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Abstract

A properly colored path is a path in which no two consecutive edges have the
same color. A properly connected coloring of a graph is one in which there exists a
properly colored path between every pair of vertices. Given a graph G with a properly
connected coloring c, the proper distance between any two vertices is the length of a
shortest properly colored path between them. Furthermore, the proper diameter of G is
the largest proper distance between any pair of vertices in G under the given coloring
c. Since there can be many properly connected colorings of G, there are possibly
many different values for the proper diameter of G. Here we explore 2-colorings and
the associated proper diameter for bipartite graphs, classifying 2-connected bipartite
graphs with maximum proper diameter.

1 Introduction

The work of Vizing popularized the idea of proper edge-colorings of graphs [8]. Since then
some researchers have shifted their focus and studied edge-colorings in which certain sub-
graphs, rather than the entire graph, are properly colored [1], [5], [9]. In a similar fashion,
we are interested in graphs which have been colored so that between every pair of vertices
there exists a properly colored path, that is, a path in which no two consecutive edges have
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the same color. A coloring with this property is called a properly connected coloring and
a graph with such a coloring is referred to as a properly connected graph. The notion of
proper connectedness debuted independently in [2] and [3]. We refer the reader to [6] for a
dynamic survey on topics related to proper connectedness and to [7] for results concerning
the minimum number of colors needed for a graph to have a properly connected k-coloring.

Recently, the notions of proper distance and proper diameter were introduced to study
the range of possible lengths of properly colored paths in a properly connected graph [4].
Given a graph G with a properly connected k-coloring c, the proper distance between any two
vertices u, v is the minimum length of a properly colored path between them and is denoted
pdistk(u, v, c). This notation emphasizes that proper distance is a function not only of the
given vertex pair but of the graph coloring as well. Furthermore, again fixing a properly
connected k-coloring c of a given graph G, the largest proper distance amongst all vertex
pairs is called the proper diameter of the graph G under the given coloring c and is denoted
as pdiamk(G, c). As before, this notation emphasizes that proper diameter is a function of
both the graph and its coloring. Finally, we use pdiamk(G) to denote the maximum possible
proper diameter of the graph G across all properly connected k-colorings of G.

We exemplify these definitions by coloring the edges of complete bipartite graphs Kn,m.
When restricted to 2 colors, except for some cases when either partition class is very small
(size 1 or 2), the only possible proper diameter values of Kn,m are 2 and 4, so pdiam2(Kn,m) =
4 [4]. Figure 1 shows a non-properly connected 2-coloring of K2,3 — the reader can satisfy
themselves that there is no properly colored path between u and v in c1 — as well as properly
connected 2-colorings that attain proper diameter values of 2 and 4.

u

v

(a) c1 is not properly connected

u

v

(b) pdiam2(K2,3, c2) = 2

u

v

(c) pdiam2(K2,3, c3) = 4

Figure 1: pdiam(K2,3) = 4

Here we point out a subtlety of our notation. For a given k, some graphs require more
than k colors to make the graph properly connected. For example, a properly connected
coloring of a graph with connectivity 1 may require many colors, such as with trees, which
require ∆(G) colors where ∆(G) is the maximum degree of G [3]. Hence, when we make
reference to pdiamk(G), we implicitly assume that some properly connected k-coloring of G
actually exists. However, for reasons we explain shortly, our results focus on 2-connected
graphs, which require only a few colors to make them properly connected. According to
[3], if a graph is 2-connected, then at most 3 colors are needed to make the graph properly
connected. More specifically, non-complete 3-connected graphs require only 2 colors, as do
2-connected bipartite graphs, but there are examples of 2-connected non-bipartite graphs
that require 3 colors. In summary, our main results focus on pdiam2(G) where G is a 2-
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connected bipartite graph, so by [3] properly connected 2-colorings exist for all graphs we
consider.

In order to introduce the main question of our investigation, we now discuss bounds
related to proper diameter. The diameter of a given graph provides a trivial lower bound for
its proper diameter, as coloring the edges of a graph cannot decrease the distances between
its vertices. Likewise, no path in a graph on n vertices can have length more than n− 1, so
this yields a trivial upper bound for the proper diameter. Put simply, for a graph G of order
n with properly connected k-colorings,

diam(G) ≤ pdiamk(G) ≤ n− 1. (1)

When k = 2, there exists a non-trivial upper bound that depends on κ(G), the con-
nectivity of G [4]. In particular, for any properly connected 2-colored graph G of order
n ≥ 2,

pdiam2(G) ≤ n− κ(G) + 1. (2)

The bound above is tight and implies that as connectivity increases, the maximum proper
diameter decreases, which is consistent with our intuition.

There are two major parts to this paper. First, we are interested in bipartite graphs
on n vertices which attain the upper bound of n − 1 in (1). Certainly, a Hamiltonian path
within the graph is a necessary condition to obtain the upper bound, but the presence of a
Hamiltonian path is not sufficient.

For example, when m ≥ 7, a 2-colored fan graph on m+ 1 vertices, F1,m, can only attain
a maximum proper diameter of m− 1 [4] (see Figure 2). As another observation, it follows
from the upper bound in (2) that, when restricted to only 2 colors, any 3-connected graph
has proper diameter at most n− 2. Hence, we see that pdiam2(G) = n− 1 is possible only
when κ(G) ≤ 2. This fact motivates our efforts to analyze the upper bound of n − 1 as it
applies to 2-colorings of 2-connected graphs. We do not examine when κ(G) = 1 since, as
mentioned above, properly connected colorings on such graphs may require many more than
2 colors.

u

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

Figure 2: pdiam2(F1,10) = 9 even though a Hamiltonian path exists

Based upon this discussion, we now pose the question that drives this part of our current
investigation: If a bipartite graph G is 2-connected, what features must G and its colorings
have so that pdiam2(G) = n− 1? In Section 2, we explore such features, introduce relevant
terminology, and define a new family of 2-connected bipartite graphs which we call tau graphs
(see Definition 2.10), and we show that this family classifies all 2-connected bipartite graphs
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which attain a proper diameter of n − 1 with 2 colors. The main result of this section is
given by Theorem 2.11.

Theorem 2.11. Let G be a 2-connected bipartite graph on n vertices. Then pdiam2(G) =
n− 1 if and only if G is a tau graph.

The second portion of the paper is devoted to exploring the proper diameter of specific
bipartite graph families. We incorporate the ideas proved in Section 2 as a tool to help find
the proper diameter for each family. Additionally, we provide a method for constructing a
coloring on the graph to attain any possible proper diameter value between the minimum,
given by the diameter of the uncolored graph, and the maximum, proved with the aid of the
result in Section 2. We consider both ladder graphs and general grid graphs.

Finally, throughout our investigation, we use c(e) to denote the color of the edge e under
a coloring c, and because we concentrate on 2-colorings, our figures include dashed and solid
edges to distinguish between red (color 1) and blue (color 2) edges, respectively.

2 Tau Graphs

Given a graph G on n vertices, clearly if pdiam2(G) = n− 1, then for some coloring c of G,
there exist two vertices with proper distance n− 1. In this case, we say the proper distance
between two such vertices is given by a properly colored Hamiltonian path. Hence, we start
by considering the structure of 2-connected graphs with a Hamiltonian path. We develop
terminology to discuss the relevant features of these graphs and observe several direct results
regarding these characteristics.

