only the proof obli-
gations that would be produced by a verification condition generator but
does not require the definition of a verification condition generation. The
paper focuses on iterative programs but recursive programs are briefly
discussed. Assertions are attached to the program by defining a predicate
on states. This predicate is then “completed” to an alleged invariant by
the definition of a partial function defined in terms of the state transi-
tion function of the operational semantics. If this alleged invariant can be
proved to be an invariant under the state transition function, it follows
that the assertions are true every time they are encountered in execution
and thus that the post-condition is true if reached from a state satisfy-
ing the pre-condition. But because of the manner in which the alleged
invariant is defined, the verification conditions are sufficient to prove
invariance. Indeed, the “natural” proof generates the classical verifica-
tion conditions as subgoals. The invariant function may be thought of
as a state-based verification condition generator for the annotated pro-
gram. The method allows standard inductive assertion style proofs to be
constructed directly in an operational semantics setting. The technique
is demonstrated by proving the partial correctness of simple bytecode
programs with respect to a pre-existing operational model of the Java
Virtual Machine.

1 Summary

This paper connects two well-known approaches to program verification: opera-
tional semantics and inductive assertions. The paper shows how one can adopt
the clarity and concreteness of a formal operational semantics while incurring
just the proof obligations of the inductive assertion method, without writing
a verification condition generator or other extra-logical tool. In particular, the
formal definition of the state transition function can be used directly to generate
verification conditions for annotated programs.

In this section the idea is presented in the abstract. Some details are skipped
and a deliberate confusion of states with formulas is perpetrated to convey the
basic idea. Subsequently, the method is applied to a particular formal operational

semantics, program, annotation, mechanical theorem prover, etc., to demon-
strate that the basic idea is practical.

Consider a simple one loop program 7 (Figure 1) that concludes with a HALT
instruction. Assume instructions are addressed sequentially, with « being the
address or label of the first instruction and ~ being the address or label of the
HALT. Let the pre- and post-conditions of the program be P and () respectively.
The arrows of Figure 1 indicate the control flow; functions f, g, and h indicate
the compound state transitions along the arcs and ¢ is the test for staying in the
loop. R is the loop invariant and “cuts” the only loop. The partial correctness
challenge is to prove that if P holds at o then @ holds whenever (if) control
reaches 7.

labels programit paths assertions
a P(s) pre—condition
— f(s)
B o t — R(s) loop invariant
I a(s)
T h(s)
Yy HALT Q9 post—conditiol

Fig. 1. The One-Loop Program 7 with Annotations

To give meaning to such programs with an operational semantics, one for-
malizes the abstract machine state and the effect of each instruction on the
state. Typically the state, s, is a vector or n-tuple describing available computa-
tional resources such as environments, stacks, flags, etc. It is assumed here that
the state includes a program counter, pc (s), and the current program, prog (s),
which are used to determine the next instruction. Instructions are given mean-
ing by defining a state transition function step. Typically, step (s) is defined by
considering the next instruction and transforming the state components accord-
ingly. For example, a LOAD instruction might advance the program counter and
push onto some stack the contents of some specified variable. More complicated
instructions, such as method invocation, may affect many parts of the state. The
HALT instruction is particularly simple; it is a no-op.

It is convenient to define an iterated step function:

S ifk=0
run (k — 1, step (s)) otherwise

run (k, s) = {

and to make the convention that s; = run (k, s).
Given this operational semantics, the formalization of the partial correctness
result is

Theorem: Correctness of Program 7.
pe(s) = aNprog(s) =m AP (s) Apc(sk) =7 — Q (sk)-

Proof. In an operational semantics setting, theorems such as the Correctness of
Program 7 are proved by establishing an invariance Inv (s) with the following
three properties:

1. Inv (s) — Inv (step (s)),
2. pc(s) =aAprog(s)=7nAP(s)— Inv(s), and
3. pc(s) =y Aprog(s)=7AInv(s) — Q(s).

The main theorem is then proved as follows. The inductive application of
property 1 produces

4. Inv (s) — Inv (sg).
Furthermore, instantiation of the s in property 3 with si produces

5. pc(sk) =y A prog (sg) =7 A Inv (sk) — Q (sk).

We assume no instruction in 7 changes the program; hence prog (s) = prog (si).
The Correctness of Program 7 then follows immediately from 2, 4, and 5. O

Property 1, above, is problematic; it forces the user of the methodology to
characterize all the states reachable from the chosen initial state. Contrast this
situation with that enjoyed by the user of the inductive assertion method, where
assertions are attached only to certain user-chosen cut-points, as in Figure 1. An
extra-logical process, which encodes the language semantics as formula trans-
formations, is then applied to the annotated program text to generate proof
obligations or verification conditions

VC1. P(s) — R(f (s)),
VC2. R(s) ANt — R(g(s)), and
VC3. R(s) A=t — Q (h(s)).

If these formulas are proved, the user is then assured that if P holds initially
then @ holds when (if) the program terminates.

To render this assurance formal, i.e., write it as a formula, one typically
adopts some logic of programs, i.e., a logic that allows the combination of classical
mathematical expressions about numbers, sequences, vectors, etc., with program
text and terminology. The resulting programming language semantics is extra-
logical in the sense that it is expressed as rules of inference in a metalanguage
and is not directly subject to formal analysis within the logic.? In contrast, in the

! See however the discussion of [3] the next section.

operational approach, the semantics is expressed within the language (typically
as defined functions or relations on states), programs are objects in the logical
universe, and the properties of both — programs and the semantic functions and
relations — are subject to proof within the logic.

The central question of this paper is whether it is possible to have the best
of both worlds: the concreteness and clarity of an operational semantics in a
classical logical setting but the elegance and simplicity of an inductive assertion-
style proof. The central question may be put bluntly as “Is it possible to prove
the formula named ‘Correctness of Program 7,” above, directly from VC1-VC37?”
The answer is “yes.”