Definition 2.1. A link on a path P = v1v2 . . . vn in a graph G is an edge vivj ∈ E(G)−
E(P ) where 1 ≤ i < j ≤ n. The link vivj is said to be over vertex vt if i < t < j.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

Figure 3: Link v3v8 over vertices v4, v5, v6, and v7

When the proper distance between two vertices is given by a properly colored Hamiltonian
path, it is a contradiction if the links on P , together with P , yield a shorter properly colored
path between the endpoints of P . This logic can be used to show that when a link creates
an even cycle with the vertices of P , such as v3v8 does in Figure 3, only one coloring of the
link prevents a shorter properly colored path. Theorem 2.2 makes use of this idea.

Theorem 2.2. Let G be a bipartite graph on n vertices with a properly connected 2-coloring
c and a Hamiltonian path H = v1v2 . . . vn that is a shortest properly colored path between v1
and vn. The color of v1v2 forces the color of all edges. Specific color details are given below.
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• For any edge on H, c(vivi+1) = c(v1v2) if and only if i is odd.

• For any link incident to v1, c(v1vi) = c(vivi+1) where 2 < i < n.

• For any link incident to vn, c(vivn) = c(vi−1vi) where 1 < i < n− 1.

• For any link creating an even cycle with the intermediate vertices of H,
c(vivi+(2h+1)) = c(vi−1vi) = c(vi+(2h+1)vi+(2h+2)) where 1 < i, 0 < h, and i+ 2h+ 2 < n

Proof. The hypotheses force that pdist2(v1, vn, c) = pdiam2(G, c) = n − 1. Without loss of
generality, assume c(v1v2) = 1. Since H is properly colored, c(vivi+1) = 1 if i is odd and
c(vivi+1) = 2 if i is even.

Consider v1vi. If i = 2, the color of v1v2 is given above. If i = n, then pdist2(v1, vn, c) = 1,
which is a contradiction. Thus, we consider only 2 < i < n. If c(v1vi) 6= c(vivi+1), then
v1vivi+1 . . . vn is a properly colored path from v1 to vn of length less than n − 1 since v2 is
omitted from the path. Hence, pdiam2(G, c) < n − 1, which is a contradiction. Therefore,
c(v1vi) = c(vivi+1).

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17

Figure 4: Illustration of contradiction for c(v1vi) 6= c(vivi+1)

Consider vivn. If i = n − 1, the color of vn−1vn is given above. If i = 1, then
pdist2(v1, vn, c) = 1, which is a contradiction. Thus, we now consider 1 < i < n − 1. If
c(vivn) 6= c(vi−1vi), then v1v2 . . . vi−1vivn is a properly colored path from v1 to vn of length
less than n − 1 since vi+1 is omitted from the path. Hence, pdiam2(G, c) < n − 1, which is
a contradiction. Therefore, c(vivn) = c(vi−1vi).

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17

Figure 5: Illustration of contradiction for c(vivn) 6= c(vi−1vi)

Consider vivi+2h+1. Note that c(vi−1vi) = c(vi+2h+1vi+2h+2). If c(vivi+2h+1) 6= c(vi−1vi),
v1v2 . . . vivi+2h+1vi+2h+2 . . . vn is a properly colored path from v1 to vn of length less than n−1
since vi+1 is omitted. Hence, pdiam2(G, c) < n − 1, which is a contradiction. Therefore,
c(vivi+2h+1) = c(vi−1vi) = c(vi+2h+1vi+2h+2).

5



v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17

Figure 6: Illustration of contradiction for c(vivi+2h+1) 6= c(vi−1vi)

We include Corollary 2.3 as an interesting property for a coloring attaining maximum
proper diameter on a 2-connected bipartite graph.

Corollary 2.3. Let G be a bipartite graph with n vertices. If pdiam2(G) = n− 1, there are
exactly 2 colorings c on G such that pdiam2(G, c) = n− 1, and the colorings are equivalent
up to relabeling.

If a bipartite graph with a Hamiltonian path is additionally 2-connected, its connectivity
forces the existence of links over every vertex in the path, as we now show.

Lemma 2.4. Let G be a 2-connected bipartite graph. If G has a Hamiltonian path H =
v1v2 . . . vn, then there exists a link incident to v1, a link incident to vn, and a link over every
vertex vi where 1 < i < n.

Proof. There must exist a link incident to v1 because otherwise removing v2 would disconnect
the graph Likewise, there must exist a link incident to vn because otherwise removing vn−1
would disconnect the graph. For every index t with 2 ≤ t ≤ n− 1, there must exist indices i
and j such that i < t < j and vivj is a link over vt. Otherwise vt would be a cut vertex and
hence G would not be 2-connected.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

Figure 7: A 2-connected graph with link over every vertex except the ends of the path

We refer to traversing a subpath of a path P = v1v2 . . . vn so that the indices are increasing
as forward traversing along P . Similarly, when the indices decrease, we say that we are
backward traversing along P .

v1 v2 v3 v4 v5 v6 v7 v8

→ → →

Figure 8: Forward Traversing

v1 v2 v3 v4 v5 v6 v7 v8

← ← ←

Figure 9: Backward Traversing

The existence of the links given by Lemma 2.4 allows us to define a chain through a 2-
connected bipartite graph with a Hamiltonian path. Consider a 2-connected bipartite graph

6



G with a Hamiltonian path H and links on H. We will see in the next definition that the
chain C through H is a walk from v1 to vn in G that alternates between traversing forward
on a link and traversing backwards to the next link on subpaths of H. Theorem 2.6 shows
the chain C through H is actually a path. Because the chain arises from a unique subset
of links, the chain C is unique to H. Figures 10 and 11 exemplify that the chain C may or
may not be Hamiltonian.

Definition 2.5. Let G be a 2-connected bipartite graph that contains a Hamiltonian path
H = v1v2 . . . vn. Let a0 = 1, b0 = max{i : va0vi ∈ E(G)}, and let va`vb` for ` ≥ 1 be the
link over vb(`−1)

with a` < b` which maximizes b`. If there exist multiple links over vb(`−1)

with maximum b`, then va`vb` is chosen such that a` is also maximized. Continue defining
a` and b` until there exists z such that bz = n. Note that a` < b`−1 < b`. The chain C
through H with links {vaivbi}i=z

i=0 is the trail from v1 to vn consisting of the alternating se-
quence of forward traversing links and backwards traversing subpaths of H defined as follows:
va0vb0vb0−1vb0−2 . . . va1+1va1vb1vb1−1vb1−2 . . . vaz+2vaz+1vazvbz .

v1
va0

v2 v3
va1

v4
vb0

v5
va2

v6 v7 v8
vb1

v9
va3
v10 v11 v12 v13 v14

vb2
v15 v16 v17

vb3

Figure 10: A non-Hamiltonian chain C through H, v1v4v3v8v7v6v5v14v13v12v11v10v17

v1
va0

v2 v3
va1

v4
vb0

v5
va2

v6 v7 v8
vb1
v9

va3
v10 v11 v12 v13 v14

vb2
v15 v16 v17

vb3

Figure 11: A Hamiltonian chain C through H, v1v4v3v2v9v8v7v6v5v16v15v14v13v12v11v10v17

We now consider properly connected 2-colorings of these 2-connected bipartite graphs.
Specifically, we focus on when the proper diameter of such graphs is one less than the number
of vertices, the upper bound of inequality (1). We observe immediately that this value of
proper diameter is only attainable when the graph contains a properly colored Hamiltonian
path H and when no shorter properly colored path exists between the endpoints of H. In
Theorem 2.6, we show that in this scenario, H is not the only properly colored Hamiltonian
path in the graph, as the chain C through H has these properties as well. The corollaries of
Theorem 2.6 point out additional helpful properties regarding the links of C.
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Theorem 2.6. Let G be a 2-connected bipartite graph on n vertices with properly connected
2-coloring c. If pdiam2(G, c) = n− 1, i.e. the proper diameter of G is given by the length of
a properly colored Hamiltonian path H = v1v2 . . . vn, then the chain C through H with links
{vaivbi}i=z

i=0 is a second properly colored Hamiltonian path from v1 to vn.