Recall that the proof of ‘Correctness of Program 7’ required the definition
of Inv (s) satisfying properties 1-3 above. The key to constructing an induc-
tive assertion-style proof in an operational setting is the following definition of
Inv (s).

prog (s) =m A P (s) if pe(s) =a
Inw (s) = prog (s) =7 A R (s) %f pc(s) =0

prog (s) =mAQ(s) ifpe(s) =7

Inv (step (s)) otherwise

The logician will immediately ask whether there exists a predicate satisfying
this equivalence. The affirmative answer is provided in [11]. The logical crux
of the matter is that Inv(s) is defined with tail-recursion and there exists a
satisfying and total witness for every tail-recursive equivalence. If some loop in
the program is not cut, the equivalence may not uniquely define a predicate, but
at least one witness exists.

Inv (s) clearly has properties 2 and 3. It therefore remains only to prove
property 1. As will become apparent, the proof that Inv (s) has property 1 will
generate the verification conditions as subgoals. To drive this home, we describe
the process by which the proof is constructed rather than merely the formulas
produced. Recall Figure 1. Successive steps from a state s with pc o eventually
produce the state f (s) with pc 8. Similarly, if ¢, then successive steps from a
state s with pc 8 produce ¢ (s) with pc 3, and if —t, then successive steps from
a state s with pc 8 produce h (s) with pc 4. Furthermore, repeated symbolic
expansion and simplification of the step function produce the transformations
described by f, g, and h.

Theorem: Property 1.
Inv (s) — Inv (step (s))

Proof. Consider the cases on pc (s) as used in the definition of Inw.

Case: pc(s) = a. The hypothesis, Inv (s) may be simplified to prog (s) = m A
P (s). Consider the conclusion, Inv (step(s)). Symbolic simplification of step (s),
given pec (s) = a and prog (s) = w, produces a symbolic state s’ with pe (s') =
a + 1. For program 7 either o + 1 is § or it is none of the cut points «, 3
or 7. In the latter case, Inv (step (s)) = Inv (s') = Inv (step (s')) and stepping
continues until 3 is reached at state f (s). Hence, Inv (step (s)) = R (f (s’)) (since

prog (f (s)) = m). Thus, this case simplifies to the goal
pc(s) =a A prog(s)=mAP(s) — R(f(s)).

This is just VC1 (with two now-irrelevant hypotheses, given traditional assertions
P and R).

Case: pc (s) = . The hypothesis Inv (s) simplifies to prog (s) = 7w A R (s). Then
the symbolic simplification of step (s) in the conclusion produces a bifurcated
symbolic state whose program counter depends on test ¢. Repeated expansions
of the definition of Inv on both branches of the state eventually reach states g (s)
and h (s) at which Inv is defined. The results are VC2 and VC3, respectively.

Case: pc(s) = 7. The hypothesis Inv (s) simplifies to prog (s) = © A Q (s).
But the step (s) in the conclusion simplifies to s because the instruction at 7
in 7 is the no-op HALT. Hence, Inv (s) = Inv (step(s)) and this case is trivial
(propositionally true independent of the assertions).

Case: otherwise. Since pc (s) is not one of the cut-points, Inv (s) = Inv (step(s))
by definition of Inv and this case is also trivial.
O

Hence, if the verification conditions VC1-VC3 have been proved, the proof
of property 1, the step-wise invariance of Inv, involves no assertion-specific rea-
soning. More interestingly, given the definition of Inv, the proof generates the
verification conditions by symbolic expansion of the operational semantics’ state
transition function.

Practically speaking this means that with a mechanical theorem prover and a
formal operational semantics one can enjoy the benefits of the inductive assertion
method without writing a verification condition generator or other extra-logical
tools to do formula transformations.

Another practical ramification of this paper is that it provides a simple means
to define a step-wise invariant given only the assertions at the cut points. Step-
wise invariants are frequently needed in operational semantics-based proofs of
safety and liveness properties.

2 Related Work and Discussion

McCarthy [12] made explicit the notion of operational semantics, in which “the
meaning of a program is defined by its effect on the state vector.”

The inductive assertion method for proving programs correct was implicitly
used by von Neumann and Goldstine in [4] (1946) and Turing [18, 7] (1949) and
made explicit in the classic papers by Floyd [2] and Hoare [5]. The first mech-
anized verification condition generator, which generates proof obligations from
code and attached assertions, was written by King [8]. Hoare, of course, rendered
the inductive assertion method formal by introducing a logic of programs. From
the practical perspective most program logics are mechanized with two trusted
tools, a formula generator, here called a VCG (“verification condition genera-
tor”), and a theorem prover. It is not uncommon for the VCG to include not just

language semantics as formula transformers but also some logical simplification
(i.e., theorem proving) to keep the generated proof obligations manageable.

A notable exception is the work of Gloess [3] where the Hoare semantics of a
simple imperative programming language is formalized within the higher-order
logic of PVS and mechanically checked proofs of several programs are carried
out with PVS. As in the present work, Gloess’ proofs generate the verification
conditions. The difference however is that the formal semantics is Hoare-style
rather than operational and is thus designed to generate formulas.

This paper contains one apparently novel idea: a step-wise invariant can be
defined from the inductive assertions using the state-transition function. One
may think of this as a methodology for obtaining a state-based verification con-
dition generator from an operational semantics. By doing it on a per program
basis the method avoids the need to generate or trust extra-logical tools.

The use of inductive assertions in conjunction with a formal operational
semantics to prove partial correctness results mechanically is not new. Robert
S. Boyer and the author developed it for their Analysis of Programs course at
the University of Texas at Austin as early as 1983. In that class, an operational
semantics for a simple procedural language was defined in Nqthm [1] and the
course explored program correctness proofs that combined operational semantics
with inductive assertions. These proofs motivated the exploration of total versus
partial correctness, Hoare logics, and verification condition generation. For an
Ngthm proof script illustrating the use of inductive assertions in an operational
semantics setting, see [13].

A recent example of the use of assertions to prove theorems about a program
modeled operationally may be found in [16], where a safety property of a non-
terminating multi-threaded Java system is proved with respect to an operational
semantics for the Java Virtual Machine [15].

However, in the earlier work the invariant explicitly included an assertion for
every value of the pc. (The invariant must recognize every reachable state and
so must handle every pc; the issue is whether it does so explicitly or implicitly.)

An alternative way to combine inductive assertions at selected cut points
with an operational semantics in a classical formal setting is to formalize and
verify a VCG with respect to the operational semantics. In [6], for example,
an HOL proof of the correctness of a VCG for a simple procedural language is
described. The work includes support for mutually recursive procedures. Formal
proofs of the verification conditions could, in principle, be used with the theorem
stating the correctness of the VCG, to derive a property stated operationally.
But the method described here does not require the definition of a VCG much
less a proof of its correctness.

Logically speaking, a crucial aspect of the novel idea here is that the step-
wise invariant is defined using tail recursion. The admission of a new function or
predicate symbol via recursive definition is generally handled by a definitional
principle that insures the existence (and often the uniqueness) of the defined con-
cept. In many logics, this requires a termination proof. Admitting Inv under such
a definitional principle would require a measure of the distance to the next cut

point and a proof that the distance decreases under step. That imposes a proof
burden not generally incurred by the user of the inductive assertion method.
(Every loop must be cut for the inductive assertion method to be effective; the
question is whether that must be proved formally or merely demonstrated by
the successful generation of the verification conditions.)

The technique used here exploits the observation that Invis tail-recursive and
hence admissible without proof obligation, given the work of Manolios and Moore
[11] in which it was proved that every tail-recursive equation may be witnessed
by a total function. The tail-recursive function may not be uniquely defined by
the equation — this might occur if insufficient cut points are chosen. Such a
failure is manifested by an infinite loop in the process of generating/proving the
step invariance. This is the same behavior a VCG user would experience in the
analogous situation.

One may think of this technique as constructing a step-wise invariant from
from annotations at selected cut-points. Floyd [2] described it as follows:

It is, therefore, possible to extend a partially specified interpretation
to a complete interpretation, without loss of verifiability, provided that
initially there is no closed loop in the flowchart all of whose edges are not
tagged and that there is no entrance which is not tagged. This offers the
possibility of automatic verification of programs, the programmer merely
tagging entrances and one edge in each innermost loop; the verifying
program would extend the interpretation and verify it, if possible, by
mechanical theorem-proving techniques.

The novelty of the idea here is merely that we “extend the interpretation” by
definition of a function in the logic rather than by extra-logical means.

The technique here is similar in spirit to one used by Pete Manolios [private
communication] to attack the 2-Job version of the Apprentice problem [16].
There, he defined the reachable states of the Apprentice problem as all the states
that could be reached from certain states by the execution of a fixed maximum
number of steps.

3 A Demonstration of the Method

To illustrate the technique a mechanized formal logic and an operational seman-
tics must be introduced. In this paper we use the ACL2 logic [7]. In this logic,
function application is denoted as in Lisp, e.g., run (k, s) is written (run k s).
We will explain all the formulas as necessary.

For the demonstration we choose a pre-existing operational semantics for a
significant fragment of the JVM [9]. The model is written in the ACL2 logic
and may be considered a Lisp implementation of a significant fragment of the
JVM interpreter. The model is called M5 [15] and it was chosen simply because
it was available, stable, realistic, and written in a logic for which we have a
powerful automatic/interactive mechanical theorem prover. We have a much

more sophisticated JVM model, called M6 [10] and we have done some of these
examples in M6 as well, but the M6 model is not yet stable.

The M5 model is fairly complex, requiring about 250 ACL2 definitions con-
suming about 3000 lines of formalism on top of ACL2’s extensive support for
discrete mathematics. In addition to many other JVM data types, M5 supports
Java’s 32-bit twos complement integer arithmetic, here called “int arithmetic,”
in which overflow is not signaled; adding one to the most positive int produces
the most negative int. An important mathematical concept (given the examples
we have chosen to exhibit here) is the mathematical function int-fix, which
takes an arbitrary integer and returns the integer represented by its low order
32-bits, interpreted in twos complement notation. That is, for integer values of
n

int-fix(n) = {n mod 232 if n mod 23?2 < 23!
n mod 232 — 232, otherwise

Since we use ACL2 notation, we write int-fix(n) as (int-fix n) in the formulas
in this paper.

Our M5 model includes semantics for 138 bytecode instructions including
those for the creation and initialization of instance objects in the heap, manip-
ulation of static and instance fields, the invocation of static, special, and virtual
methods, Java’s inheritance rules for method resolution, the creation of multiple
threads, and synchronization via monitors. The model is operational in the sense
that it can be executed on the output of Sun’s javac compiler (for methods in
the 138-instruction subset and after transformation of the class files into ACL2
constants).

The M5 model of the JVM is a good example of an abstract machine that
is sufficiently complicated that writing a VCG for it a serious and error-prone
undertaking.

M5 is formalized by defining step and run functions as above. The state
includes a thread table containing stacks of method invocation frames, a heap,
and a class table of loaded classes. Each frame contains a pc, bytecoded program,
local variables, and operand stack. The M5 step function takes two arguments
instead of just one: (step th s) is the state obtained by stepping thread th in
state s. The run function, instead of taking the number of steps, takes a list of
thread identifiers, called a schedule, and steps those threads sequentially.