Proof. There are two things we must prove. We must show that C is both a path and that
C is properly colored.

Let us begin by proving C is a path from v1 to vn. Recall that C is an alternating
sequence of forward traversing links and backwards traversing subpaths of H. The only
way C is not a path is if it is incident to the same vertex multiple times, but no edges are
duplicated since C is defined as a trail. The only way for a vertex to be reached twice is if
the compound inequality ai < bi−1 < ai+1 < bi does not hold. By Lemma 2.4 and Definition
2.5, the first and last inequalities must hold, so the only one remaining is bi−1 < ai+1. By
way of contradiction, assume there exists a well defined chain C such that bi−1 = ai+1 for
at least one i where 1 ≤ i ≤ z − 1. Then c(vbi−1−1vbi−1

) 6= c(vai+1
vai+1+1), by Theorem

2.2. Moreover, c(vai+1
vai+1+1) = c(vai−1

vbi−1
) and c(vbi−1−1vbi−1

) = c(vai+1
vbi+1

), meaning
c(vai−1

vbi−1
) 6= c(vai+1

vbi+1
). Then define C∗ to be the trail that uses C except all sections of

C between and including vai−1
and vbi+1

for all 1 ≤ i ≤ z − 1 where bi−1 = ai+1 are replaced
by vai−1

vbi−1
vbi+1

and then continuing along C. This gives that C∗ from v1 to vn is a path
since C∗ omits the cycles in C, meaning no vertex is repeated. Theorem 2.2 gives that C∗

is properly colored. Therefore, since C∗ is a properly colored path that omits vbi−1−1 for
the first i where bi−1 = ai+1, this contradicts that G has proper diameter n − 1. Thus, the
compound inequality ai < bi−1 < ai+1 < bi must hold and C is a path.

It only remains to show that C is properly colored. By way of contradiction, suppose the
chain C through H is not properly colored. Recall that by definition, C is an alternating
sequence of forward traversing links and backwards traversing subpaths of H. Since H is
properly colored, for C to not be a properly colored path, there must exist a link va`vb` in
C for which at least one of the equalities c(va`vb`) = c(va`va`+1) and c(va`vb`) = c(vb`−1vb`)
holds. Since G is bipartite, c(va`va`+1) = c(vb`−1vb`). Hence, for C to not be properly
colored, there must exist a link va`vb` in C where c(va`vb`) = c(va`va`+1) = c(vb`−1vb`). This
contradicts the coloring for va`vb` required by Theorem 2.2.

Corollary 2.7. Consider a 2-connected bipartite graph G on n vertices with a properly con-
nected 2-coloring c and a Hamiltonian path H = v1v2 . . . vn that is a shortest properly colored
path between v1 and vn. The chain C through H with links {vaivbi}i=z

i=0 has the following
properties: a1 = a0 + 1, bz = bz−1 + 1, and a` = b`−2 + 1 when 2 ≤ ` ≤ z.

Proof. By Theorem 2.6, C is Hamiltonian. If a1 6= a0 + 1 or bz 6= bz−1 + 1, then va0+1 or
vb(z−1)+1, respectively, is not on C, thus contradicting that C is Hamiltonian. Similarly, for
any ` where 2 ≤ ` ≤ z, if it is the case that a` 6= b`−2 + 1, then the vertices between a` and
b`−2 + 1 in H are not visited by C, again a contradiction.
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v1
va0

v2
va1

v3 v4
vb0

v5
va2

v6 v7
vb1

v8
va3

v9 v10
vb2

v11
va4

v12 v13
vb3

v14
va5

v15 v16
vb4

v17
vb5

Figure 12: Hamiltonian C through H where a1 = a0 + 1, bz = bz−1 + 1, and a` = b`−2 + 1

Having considered many of the universal features of 2-colored bipartite graphs with proper
diameter equal to one less than the number of vertices, we now introduce a new graph family
to classify such graphs. We begin by giving several definitions to describe the structure of
this new family, which we call tau graphs and denote by Tn. We then prove Theorem 2.11,
the main result of the section, in which we show a 2-connected bipartite graph G can be
2-colored to attain a proper diameter of n− 1 if and only if G is a tau graph.

Definition 2.8. Given an even cycle u1u2 . . . u2mu1, a band on the cycle is defined as a
newly inserted path of any length between vertices ui and uj where i < j and i+ j = 2m+ 2.
Label a band from ui to uj as Bi and its vertices bi1 , bi2 , . . . , bi` where bi1 = ui and bi` = uj.

u1

u2
b21

b22

u3 u4
b41

u5
b42
b43
b44

u6
b45

u7u8
b23

u1

u2 u3 u4

u5

u6u7u8

B4B2

Figure 13: Cycle C8 with bands B2 and B4

Definition 2.9. Consider an even cycle u1u2 . . . u2mu1. A tau skeleton, denoted T ∗n , is
a bipartite graph on n vertices that results from adding a single band between each pair of
vertices ui, uj where i < j and i + j = 2m + 2, so that all bands have an odd number of
vertices. We refer to u1 and um+1, the two vertices not part of a band, as the ears. The
collection of all T ∗n for a specific n will be denoted T ∗n .

Figures 14 and 15 show examples of tau skeletons, the most basic type of tau graphs.

u1

u2 u3 u4

u5

u6u7u8

Figure 14: Tau skeleton on 13 vertices

u1

u2 u3 u4 u5

u6

u7u8u9u10

Figure 15: Tau skeleton on 16 vertices
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Definition 2.10. Let T ∗n ∈ T ∗n be a tau skeleton on n vertices with vertex labeling given by
Definitions 2.8 and 2.9. A tau graph denoted by Tn is constructed by adding any number
of extra edges of the form bixbiy where 1 ≤ x < y ≤ ` to T ∗n . The collection of all possible
tau graphs for a specific natural number n is given by Tn. Note that T ∗n ⊂ Tn.

Figure 16: Tau graphs on 13 vertices

Theorem 2.11. Let G be a 2-connected bipartite graph on n vertices. Then pdiam2(G) =
n− 1 if and only if G is a tau graph.