Symbolic simplification of this semantics is central to the idea proposed here.
Consider the following bytecode sequence (in the M5 parsed byte-stream format):
(ILOAD_1) (ICONST_1)(IADD)(ISTORE_1). This sequence pushes the value of
local variable 1 on the operand stack, pushes the constant 1, pops the first
two items off the stack and pushes their int sum, and pops the stack into
local variable 1. That is, the sequence corresponds to the Java assignment a =
a+1; if a is an int allocated in local variable 1. Suppose M5 state s contains
a thread, th, the active frame of thread th has pc 6 and that the bytecode
sequence above is positioned starting at byte offset 6 in the current program.
Suppose the locals of the frame are denoted by locals and the operand stack by
stack. The symbolic simplification of (step th s) produces a symbolic state

expression in which the active frame of thread th has pc 7 and operand stack
(push (nth 1 locals) stack). If three more such steps are taken the result is
a symbolic state expression in which the active frame of thread th has pc 10
and the following expression, locals’, for its locals (update-nth 1 (int-fix
(+ (nth 1 locals) 1)) locals). Note that the symbolic expression for local 1
in this environment, (nth 1 locals’) simplifies to (int-fix (+ (nth 1 locals)
1)) using rewrite rules about nth and update-nth.

4 An Iterative Program

Below is an M) program written as a Lisp constant named *program-pix.

(defconst *program-pi*

> ((ICONST.0) ; 0
(ISTORE_1) ;1 a:=0
(ILOAD.0O) ; 2 top of loop:
(IFEQ 14) ;3 if n=0, goto 17
(ILOAD_1) ; 6
(ICONST 1) e
(IADD) ; 8
(ISTORE_1) ;9 a := a+l
(ILDOAD.O) ;10
(ICONST-2) ;11
(ISUB) ;12
(ISTORE.0) ;13 n := n-2
(GOTO -12) ;14 goto top of loop
(HALT))) ;17 halt

The program is a list of instructions. Each instruction is a list and corresponds to
a JVM bytecode instruction. The column of numbers preceded by semi-colons is
the byte offset of the instruction, starting from the top. Thus, the first occurrence
of (ILOAD_1), which is the fifth instruction in the program, is located at byte
offset 6 because the (IFEQ 14) instruction before it occupies bytes three, four,
and five of the program. The text further to the right is pseudo-code for the
program.

Here is a quick guide to the relevant JVM instructions.

ICONST_O0 push 0 on the operand stack

ICONST_1 push 1 on the operand stack

ICONST_2 push 2 on the operand stack

ISTORE. O pop the stack into local variable 0

ISTORE_1 pop the stack into local variable 1

ILOAD_O push local variable 0 on the operand stack

ILOAD_1 push local variable 1 on the operand stack

IFEQ n pop the stack to obtain v and if

v is 0, add n to the pc

IADD pop two items and push their int sum

ISUB pop two items and push their int difference

GOTO n add n to the pc

The program decrements its first local, informally called n, by 2 and iterates
until the result is 0. On each iteration it adds 1 to its second local variable, here
called a, which is initialized to 0. The program in *program-pix* is essentially
that generated by the Sun Java compiler on the code fragment

int a = 0;

while (n!=0){a=a+1;n=n-2;}

except for the way that the compiler codes the “top of the loop” at the bottom to
save an instruction. (That trivial optimization offers no obstacle to our method,
but we code the loop more naively in this example just to make the example
easier to follow.)

Thus, the method computes n/2, henceforth written (/ n 2), when n is even.
The program does not terminate when n is odd.

The program is slightly simpler to deal with if it is assumed that n is a non-
negative int. The program actually terminates for negative even ints, because
Java’s int arithmetic wraps around: the most negative int, -2147483648, is even
and when it is decremented by 2 it becomes the most positive even, 2147483646.
But to avoid excessive discussion of int arithmetic, we limit our attention to
non-negative ints.

For simplicity, our program concludes with the fictitious HALT instruction,
which stops the machine. More generally, methods end with some kind of return
instruction that causes execution of the caller’s code to resume. We discuss
procedure (method) invocation briefly later.

Let the initial value of n be n0. The goal is to prove that if n0O is a non-
negative int and control reaches pc 17, then nO is even and local variable a has
the value (/ n0 2). That is, if the program halts the initial input must have
been even and the final answer is half that input.

5 The Assertions at the Three Cut Points

The cut points, to which assertions will be attached, are at program counters 0
(), 2 (8), and 17 (7). The assertions attached to these cut points were called
P, R, and @ in the earlier treatment. We will define each assertion as a function.
In the definitions below, think of n0 as the initial value of n, and think of n and

10

a as the current values of locals n and a whenever the corresponding assertion
is reached.

(defun P (n0 n) ;3 Pre-Condition
(and (equal n n0)
(intp no0)
(<= 0 n0)))

(defun R (n0 n a) ; Loop Invariant
(and (intp noO)
(<= 0 n0)
(intp n)
(if (and (<= 0 n)
(intp a)
(evenp n))
(equal (int-fix (+ a (/ n 2)))
(/ n0 2))
(not (evenp n)))))

(defun Q (n0 a) ; Post-Condition
(and (evenp n0)
(equal a (/ n0 2))))

We paraphrase these three assertions below. But the reader is reminded that
their content is dictated by the semantics of the JVM programming language
and what we wish to prove about *program-pi* by the inductive assertion
method. In particular, these same (or equivalent) assertions would be needed to
carry out an inductive assertion proof of this bytecode program no matter how
the inductive assertion method were implemented.

The Pre-Condition, P, asserts that the value of local variable n is n0 and that
n0 is a non-negative int.