Proof. (⇐) Let G be a tau graph on n vertices, labeled as in Definition 2.9. Since pdiam2(G)
≤ n− 1, it is only necessary to construct one 2-coloring that achieves this proper diameter
value. Define the coloring c by the following. Let c(u1u2) = c(u2u3) = · · · = c(umum+1) = 1.
Let c(um+1um+2) = c(um+2um+3) = · · · = c(u2mu1) = 2. Alternate colors on the edges of
each band Bi, starting with color 2 on bi1bi2 and ending with color 1 on bi(`−1)

bi` . Color
remaining edges of the form bixbiy , x < y, color 1 if x is odd and color 2 if x is even. This
coloring yields pdiam2(G, c) = n − 1. The proper diameter is given by pdist2(u1, um+1, c)
(see Figure 17).

u1 u5

u2 u3 u4

u6u7u8

b22
b23
b24

b32 b42

Figure 17: Tau graph on 13 vertices

(⇒) Suppose there exists a coloring c such that pdiam2(G, c) = n− 1. Then there exists
a properly colored Hamiltonian path H = v1v2 . . . vn in G where H is a shortest such path
from v1 to vn. By Theorem 2.6, the chain C through H with links {vaivbi}i=z

i=0 is a second
properly colored Hamiltonian path from v1 to vn.

Let G′ be the spanning subgraph H ∪ C of G. We now construct a tau skeleton that is
isomorphic to G′. Let T ∗n ∈ T ∗n be the tau skeleton consisting of an even cycle u1u2 . . . u2mu1
with m−1 bands where m = z+1. For 1 ≤ j ≤ m−1, the number of interior vertices on band
Bj+1 corresponds to the number of interior vertices on the subpath Haj = vajvaj+1 . . . vb(j−1)

of H. Since G is bipartite, G′ must be as well, so all bands have an odd number of vertices,
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thus satisfying the definition of a tau skeleton. The isomorphism φ : V (G′)→ V (T ∗n) is given
as follows. Let φ(va0) = u1 and φ(vb0) = u2m. If i is odd for 1 ≤ i ≤ z, then φ(vai) = ui+1

and φ(vbi) = ui+2. If i is even for 1 ≤ i ≤ z, then φ(vai) = u2m−i+1 and φ(vbi) = u2m−i (see
Figure 18).

v1
va0

v2
va1

v3 v4
vb0

v5
va2

v6 v7
vb1

v8
va3

v9 v10
vb2

v11
va4

v12 v13
vb3

v14
va5

v15 v16
vb4

v17
vb5

u1(va0)

u2
(va1)

u3
(vb1)

u4
(va3)

u5
(vb3)

u6
(va5)

u7 (vb5)

u8
(vb4)

u9
(va4)

u10
(vb2)

u11
(va2)

u12
(vb0)

b21 b31 b41 b51 b61

Figure 18: Illustration of the isomorphism with H and φ(H) highlighted

While the mapping φ shows that the tau skeleton T ∗n and G′ = H ∪C are isomorphic, it
remains to show that the original graph G is also isomorphic to some tau graph, Tn. Since
G′ is a spanning subgraph of G, both G and G′ have the same vertex set but G potentially
has more edges. Any edge vivj ∈ E(G)−E(G′) corresponds to an edge φ(vi)φ(vj) 6∈ E(T ∗n).
We must show that any such edge vivj maps to an edge φ(vi)φ(vj) that when added to T ∗n
yields a tau graph. To show this, we partition all possible edges in E(G)− E(G′).

(a) Additional edges from v1. These correspond to additional edges from u1 in Tn.

(b) Additional edges from vn. These correspond to additional edges from um+1 in Tn.

(c) Edges between vertices of non-consecutive subpaths, that is, edges between Hai and
Ha(i+j)

where j ≥ 2. These edges correspond to edges between vertices of non-consecutive
bands in Tn.

(d) Edges between interior vertices of consecutive subpaths Hai and Ha(i+1)
, which corre-

spond to edges between interior vertices of consecutive bands in Tn.

(e) Edges between endpoints of consecutive subpaths Hai and Hai+1
, that is, between ai and

ai+1 or between bi and bi+1. (Note the edges aibi and ai+1bi+1 are in the chain C and so
are already in G′ and thus are excluded from this case.)

(f) Edges between vertices in the same subpath Hai . These correspond to edges between
vertices on the same band.
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The edges described in case (f) are allowed by the definition of a tau graph and so when
added to a tau graph yield another tau graph.

We now show that any edges described in (a)-(e) violate the hypothesis that pdiam2(G, c)
= n− 1. Let the edge under consideration in the following cases be denoted vivj.

Case 1: Here we examine the edges vivj considered in (a), so suppose i = 1. If j = n,
then pdist2(v1, vn, c) = 1. If j 6= n, then proceed with the following. Let s ∈ N such that
1 ≤ s ≤ z and s is the largest integer such that as ≤ j. If c(v1vj) = c(vjvj+1), then the
proper distance from v1 to vn is given by v1vjvj−1 . . . vas+1vas and continuing from vas along
C. This path omits vb0 so it has length less than n − 1. If c(v1vj) = c(vj−1vj), then the
proper distance from v1 to vn is given by v1vjvj+1 . . . vn. This paths omits v2 so it has length
less than n − 1. Therefore, adding an edge described in (a) yields pdist2(v1, vn, c) < n − 1,
which is a contradiction. Thus, these edges can’t be added, i 6= 1, and v1 has degree 2 (see
Figure 19).

v1 v2 v3 v4 v5

v1v4

v6 v7 v8
vas

v9 v10 v11 v12 v13 v14 v15 v16 v17

v1 v2 v3 v4 v5

v1v4

v6 v7 v8
vas

v9 v10 v11 v12 v13 v14 v15 v16 v17

Figure 19: Illustration of contradiction for i = 1

Case 2: Here we examine the edges considered in (b). Suppose j = n. Since i 6= 1,
proceed with the following. If c(vivn) = c(vi−1vi), then the proper distance from v1 to vn is
given by traversing chain C until reaching vi and then taking the edge vivn. Since i 6= az,
this path omits vaz so it has length less than n − 1. If c(vivn) = c(vivi+1), then the proper
distance from v1 to vn is given by v1v2 . . . vi−1vivn. This omits vi+1 so it has length less than
n− 1. Therefore pdist2(v1, vn, c) < n− 1, which is a contradiction, so the edges in (b) can’t
be added, j 6= n, and vn has degree 2 (see Figure 20).
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v1 v2 v3 v4 v5

v14v17

v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17

v1 v2 v3 v4 v5

v14v17

v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17

Figure 20: Illustration of contradiction for j = n

Case 3: Here we examine the edges considered in (c) and (d). We will consolidate these
cases by supposing i 6= 1 and j 6= n. If c(vivj) = c(vivi+1) = c(vj−1vj), then proceed along
path H until reaching vi, take vivj, then continue along H until vn. This path omits vi+1.
If c(vivj) = c(vi−1vi) = c(vjvj+1), then proceed along C until reaching vi, take vivj, then
continue along C until vn. This path omits the vertex immediately after vi when traversing
the chain C (see Figure 21). Therefore, pdist2(v1, vn, c) < n− 1, which is a contradiction.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13

vivj
↓

v14 v15 v16 v17

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13

vivj
↓

v14 v15 v16 v17

Figure 21: Illustration of contradiction for edges between different subpaths

Case 4: Here we examine the edges considered in (e). If c(vivj) = c(vivi+1), the shorter
path is given by v1v2 . . . vivjvj+1 . . . vn and omits vi+1. If c(vivj) = c(vi−1vi) the shorter path
is given by traversing C until reaching vi, taking vivj, then continuing along C until reaching
vn. This path omits vj+1. As a result, adding this edge contradicts pdiam2(G, c) = n− 1, so
any edge in (e) cannot be added (see Figure 22).
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v1 v2 v3 v4 v5

v2v7

v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17

v1 v2 v3 v4 v5

v2v7

v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17

Figure 22: Illustration of forbidden edge between endpoints of consecutive subpaths

Since all vivj in (a)-(e) lead to contradictions, all edges in E(G) − E(G′) must fit the
form described in (f). Therefore, G is a tau graph.

3 Bipartite Families

3.1 Ladder Graphs

Theorem 3.1. Given the Ladder Graph on 2n vertices, Ln, n ≤ pdiam2(Ln, c) ≤ 2n − 2.
These bounds are tight and every intermediate proper diameter value is attainable.

Proof. Consider the Ladder Graph on 2n vertices, Ln. A proper diameter less than n is
unattainable since diam(Ln) = n ≤ pdiam2(Ln, c). By Theorem 2.11, Tau Graphs are the
only 2-connected bipartite graphs that may have a proper diameter given by a Hamiltonian
path. While ladder graphs are 2-connected and bipartite, every vertex of degree 2 in a ladder
graph is adjacent to another vertex of degree 2. This is not true of the ears of Tau Graphs,
so no Ladder Graph is isomorphic to a Tau Graph. Thus, pdiam2(Ln, c) < 2n − 1. We’ve
now proven the bounds on pdiam2(Ln, c).

Figure 23: L6 and a T12 with the degree 2 vertices highlighted to depict no isomorphism

We now work to show that all intermediate values can be attained. Let the vertices in
the top path of Ln be denoted t1, t2, . . . , tn and let the vertices in the bottom path be labeled
b1, b2, . . . , bn. We will now define colorings c0, c1, . . . , cn−2 where this gives pdiam2(Ln, ci) =
2n− 2− i for 0 ≤ i ≤ n− 2. We will continue by separating into cases.

Case 1: n is odd. Let c0 be the following coloring on Ln. Let t1b1 be red and the
remaining tmbm be blue for 2 ≤ m ≤ n. Let tmtm+1 be red for 1 ≤ m ≤ n − 1. Let b1b2 be
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blue and the remaining bmbm+1 be red for 2 ≤ m ≤ n−1. This gives pdiam2(Ln, c0) = 2n−2
because pdist2(t1, tn, c0) = 2n− 2 is the longest proper distance within Ln (See Figure 24).
Let c1 be exactly the same as c0 except tn−1tn becomes blue. This gives pdiam2(Ln, c1) =
2n− 2− 1 = 2n− 3 because pdist2(t1, bn, c1) = 2n− 3 is the longest proper distance within
Ln (See Figure 25).

t1 t2 t3 t4 t5 t6 t7

b1 b2 b3 b4 b5 b6 b7

Figure 24: pdiam2(L7, c0) = 2n− 2 = 12

t1 t2 t3 t4 t5 t6 t7

b1 b2 b3 b4 b5 b6 b7

Figure 25: pdiam2(L7, c1) = 2n− 3 = 11

Let c2 be exactly the same as c1 except bn−2bn−1 becomes blue. This gives pdiam2(Ln, c2)
= 2n − 2 − 2 = 2n − 4 because pdist2(t1, tn, c2) = 2n − 4 is the longest proper distance
within Ln. In general, for 3 ≤ i ≤ n − 2, ci will be the following. If i is odd, then ci will
be the same as ci−1 except tn−itn−i+1 becomes blue. This gives pdiam2(Ln, ci) = 2n− 2− i
because pdist2(t1, bn, ci) = 2n − 2 − i is the longest proper distance within Ln (See Figure
27). If i is even, then ci will be the same as ci−1 except bn−ibn−i+1 becomes blue. This gives
pdiam2(Ln, ci) = 2n−2−i because pdist2(t1, tn, ci) = 2n−2−i is the longest proper distance
within Ln (See Figure 26).

t1 t2 t3 t4 t5 t6 t7

b1 b2 b3 b4 b5 b6 b7

Figure 26: pdiam2(L7, c4) = 2n− 6 = 8

t1 t2 t3 t4 t5 t6 t7

b1 b2 b3 b4 b5 b6 b7

Figure 27: pdiam2(L7, c5) = 2n− 7 = 7

Case 2: n is even. Let c0 be the following coloring on Ln. Let t1b1 be red and the
remaining tmbm be blue for 2 ≤ m ≤ n. Let tmtm+1 be red for 1 ≤ m ≤ n − 1. Let b1b2 be
blue and the remaining bmbm+1 be red for 2 ≤ m ≤ n−1. This gives pdiam2(Ln, c0) = 2n−2
because pdist2(t1, bn, c0) = 2n− 2 is the longest proper distance within Ln (See Figure 28).
Let c1 be exactly the same as c0 except bn−1bn becomes blue. This gives pdiam2(Ln, c1) =
2n− 2− 1 = 2n− 3 because pdist2(t1, tn, c1) = 2n− 3 is the longest proper distance within
Ln (See Figure 29).

t1 t2 t3 t4 t5 t6

b1 b2 b3 b4 b5 b6

Figure 28: pdiam2(L6, c0) = 2n− 2 = 10

t1 t2 t3 t4 t5 t6

b1 b2 b3 b4 b5 b6

Figure 29: pdiam2(L6, c1) = 2n− 3 = 9
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Let c2 be exactly the same as c1 except tn−2tn−1 becomes blue. This gives pdiam2(Ln, c2)
= 2n − 2 − 2 = 2n − 4 because pdist2(t1, bn, c2) = 2n − 4 is the longest proper distance
within Ln. For 3 ≤ i ≤ n − 2, ci will be the following. If i is odd, then ci will be the
same as ci−1 except bn−ibn−i+1 becomes blue. This gives pdiam2(Ln, ci) = 2n− 2− i because
pdist2(t1, tn, ci) = 2n − 2 − i is the longest proper distance within Ln (See Figure 30).
If i is even, then ci will be the same as ci−1 except tn−itn−i+1 becomes blue. This gives
pdiam2(Ln, ci) = 2n − 2 − i because pdist2(t1, bn, ci) = 2n − 2 − i is the longest proper
distance within Ln (See Figure 31).

t1 t2 t3 t4 t5 t6

b1 b2 b3 b4 b5 b6

Figure 30: pdiam2(L6, c3) = 2n− 5 = 7

t1 t2 t3 t4 t5 t6

b1 b2 b3 b4 b5 b6

Figure 31: pdiam2(L6, c4) = 2n− 6 = 6

3.2 Grids

Lemma 3.2. Let G be a bipartite graph, and let w0 be a degree two vertex with two distinct
paths of length 2 to vertex w3. If w3 has degree greater than 2, then w0 is not isomorphic to
the ear of some Tau Graph Tn.