The Loop Invariant, R, asserts that n0 is (still) a non-negative int, that n is
an int, and that if n is non-negative, a is an int, and n is even, then the (int
part of the) sum of a and half of n is half of n0; otherwise, n is not even.

The Post-Condition asserts that nO is even and a is half of n0.

By proving this particular Post-Condition we establish not only that the final
value of a is half the initial value of n, but that the initial n must have been
even. We could weaken the post-condition to omit mention of the parity of n
and would not have had to use such a strong loop invariant.

The details of the assertions are not germane to this paper. The assertions are
typical inductive assertions for such a program. These assertions were chosen to
illustrate that, within the framework of such an operational semantics, we can use
inductive assertions to address partial correctness of non-terminating programs
including the characterization of when termination occurs.

11

6 Verification Conditions

Given *program-pix*, the informal attachment of the three assertions to the
chosen cut points, and a VCG for the JVM, the following verification conditions
would be produced.

(defthm VC1 ;entry to loop
(implies (P n0O n)
(R n0 n 0)))
(defthm VC2 ; loop to loop

(implies (and (R n0 n a)
(not (equal n 0)))
(R noO
(int-fix (- n 2))
(int-fix (+ 1 a)))))
(defthm VC3 ; loop to exit
(implies (and (R n0 n a)
(equal n 0))
(@ n0 a)))

These are easily proved. The challenge is: how can these three theorems be
used to verify a partial correctness result for *program-pi* with respect to our
operational semantics?

7 Attaching the Assertions to the Code

Our M5 model supports multi-threading. Our *program-pi* will be running in
some thread, identified by the thread identifier th in state s. (In fact, in this
treatment, th will be the only thread scheduled so the multi-threading features
of the model are largely irrelevant here.)

To relate the assertions, above, to the local variables in *program-pi* run-
ning in thread th of s it is convenient to define

(defun n (th s) (loc 0 th s))
(defun a (th s) (loc 1 th s))

Thus, (n th s) is the current value of the variable n, i.e., the item in slot 0 of
the vector of locals in the active method of thread th. (Loc i th s) is equal to
(nth i (locals (top (call-stack th s)))), a fact which we note only to
expose a tiny bit of the underlying operational model.

In the earlier treatment of the method, we defined the invariant by conjoining
each assertion with the statement “prog (s) = mw.” Here we introduce an inter-
mediate function to do this and also to retrieve the values of the two locals from
the JVM state and call them n and a for clarity.

(defun assertion (n0O th s)
(let ((n (n th 8))
(a (a th 8)))

12

(and (equal (program (top (call-stack th s))) *program-pix*)
(case (pc (top (call-stack th s)))
(0 (P n0 n))
(2 (R n0n a)
(17 (Q n0 a))
(otherwise nil)))))

The function takes three arguments: n0, the initial value of n; the thread iden-
tifier, th, of the thread running our program; and s, the current JVM state.

The 1let binds two mathematical variables, n and a, to the current values of
the two corresponding local variables of the program. The assertion function
then asserts two things. First, the program component of the topmost frame of
thread th is our *program-pi*. Second, P, R, or Q is asserted of the appropriate
values, depending on whether the program counter (pc) is 0, 2 or 17. Nil (false)
is asserted otherwise, but this is irrelevant because we will only use assertion
when the pc is one of the three cut points.

8 The Nugget: Defining the Invariant

The nugget in this paper is how to “complete” the assertions at the cut points
to define a step-wise invariant.

The invariant is introduced with the defpun (“define partial function”) utility
of ACL2 described in [11]. The assertions are tested at the three cut points and
all other statements inherit the invariant of the next statement. This definition
is analogous to that for Inv in the abstract treatment, except that the invariant
also takes the initial input, n0, and the identifier of the relevant thread, th.

(defpun Inv (nO th s)
(if (member (pc (top (call-stack th s)))
>(0 2 17))
(assertion nO th s)
(Inv n0 th (step th s))))

9 Proofs

Recall our general description of the methodology and “property 1”7 of Inv:
1. Inv (s) — Inv (step (s)),

Here is the ACL2 expression of that theorem.

(defthm Property-1-of-Inv
(implies (Inv n0O th s)
(Inv nO th (step th s))))

13

As noted earlier, the proof attempt generates the verification conditions, by
expanding step and Inv, driving the operational model forward from cut point
to cut point. 2

If the verification conditions, VC1-VC3, have already been proved and are
known to the proof engine, then the proof of Property-1-of-Inv is straightfor-
ward.

If the verification conditions are not known to the proof engine, the same
basic symbolic manipulation techniques that generate them continue to operate
to try to prove them.

Central to the process is the symbolic simplification of state expressions under
the state transition function step.

Having proved the invariance of Inv under step the next theorem in the
mechanized “methodology” corresponds to “property 4” of the earlier proof of
the Correctness of Program 7.

4. Inv (s) — Inv (sg).

Here is the ACL2 expression of that result. The theorem states that Inv is
invariant under arbitrarily long runs of the thread in question.

(defthm Property-4-of-Inv
(implies (and (mono-threadedp th sched)
(Inv n0 th s))
(Inv n0 th (run sched s))))

Note that the ACL2 formula explicitly restricts attention to schedules in which
thread th is the only running thread. Because a schedule in the M5 model is
just a list of the thread identifiers to be stepped successively, this hypothesis is
formalized with the following ACL2 concept.

(defun mono-threadedp (th sched)
(if (endp sched)
t
(and (equal th (car sched))
(mono-threadedp th (cdr sched))))).

The defun above may be read as follows. A schedule is mono-threaded (with
respect to thread identifier th) if the schedule is empty or the first thread stepped
is th and the rest of the schedule is mono-threaded.