Proof. Let Q1 = w0w1w3 and Q2 = w0w2w3 be the two paths from w0 to w3 in G. Assume
by way of contradiction that there exists a Tau Graph Tn such that w0 is isomorphic to an
ear in T with isomorphism φ : G → T . Use the vertex labeling on T that is outlined in
Definition 2.9. Without loss of generality, let φ(w0) = u1, φ(w1) = u2, and φ(w2) = u2m.
Since w1 and w2 have two distinct paths of length two between them, the corresponding
band B2 in T must be length two. Note that w3 is adjacent to both w1 and w2 in G, so
φ(w3) = b22 . This is a contradiction since w3 has degree greater than 2, but b22 must have
degree two, since B2 is of length 2. Therefore, w0 is not isomorphic to an ear of Tn.

Consequently, a corner vertex of a grid cannot be mapped to an ear of a Tau graph.

w0

w1

w2

w3

u2 (w1)

u1
(w0)

u2m(w2)

b22(w3)

Figure 32: Illustration of the Isomorphism Contradiction
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Theorem 3.3. Let Gm,n be a grid. A proper diameter of nm− 1 is not attainable.

Proof. By Theorem 2.11, since Gm,n is 2-connected and bipartite, pdiam2(Gm,n) = nm − 1
is only attainable if Gm,n is isomorphic to a Tau Graph Tnm. We now show that Gm,n is not
isomorphic to Tnm.

Assume by way of contradiction that Gm,n is isomorphic to Tnm with isomorphism φ :
Gm,n → Tnm. Use the vertex labeling on Tnm that is outlined in Definition 2.9. Note that
there are four vertices in Gm,n with degree two. By Lemma 3.2, none of these vertices can
be mapped by φ to an ear. Therefore, no vertex in Gm,n can be mapped to an ear in Tnm,
so Gm,n is not isomorphic to Tnm and a proper diameter of nm− 1 is not attainable.

Theorem 3.4. For some grid Gm,n, pdiam2(Gm,n) = nm − 2 if and only if at least one of
m and n is even.

Proof. (⇒) We seek to prove the contrapositive, which says if m and n are both odd, then
a proper diameter of nm − 2 is unattainable. Consider Gm,n where m and n are both odd.
Suppose there exists a coloring c such that pdiam(Gm,n, c) = nm− 2. Therefore, there exist
s, t ∈ V (Gm,n) such that pdist2(s, t, c) = nm− 2. Let P be a properly colored path between
s and t of length nm−2. So there exists vertex z not on P . Consider graph G′ = Gm,n−{z}.
Note that G′ has nm− 1 vertices and pdiam2(G

′) = nm− 2, so P is Hamiltonian in G′. By
Theorem 2.11, if G′ is 2-connected, then it is isomorphic to some tau graph, Tnm−1. First,
suppose G′ is 2-connected. We have two cases.

Case 1: Suppose m = n = 3. If z is the degree 4 vertex in Gm,n, then G′ is a cycle, which
is not isomorphic to a tau graph. Additionally, z cannot be a degree 3 vertex because G′

would not be 2-connected. If z is a degree 2 vertex, then there do not exist two degree 2
vertices where neither is adjacent to another degree 2 vertex. Therefore, G′ is not isomorphic
to a tau graph, so at least one of n and m is not equal to 3.

Figure 33: G3,3

z

z z

Figure 34: Varying deg(z) and illustrating G′

Case 2: Suppose at most one of m and n is equal to 3. Without loss of generality, let
m ≤ n. Place the grid on a Cartesian plane such that each edge is of length 1, one corner
vertex of the grid is at (1, 1), and the grid expands into the first quadrant. Label the vertices
wx,y according to their x and y coordinates. Note that by Lemma 3.2, no corner vertex of a
grid can be mapped to an ear in a tau graph.
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w1,1

w1,2

w1,3

w2,1

w2,2

w2,3

w3,1

w3,2

w3,3

Figure 35: Illustration of Gm,n in the Cartesian Plane

Case 2.1: Suppose z is a corner vertex. Without loss of generality, assume z = w1,1.
Then w1,2 and w2,1 are the only degree 2 vertices in G′ that are not in a corner position of
Gm,n. By Lemma 3.2, w1,2 and w2,1 are the only vertices in Gm,n that can map to the ears
of Tnm−1. This is a contradiction, because there is exactly one path of length 2 between w1,2

and w2,1, while the ears of a tau graph must have either 0 or 2 paths of length 2 between
them. Therefore z cannot be a corner vertex.

Case 2.2: Suppose z is a vertex of degree three. If z is adjacent to a corner vertex, then
G′ is not two connected and this contradicts the prior supposition that G′ is two connected.
Thus z cannot be adjacent to a corner vertex. Without loss of generality, say z = wq,1 with
3 ≤ q ≤ n− 2. The proof from Lemma 3.2 still applies to all corners of G′, since each corner
still has two edge-disjoint paths to a vertex with degree greater than two. Thus, if G′ is
isomorphic to some tau graph Tnm−1 then the isomorphism maps both of wq−1,1 and wq+1,1

to ears since they are the only two remaining degree two vertices. Since 3 ≤ q ≤ n − 2,
this means wq−2,2 is defined and has degree at least three (equal to three if q = 3 and four
otherwise). Therefore wq−1,1wq−2,1wq−2,2 and wq−1,1wq−1,2wq−2,2 are two edge-disjoint paths
of length two in G′ from wq−1,1 to wq−2,2. Since wq−2,2 has degree greater than two, Lemma
3.2 shows wq−1,1 can not be mapped to an ear in Tnm−1, further contradicting that G′ is
isomorphic to some tau graph Tnm−1. Therefore z is not a vertex of degree three.

Case 2.3: Suppose z is a vertex of degree 4 with distance 2 from a corner vertex. Without
loss of generality, say z = w2,2. As noted before, the corner vertices wn,1 and wn,m cannot be
mapped to ears in Tnm−1. If m = 3 then w1,1, w2,1, w1,2, w1,3, and w2,3 are all adjacent to a
degree 2 vertex and thus cannot be mapped to ears. If m 6= 3 then w1,1, w2,1, and w1,2 are all
adjacent to a degree 2 vertex and thus cannot be mapped to ears. The corner vertex w1,m

cannot be an ear by Lemma 3.2. Therefore z cannot be a vertex of degree 4 with distance 2
from a corner vertex.

Case 2.4: Suppose z is an interior vertex of degree 4, with distance greater than 2 from
any corner vertex. If m > 3 then the removal of z cannot lower the degree of more than one
vertex to 2. Then by Lemma 3.2, there cannot be enough vertices in G′ that correspond to
ears in Tnm−1. If m = 3, then without loss of generality let z = wq,2, 3 ≤ q ≤ n − 2. Then
wq,1 and wq,3 have degree 2 and therefore must be mapped to the ears of Tnm−1. This is a
contradiction because wq,1 and wq,3 form a cut set, which can never be true of the ears of
Tnm−1. Therefore z cannot be an interior vertex of degree 4, with distance more than 2 from
any corner vertex.

Thus, z must be adjacent to a corner vertex in Gm,n, so G′ is not 2-connected. Note that
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Gm,n is bipartite and all vertices adjacent to a corner vertex are in the smaller partite set. So
the smaller partite set in G′ has two vertices fewer than the larger partite set. So there cannot
exist a Hamiltonian path in G′, which is a contradiction. Therefore, pdiam2(Gn,m) < nm−2
when n and m are both odd.