2 Actually, it generates slightly “cluttered” looking formulas that are equivalent to
the verification conditions. The clutter has two sources. First, there are irrelevant
hypotheses about the starting location of the pc (at 0, 2 or 18) and the identity of
the program being executed (*program-pi*). These hypotheses were relevant during
the unwinding of the operational semantics but are not relevant once the operational
semantics has been driven fully from cut to cut. Second, the generated verification
conditions do not use the “nice” names n and a, but rather refer to them by their
operational semantic descriptions, e.g., items 0 and 1 of the locals of the topmost
frame of the arbitrary state s.

14

Why must we restrict our attention to mono-threaded schedules? The reason
is that property 1 of Inv, as formalized, is

(defthm Property-1-of-Inv
(implies (Inv nO th s)
(Inv n0 th (step th s))))

which says “if Inv holds of thread th then Inv holds of thread th after stepping
thread th.” We would not need the mono-threaded restriction if we generalized
this to

(defthm Property-1-of-Inv-generalized
(implies (Inv nO th s)
(Inv nO th (step x s)))).

Of course, this generalized property 1 is harder to prove (and probably requires
considerable strengthening of Inv) since the thread x being stepped might in-
teract with thread th. No claim is made as to the practicality of this methodol-
ogy for multi-threaded programs! An obvious question is whether this technique
could be used to simplify the hideous invariant used in our own proof of the
Apprentice problem [16]. We simply have not had the opportunity to try that
yet but we believe it will be applicable.

The point we wish to make in this paper is that the multi-threaded opera-
tional semantics can be used to derive verification conditions for single-threaded
or multi-threaded applications, merely by the choice of formula we try to prove.

Returning to the mono-threaded case, from the theorem

(defthm Property-4-of-Inv
(implies (and (mono-threadedp th sched)
(Inv n0 th s))
(Inv n0 th (run sched s))))

we can easily prove the following more explicit description of a partial correctness
property of *program-pi*: Suppose the initial state, sO, has pc 0, program
program-pi and satisfies the pre-condition P. Let s1 be some arbitrary mono-
threaded run from sO and suppose the pc in s1 is 17. Then s1 satisfies the
post-condition Q. Formally this can be written as follows.

(defthm Corollary-1
(implies (and (equal (pc (top (call-stack th s0))) 0)
(equal (program (top (call-stack th s0)))
*xprogram-pix)

(P n0 (n th s0))

(equal s1 (run sched s0))

(mono-threadedp th sched)

(equal (pc (top (call-stack th s1))) 17))

(Q n0 (a th s1))))

By expanding the pre- and post-conditions we can restate the theorem to say
that if n is a non-negative int and *program-pi* is run (in a mono-threaded

15

fashion) on n starting at the entry to the program, and the run ever reaches the
HALT statement, then n was initially even and the final value of a is half the
initial value of n.

It takes ACL2 approximately 2.36 seconds (on an Intel Xeon”™ 2.40GHz pro-
cessor) to prove all of the theorems discussed in connection with *program-pi*.
The only lemmas developed for this exercise were mathematical lemmas on the
properties of evenp int arithmetic when subtracting 2.

Notice what has been accomplished. Corollary-1 is a partial correctness
theorem about a JVM program, formalized with an operational semantics. The
creative part of the proof consisted of the definition of the three assertions.
Users familiar with inductive assertions would find these assertions straight-
forward (requiring only a few minutes to write down). The proof of the key
lemma, Property-1-of-Inv, generated (and requires the proof of) the classic
verification conditions just as though a VCG for the JVM were available. But
no VCG was defined. The proof does not establish termination of the code un-
der the pre-conditions but does characterize necessary conditions to reach the
HALT statement (since we specified the post-condition as we did). Finally, neither
the theorem nor the proof involved counting instructions or defining what the
Boyer-Moore community calls a “clock function” for the program.

10 Packaging It Up

This methodology is so routine that it can be easily packaged as a “macro” in
ACL2. A macro is an input expression that expands to some other expression
(or sequence of expressions) before being evaluated. We have defined the macro
defspec to “package” this way of doing inductive-assertion-style proofs about
our JVM model. The expression

(defspec pi *program-pi* (n0) 0 17
(C0 (P n0 (n th s)))
(2 (Rn0 (n th s) (ath s)))
(17 (@ n0 (a th s)))))

essentially annotates *program-pi* so that the initial value of its first (0%")
local is named nO, its entry pc is declared to be 0, its exit pc is declared to
be 17, and the cut points and assertions are as written. Defspec expands to
a sequence of defuns and defthms including the corresponding versions of the
functions assertion and Inv. Then it proves the various theorems concluding
with Corollary-1. The symbol pi in the defspec form above is used to generate
unique names for the various functions and lemmas associated with the problem.
It is not necessary to define the cut point assertions as functions P, R, and Q.
We can write instead
(defspec pi *program-pi* (n0O) 0 17
((0 (and (equal (n th s) n0)
(intp n0)
(<= 0 n0)))

16

(2 (and (intp noO)
(<= 0 n0)
(intp (n th s))
(if (and (<= 0 (n th s))
(intp (a th s))
(evenp (n th s)))
(equal (int-fix (+ (a th s) (/ (n th s) 2)))
(/ n0 2))
(not (evenp (n th s))))))
(17 (and (evenp n0)
(equal (a th s) (/ n0 2))))))

to accomplish the same ends.

11 Another Example

Here is an entertaining example of the application of the inductive assertion
method. Consider the following Java program:

public static int tfact(int n){
int i = 1;

int b = 1;
while (i<=n){
int j = 1;
int a = b;
while (j < i) {
b = atb;
jtts
}s
i++;
s
return b;

This is an algorithm dealt with by Alan Turing in his 1949 paper “Checking
a Large Routine,” [18]. He proves the algorithm computes factorial using the
inductive assertion method except he cuts every transition in the flowchart with
an assertion. The routine is a simple nested loop using repeated addition to do
the multiplication.

The M5 expression of the bytecode generated by Sun for this routine is

(defconst *Turing-Factx*

7 (
(iconst_1) ;O
(istore_1) ; 1
(iconst_1) ; 2
(istore_2) ; 3

17

(goto 27) ;0 4 go to 31

(iconst_1) ; 7 (continuation of outer loop)
(istore_3) ;8

(iload_2) ;09

(istore 4) ;10

(goto 11) ; 12 go to 23

(iload 4) ;15 (continuation of inner loop)
(iload_2) ;17

(iadd) ;18

(istore_2) ;19

(iinc 3 1) ;20

(iload_3) ; 23 (top of inner loop)
(iload_1) ;24

(if _icmplt -10) ; 25 go to 15

(iinc 1 1) ;28

(iload-1) ; 31 (top of outer loop)
(iload_0) ;32

(if_icmple -26) ; 33 goto7

(iload_2) ;36

(HALT) ;37

)

We have modified the code generated for tfact only by inserting a HALT in place
of the compiler’s IRETURN at location 37.

We prove that under certain conditions the *Turing-Fact* program com-

putes (int-fix (! n)),i.e., the low-order 32-bits of the mathematical factorial
as defined by

(defun ! (n) ; nl o=
(if (zp n) ; if n=0
1 ; then 1
Gcn (! (-n 1N ; else n*x(n-1)!

To prove it correct we invoke:

(defspec Turing-Fact *Turing-Fact* (n0) 0 37

((0 (and (equal nO (loc O th s))
(intp nO)
(<= 0 n0)
(<= 0 (int-fix (+ 1 n0)))))
(37 (equal (top (stack (top-frame th s)))
(int-fix (! n0))))
(23 (TuringFact-InnerInv
n0 ; n0
(loc 0 th s) ; n
(loc 1 ths) ; i
(loc 3 th s) ; j

18

(loc 4 th 8) ; a
(loc 2 th s) ; b
)DD))

Note that it is necessary to cut only the inner loop, as Floyd observed [2]. We
do not show the assertion we used, but it was derived from Turing’s annotations
[18].

Turing’s program was, of course, for a machine with a different word size
and he explicitly ignored finite arithmetic after briefly discussing the problem.
Curiously perhaps, the program does not actually work for all int input. Note
the last conjunct in the pre-condition at 0. It is necessary that n0 be strictly
below 23! — 1. Otherwise, on what should be the last iteration as i reaches n
from below, i++ produces a negative i instead of an i exceeding n.

12 Method Invocation and Return

The HALT instruction in the previous programs is fictitious but handy. Stepping
the machine while on a HALT leaves the machine at the HALT. Thus, the invariance
of the exit assertion is easy to prove once the exit is reached. In realistic code, the
machine does not halt but returns control to the caller and non-trivial stepping
continues. A useful inductive assertion methodology must deal with call and
return. This paper does not discuss call and return in detail.

On the JVM, method invocation pushes a new stack frame on the invocation
stack of the active thread. Abstractly, that frame may be thought of as contain-
ing the bytecode for the newly invoked method with initial pc 0. The new frame
contains an initially empty “operand stack” for intermediate results. When cer-
tain return instructions are executed, the topmost item, v, on the operand stack
is removed, the invocation stack is popped, and v is pushed onto the operand
stack of the caller.3

To deal with call and return via inductive assertions, two changes are made
to the methodology described above. First, instead of using run to run the state
a certain number of steps, the new function run-to-return is introduced, which
runs a certain number of steps or until the state returns from the call depth, d0,
at which the run was started. Second, the assertion function is changed so that
the post-condition is asserted if the call depth is less than do0.

To deal with recursive methods, one must characterize the stack of frames
created by previous recursive calls so that returns produce states in which
continued symbolic evaluation is possible. The reason this is necessary is that our
M5 model is a “little step” semantics. That is, the instruction after a procedure
invocation is not the instruction following it in the byte stream but the first
instruction in the invoked method.

This is illustrated in [14] where a recursive Java factorial method is verified.
Consider the following code fragment.

(iload_0)

3 Some forms of return implement void methods and return no v to the caller.

19

(iload_0)

(iconst_1)

(isub)

(invokestatic "Demo" "rfact" 1)
(imul)

(ireturn)

This corresponds to the Java fragment “return n*rfact(n-1);.” When the
invokestatic is executed, n — 1 is on top of the stack and n is below it. Con-
ceptually, the invokestatic pops n — 1 off the stack and leaves (n — 1)! in its
place. Then the imul multiplies that by n and the method returns that number.
Now suppose we have traced a path down to the invokestatic starting at some
cut point above it. What is the next instruction? Put another way, what does
the JVM actually do? It advances the pc in the current frame to point to the
imul, but then it pushes a new frame and positions the pc at the entry, 0. That
is also what our invariant predicate, Inv, does! So the next instruction encoun-
tered by Inv is the first instruction of the recursively entered rfact, which is
annotated with a pre-condition. That pre-condition concludes the generation of
a proof obligation. So when do we get back to consider the imul? That is, what
path handles the case where we actually do the multiplication of the recursively
computed (n — 1)! and n? The answer is: the path that starts at the ireturn!
It immediately pops a frame and continues stepping. Therefore, the assertion
at the ireturn must, apparently, characterize the pc and stack in the caller’s
frame.

This approach violates the appeal of the inductive assertion method. We be-
lieve the methodology for handling procedure invocations would be simpler if we
had a “big step” semantics, whereby procedure bodies are run in a “single step”
and control is then advanced to the next instruction in the byte stream. Such a
model can be derived from and proved equivalent to the “little step” semantics,
by appropriate restructuring of the definition of run. This work remains to be
done.