(⇐) Place Gm,n on a Cartesian plane such that each edge is of length 1, one corner vertex
of the grid is at (1, 1), and the grid expands into the first quadrant. Label the vertices wx,y

according to their x and y coordinates.
Either m or n is even. Without loss of generality, let m be even. Let G′ = G−{w2,m}. We

will construct coloring c′ such that pdiam2(G
′, c′) = mn− 2 in the following way. Consider

the Hamiltonian path

P = w1,mw1,m−1 . . . w1,1w2,1 . . . wn,1wn,2wn−1,2 . . .
w2,2w2,3w3,3 . . . wn,3 . . . wn,m−1wn,mwn−1,m . . . w4,mw3,m.

The penultimate elipsis in this construction indicates that the path traverses all the vertices
in the i-th row followed by moving up to the (i+ 1)-th row until reaching the m-th row. Let
c′(w1,mw1,m−1) = 1 and alternate between colors 1 and 2 for the remaining edges of P . By
Theorem 2.2, the colors of E(G′)− E(P ) are fixed (See Figure 36).

w1,1

w1,2

w1,3

w1,4

w2,1

w2,2

w2,3

w3,1

w3,2

w3,3

w3,4

w4,1

w4,2

w4,3

w4,4

w5,1

w5,2

w5,3

w5,4

Figure 36: Properly colored
path in G′ with coloring c′

w1,1

w1,2

w1,3

w1,4

w2,1

w2,2

w2,3

w2,4

w3,1

w3,2

w3,3

w3,4

w4,1

w4,2

w4,3

w4,4

w5,1

w5,2

w5,3

w5,4

Figure 37: Properly colored
path in G with coloring c

Let c on G be equal to c′ with the addition of c(w2,mw1,m) = c(w2,mw3,m) = c(w2,mw2,m−1)
= 2. This gives pdiam2(Gm,n, c) = mn−2 because pdist2(w1,mw3,m, c) = mn−2 is the longest
proper distance within Gm,n (See Figure 37).

Theorem 3.5. Let Gm,n be a grid. If n and m are odd, then n+m−2 ≤ pdiam2(Gm,n, c) ≤
nm− 3. These bounds are tight and every intermediate value is attainable.

Proof. By Theorem 3.3 and Theorem 3.4, pdiam2(Gm,n) ≤ nm− 3. Again, place Gm,n on a
Cartesian plane such that each edge is of length 1, one corner vertex of the grid is at (1, 1),
and the grid expands into the first quadrant. Without loss of generality, let m ≤ n and let
the side of length m extend parallel to the y-axis. Label the vertices wx,y according to their
x and y coordinates.
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To see that the upper bound is tight, define graph G′ = G−{w2,m, w2,m−1} and coloring
c′ on G′ in the following way. Consider the Hamiltonian path

P = w1,mw1,m−1 . . . w1,1w2,1 . . . wn,1wn,2wn−1,2 . . . w2,2w2,3w3,3 . . . wn,3wn,4 . . . w2,m−3w2,m−2 . . .

wn,m−2wn,m−1wn,mwn−1,mwn−1,m−1wn−2,m−1wn−2,mwn−3,mwn−3,m−1wn−4,m−1 . . . w3,m−1w3,m.

Alternate the colors of P with 1 and 2, beginning with c′(w1,mw1,m−1) = 1 and continuing for
the remaining edges. With this alternating path, G′ is properly connected. Per Theorem 2.2,
for P to be a shortest properly colored Hamiltonian path between its endpoints, there is only
one possible coloring of the edges in E(G′)−E(P ). Color these edges as such. (See Figure 38.)

w1,1

w1,2

w1,3

w1,4

w1,5

w2,1

w2,2

w2,3

w3,1

w3,2

w3,3

w3,4

w3,5

w4,1

w4,2

w4,3

w4,4

w4,5

w5,1

w5,2

w5,3

w5,4

w5,5

Figure 38: Properly colored
path in G′ with coloring c′

w1,1

w1,2

w1,3

w1,4

w1,5

w2,1

w2,2

w2,3

w2,4

w2,5

w3,1

w3,2

w3,3

w3,4

w3,5

w4,1

w4,2

w4,3

w4,4

w4,5

w5,1

w5,2

w5,3

w5,4

w5,5

Figure 39: Properly colored
path in G with coloring c

Let c on G be equal to c′ with the addition of c(w2,m−1w2,m) = c(w2,m−1w3,m−1) =
c(w2,m−1w2,m−2) = c(w2,m−1w1,m−1) = 1 and c(w2,mw1,m) = c(w2,mw3,m) = 2. This gives
pdiam2(Gm,n, c) = nm − 3 because pdist2(w1,mw3,m, c) = nm − 3 is the longest proper
distance within Gm,n (See Figure 39).

Any intermediate proper diameter value, as well as the lower bound, can be attained with
the following algorithm. We will define ca such that pdiam2(Gm,n, ca) = a for n + m − 2 ≤
a < nm − 3. Let b = a − (n + m − 2). For each a, pdiam2(Gm,n, ca) will be given by
pdist2(w1,m, wxa,ya) where

ya =

⌈
b

n− 1

⌉
+ 1, xa =

{
n− [(b− 1) mod (n− 1)] ya even

2 + [(b− 1) mod (n− 1)] ya odd

if a ≤ mn− 2n+ 1, and

ya =

{
m if (nm− 3− a) mod (4) = 0, 3

m− 1 if (nm− 3− a) mod (4) = 1, 2
, xa = 3 +

⌊
nm− 3− a

2

⌋
if a > mn− 2n+ 1.
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Note that in the previous formulas, b counts the length of the wn,1 − wxa,ya sub-path
within the properly colored w1,m − wxa,ya path. In the first case, the restriction a ≤
mn − 2n + 1 = (m − 2)n + 1 implies that ya ≤ m − 2. In this case, n − 1 counts the
number of sub-paths of the form wn,j−1wn,jwn−1,j . . . w3,jw2,j or w2,j−1w2,jw3,jw4,j . . . wn,j.
So
⌈

b
n−1

⌉
is equivalent to the number of edges in the path of the form wi,j−1wi,j, 2 ≤

j ≤ ya, and ya =
⌈

b
n−1

⌉
+ 1. To see how to obtain xa, first note that b − 1 counts the

length of the path wn,2wn−1,2 . . . wxa,ya , so n − 1 gives the number of sub-paths of the form
wn,jwn−1,j . . . w3,jw2,jw2,j+1 or w2,jw3,j . . . wn,jwn,j+1. Thus, when ya is even, (b−1) mod (n−
1) counts the length of the path wn,yawn−1,ya . . . wxa,ya , so xa = n − [(b − 1) mod (n − 1)].
When ya is odd, (b−1) mod (n−1) counts the length of the path w2,yaw3,ya . . . wxa,ya . Hence,
xa = 2 + [(b− 1) mod (n− 1)].