We have studied compositional proof techniques, whereby partial correctness
theorems about procedures can be combined to verify sequentially composed
procedures. Such techniques are discussed in [17].

13 Conclusion

This paper has demonstrated that inductive-assertion-style proofs can be carried
out in an operational semantics framework, without producing a verification con-
dition generator or incurring proof obligations beyond those produced by such a
tool. The key insight is that assertions attached to cut points in a program can
be propagated by a tail-recursive function to create an alleged invariant. The
proof that the alleged invariant is invariant under the state transition function
produces the standard verification conditions. The invariance result can then
be traded in for a partial correctness result stated in terms of the operational

20

semantics, without requiring the construction of clocks or the counting of in-
structions.

In this paper, procedure invocation and compositional proof techniques are
dealt with only briefly and by reference to [14, ?]. The techniques described leave
much to be desired because of the need to characterize the invocation stack as
part of the assertions. Much work remains to make this technique feasible.

But its advantages are clear. No verification condition generator need be con-
structed. Given an operational semantics it is possible, more or less immediately,
to perform inductive-assertion-style proofs of partial correctness theorems.

The process of proving the step-wise invariance of the completed assertions
“naturally” produces the verification conditions.

This situation is attractive for three reasons. First, writing a verification
condition generator for a realistic programming language like JVM bytecode is
error-prone. For example, method invocation involves complicated non-syntactic
issues like method resolution with respect to the object on which the method is
invoked, as well as side-effects to many parts of the state including, possibly, the
call frames of both the caller and the callee, the thread table (in the event that a
thread is started), the heap (in the event of a synchronized method locking the
object upon which it is invoked), and the class table (in the event of dynamic
class loading). Coding this all in terms of formula transformation instead of
state transformation is difficult. Second, when completed, the semantics of the
language is encoded in the VCG process rather than as sentences in a logic.
This encoding of the semantics makes it difficult to inspect. In our approach,
the semantics is expressed explicitly in the logic so that it can be inspected.
Indeed, it is possible to prove theorems about the semantics (not just theorems
about programs under the semantics). Finally, realistic VCGs contain simplifiers
used to keep the generated proof obligations simple. These simplifiers are just
theorems provers and must be trusted. In our approach, only one theorem prover
is involved. It must be trusted but that trusted engine derives the verification
conditions from the operational semantics and the user-supplied assertions.

References

1. R. S. Boyer and J S. Moore. A Computational Logic Handbook, Second Edition.
Academic Press, New York, 1997.

2. R. Floyd. Assigning meanings to programs. In Mathematical Aspects of Computer
Science, Proceedings of Symposia in Applied Mathematics, volume XIX, pages 19—
32. American Mathematical Society, Providence, Rhode Island, 1967.

3. P. Y. Gloess. Imperative program verification in PVS. Technical Report http://-
dept-info.labri.u-bordeaux.fr/~gloess/imperative/index.html, Ecole Na-
tionale Supérieure Electronique, Informatique et Radiocommunications de Bor-
deaux, 1999.

4. H. H. Goldstine and J von Neumann. Planning and coding problems for an elec-
tronic computing instrument. In John von Neumann, Collected Works, Volume V.
Pergamon Press, Oxford, 1961.

5. C. A. R. Hoare. An axiomatic basis for computer programming. Comm. ACM,
12(10):576-583, 1969.

21

10.

11.

12.

13.

14.

15.

16.

17.

18.

P. Homeier and D. Martin. A mechanically verified verification condition generator.
The Computer Journal, 38(2):131-141, July 1995.

M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reasoning: An
Approach. Kluwer Academic Press, Boston, MA., 2000.

J. C. King. A Program Verifier. PhD thesis, Carnegie-Mellon University, 1969.
T. Lindholm and F. Yellin. The Java Virtual Machine Specification (Second Edi-
tion). Addison-Wesley, Boston, MA., 1999.

H. Liu and J S. Moore. Executable JVM model for analytical reasoning: A study.
In Workshop on Interpreters, Virtual Machines and Emulators 2003 (IVME ’03),
San Diego, CA, June 2003. ACM SIGPLAN.

P. Manolios and J S. Moore. Partial functions in ACL2. Journal of Automated
Reasoning, 31(2):107-127, 2003.

J. McCarthy. Towards a mathematical science of computation. In Proceedings of
the Information Processing Cong. 62, pages 21-28, Munich, West Germany, August
1962. North-Holland.

J S. Moore. An NQTHM formalization of a small machine. Technical
Report ftp://ftp.cs.utexas.edu/pub/boyer/nqthm/nqthm-1992/examples/basic/-
small-machine.events, Computational Logic, Inc., May 1991.

J S. Moore. Inductive assertions and operational semantics — long version. Tech-
nical Report http://www.cs.utexas.edu/users/moore/publications/trecia/-
index.html, Department of Computer Sciences, University of Texas at Austin,
2003.

J S. Moore. Proving theorems about Java and the JVM with ACL2.
In M. Broy and M. Pizka, editors, Models, Algebras and Logic of
Engineering Software, pages 227-290. I0S Press, Amsterdam, 2003.
http://www.cs.utexas.edu/users/moore/publications/marktoberdorf-03.

J S. Moore and G. Porter. The Apprentice challenge. ACM TOPLAS, 24(3):1-24,
May 2002.

S. Ray and J S. Moore. Proof styles in operational semantics. Technical report,
Department of Computer Sciences, Univesity of Texas at Austin, (submitted for
publication, 2004).

A. M. Turing. Checking a large routine. In Report of a Conference on High Speed
Automatic Calculating Machines, pages 67—69. University Mathematical Labora-
tory, Cambridge, England, June 1949.

22