In the second case, a > mn− 2n+ 1 implies ya ≥ m− 1. Here, the first step in obtaining
xa is to count w2,m, w2,m−1, and the number of vertices in the w1,m − wxa,ya path of proper
diameter a, and subtract that quantity from the total number of vertices in the grid. This
gives nm−3−a, the number of vertices in the path wxa+1,ya+1wxa+2,ya+2 . . . wxnm−3,ynm−3 . Then⌊
nm−3−a

2

⌋
= xa − xnm−3. Since xnm−3 = 3, we have xa = 3 +

⌊
nm−3−a

2

⌋
. Additionally, since

nm − 3 − a counts the length of path wxnm−3,ynm−3wxnm−2,ynm−2 . . . wxa+2,ya+2wxa+1,ya+1wxa,ya

and ynm−3 = m, ya = m− 1 when (nm− 3− a) mod (4) ∈ {1, 2} and ya = m otherwise.
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wx16,y16
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Figure 40: Illustration of wxa,ya

Use the following process to form coloring ca from c for each n+m− 2 ≤ a ≤ nm− 4.

1. Let ca(w2,mw3,m) = 1.

2. If a = nm − 4, ca(w2,m−1w2,m) = 1. If a < nm − 4, ca(w2,m−1w2,m) = 2 and
wxa,yawxa+1,ya+1 changes color.

3. If a <
⌊
nm
2

⌋
− 1, change coloring such that w1,mw2,m . . . wn,m is a path of alternat-

ing color, beginning with ca(w1,mw2,m) = 2 and ending with ca(wn−1,mwn,m) = 1.
Additionally, change colors as needed such that ca(wi,jwi,j+1) = 1 if j is odd and
ca(wi,jwi,j+1) = 2 if j is even, for all 2 ≤ i ≤ n and ya < j < m.

4. If a = n+m− 2, change coloring such that ca(wn,2wn,3) = 2.
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Let C be a cycle in Gm,n containing path P and path w1,mw2,mw3,m. Let C ′ denote the
path C \ {wxa,yawxa+1,ya+1}. In this way, C ′ is a properly colored path in Gm,n containing
V (Gm,n)\{w2,m−2}. The above adaptations from coloring c to form ca ensures that (Gm,n, ca)
is properly connected. Furthermore, similar to the coloring c, the proper distance between
w1,m and wxa,ya is a. It remains to show that no longer proper distance exists in Gm,n with
coloring ca. Clearly no two vertices of the segment of C ′ between w1,m and wxa,ya have
proper distance exceeding a. Additionally, step 3 above ensures that no two vertices outside
the segment of C ′ between w1,m and wxa,ya have proper distance exceeding a, noting that
if a ≥

⌊
nm
2

⌋
− 1, then C ′ gives a properly colored path of length at most a (even if one of

the two vertices considered is w2,m−1). It only remains to consider a vertex of the segment
of C ′ between w1,m and wxa,ya and another vertex off this path. The properly colored path
between two such vertices can be constructed by traversing horizontal segments opposite the
direction implied by path P and vertical segments of Gm,n. A simple check of the coloring
construction shows that paths of this form exist.

Therefore, each ca gives pdiam2(Gm,n, ca) = a for all a ∈ [n + m − 2, nm − 4], showing
that, in addition to the upper bound, the lower bound and all intermediate proper diameter
values are attainable.

Theorem 3.6. Let Gm,n be a grid. If either n or m is even, then n+m−2 ≤ pdiam2(Gm,n, c) ≤
nm− 2. These bounds are tight and every intermediate value is attainable.

Proof. Without loss of generality, let m be even. Let a be the desired proper diameter, with
n+m− 2 ≤ a ≤ nm− 2. Place Gm,n on a Cartesian plane such that each edge is of length
1, one corner vertex of the grid is at (1, 1), and the grid expands into the first quadrant. Let
the side of length m extend parallel to the y-axis. Label the vertices wx,y according to their
x and y coordinates.

We will define ca such that pdiam2(Gm,n, ca) = a for n + m − 2 ≤ a ≤ nm − 2. Let
b = a− (n+m−2). For each a, pdiam2(Gm,n, ca) will be given by pdist2(w1,m, wxa,ya), where

ya =

⌈
b

n− 1

⌉
+ 1, xa =

{
n− (b− 1) mod (n− 1) ya even

2 + (b− 1) mod (n− 1) ya odd

Note that these formulas are the same as those in the first case of Theorem 3.5 and in
this case they apply to the entire grid.
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Figure 41: Illustration of wxa,ya
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Let cnm−2 be identical to the coloring of the grid in the backward direction of the proof
in Theorem 3.4. Define ca to be identical to cnm−2 except for the following.

If ya = m, switch the colors of the edges wi,ya−1wi,ya for 3 ≤ i ≤ xa−1. Otherwise, follow
these steps.

1. If ya is even, switch the color of edges wi,ya−1wi,ya for 2 ≤ i ≤ xa − 1.

If ya is odd, switch the color of edges wi,ya−1wi,ya for xa + 1 ≤ i ≤ n.

2. For y > ya, preserve the coloring of w1,yw2,y and alternate the colors along the path
w1,yw2,y . . . wn,y.

3. For x > 1, color wx,mwx,m−1 such that ca(wx,mwx,m−1) 6= ca(wx−1,mwx,m) and then
alternate colors along the vertical path wx,mwx,m−1 . . . wx,ya+1.

4. For x > 1, color each edge wx,ya+1wx,ya the same color as wx−1,ya+1wx,ya+1. However, if
ya ≤ 2, then color wn,ya+1wn,ya the opposite color as wn−1,ya+1wn,ya+1.

Similar to the description provided after the construction for ca in Theorem 3.5, this yields
pdiam2(Gm,n, ca) = a for all a ∈ [n + m − 2, nm − 2], so the bounds are tight and all
intermediate proper diameter values are attainable.

4 Conclusion

The work presented here is strictly related to bipartite graphs. One clear question asks
about extending the results to general 2-connected graphs. The following definitions extend
the notion of Tau graphs in this paper and motivate a conjecture about general 2-connected
graphs on n vertices with proper diameter n− 1.

Definition 4.1. Consider a tau skeleton S on a total of n vertices consisting of an even
cycle u1u2 . . . u2mu1 and bands all having an odd number of vertices (called an odd skeleton)
or an even number of vertices (called an even skeleton) labeled as in Definition 2.8. A tau
graph Tn is a family of graphs on n vertices that results from adding any or none of the
following edges to S.

• Edges of the form bixbiy where 1 ≤ x < y ≤ ` may be added on any band Bi.

• In an even skeleton, edges of the form uiu2m−(i+1) for 1 ≤ i ≤ m − 2 and uiu2m−(i−1)
for 2 ≤ i ≤ m− 1 may be added to S, and we call such an edge a lace.

We call a tau graph with an odd skeleton an odd tau graph or an odd Tn. Similarly, a tau
graph with an even skeleton is an even tau graph or an even Tn.
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Figure 42: Even T12 graphs. Laces are highlighted.

Conjecture 4.2. A 2-connected graph on n vertices has proper diameter n − 1 iff G is a
tau graph as defined in Definition 4.1.

Between the work of this paper and the above conjecture, the authors consider all 2-
connected graphs which attain the upper bound given by the result of Coll et. al. [4]. We
ask the same question of graphs on n vertices which are k-connected for 3 ≤ k ≤ n − 2.
Given a graph k-connected graph G which attains the maximum proper diameter given by
the result of Coll et al. [4], is the subgraph of G induced by the path that realizes the proper
diameter isomorphic to some tau graph presented earlier?
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