GLISP: A High-Level Language for A.l. Programming

Gordon S. Novak Jr.

Heuristic Programming Project

Computer Science Department

Stanford University

ABSTRACT

GLISP is a high-level LISP-based language which is compiled into
ISP using a knowledge base of object descriptions. Lisp objects and
objects in AL representation languages are treated uniformly; this
makes program code independent of the data representation used, and
permits changes of representation without changing code. GLISP's
object description language provides a powerful abstract datatype
facility which allows the structurcs and propertics of objects to be
deseribed. Reference to objects is permitted in an English-like syntax,
including definite reference relative to the current context of the
computation. Object-centered programming is supported. When
interfaced to a hicrarchical representation language, GLISP can
perform inheritance at compile time, resulting in substantial
performance improvements. In addition, a LISP structure can be
specified as the way of implementing a class of objects in the
representation language, making simple objects efficient in both time
and storage.
1. introduction

Progress in Al is limited by our ability to manage the complexity
inherent in A.l problems; in particular, such problems often involve
large numbers of gifferent types of objects, whose properties and
interactions must be modelicd by a program. The need to manage a
large number of object types has led to the development of a number of
A.lL representation languagcs, however, these languages have generally
suffered from two problems. Firsg while the languages provide
benefits for storage of data and inheritance of procedures, access to
objects must often be performed by low-level functions; in addition, the
type of the data retrieved must often be remembered by the
programmer. These factors make programs difficult to change after
their initial implementation. Second, hicrarchical representation
languages have achicved power in data representation at the cost of

performing data access interpretively at runtime; this has a high cost in

exccution time.

This research was supported by NSF grant SED-7912803 in the Joint National
Science Foundation - National Institute of Education Program of Rescarch on Cognitive
Processes and the Structure of Knowledge in Science and Mathematics.

GLISP solves these problems, as well as being a powerful
programming language in its own right. Data objects are described
separately from code which references the objects, making code largely
representation-independent, as well as shorter and more
understandable. Type inference is performed when features of an
object are accessed, and type information is propagated by the compiler
during compilation. A change in representation, made in only one
place, is reflected throughout the program upon recompilation. GLISP
compiles efficient code for access to object propertics. By performing
lookup of inherited properties at compile time, expanding definitions of
property access methods into open code. and using Lisp structures to
implement instances of objects described in an A.l representation
language, GI.ISP can greatly increasc the execution cfficiency of

programs using such a language.

The following example function illustrates some of the features of
GLISP:

(GIVE-RAISE (GLAMBDA ((A COMPANY))
(FOR EACH ELECTRICIAN WHO IS NOT A TRAINEE
DO (SALARY «+ (IF SENIORITY > 2
THEN 2.50 ELSE 1.50))
(PRINT THE NAME OF THE ELECTRICIAN)
(PRINT THE PRETTYFORM OF DATE-HIRED)
(PRINT MONTHLY-SALARY))))

The GLAMBDA in the function definition causes the INTERLISP
interpreter to call the GLISP compiler to incrementally compile the
function the first time it is referenced. In this example, only the fype of
the function’s argument, (A COMPANY), is specified; this argument
Since GLISP allows

definite references to features of objects which are in Context, it is not

provides an initial Context of computation.

always necessary to give variable names to objects. With a COMPANY
in Context, the definite reference to the ELECTRICIANs can be
understood by the compiler as the ELECTRICIANs of that
COMPANY. Within the FOR loop, the current ELECTRICIAN is in
Context, permitting references to SALARY, SENIORITY, etc. to be

resolved.

Proc. 2nd National Conference on Artificial Intelligence (AAAT-82),

Carnegie-Mellon University, August, 1982.

Such a function is compiled relative 10 a knowledge base of object
descriptions; the GLISP code itself is independent of the actual data
representations used. Separation of object descriptions from code
permits substantial changes to object structures with no changes to the
code. SENIORITY, for example, might be stored directly as part of an
EMPLOYEE c¢bject, or it might be computed from other properties;
for example, SENIORITY could be defined as

((THE YEAR OF (CURRENTDATE))
- (THE YEAR OF DATE-HIRED))

where (CURRENTDATE) is a function which returns the current date
and DATE-HIRED is a substructure of an EMPLOYEE. Uniform
treatment of stored and computed propertics facilitates hiding the
distinction between properties which are actually stored and those
which are computed as necded. The compiled LISP code produced by
GILISP is nearly as cefficient as hand-coded LISP; the user must pay for
compilation, but docs not incur a substantial runtime penalty.
Ordinary LISP is a subset of GLISP; normal ISP code is simply

passed through by the GLISP compiler without change.

2. Object Descriptions

An Object Description contains a Structure Description, which
describes the way an object is actually stored, Properties, which are
computed from stored values, Adjectives, which may be used as
predicates on objects, and Messages to which the object can respond.

The following example ilfustrates an object description for a VECTOR:

(VECTOR

(LIST (X INTEGER) (Y INTEGER))

PROP ((MAGNITUDE ((SQRT Xt2 + Yt2))))

ADJ ((ZERO (X IS ZERO
AND Y IS ZERO))
(NORMALIZED (MAGNITUDE = 1.0)))

MSG ((+ VECTORPLUS OPEN T)

(- VECTORDIFFERENCE OPEN T)
(PRIN1 ((PRIN1 "(")

(PRIN1 X)

(PRINT ", ™)

(PRINT Y)

(PRINT ")")))
(PRINT ((Send self PRIN1)

(TERPRI})))

The actual structurc of the object is a LIST of two INTEGERs, X
and Y. The language of Structure Descriptions allows the standard
LISP structures to be specified. Objects may be defined in terms of
other objects, and can inherit the features and behavior of component
objects. The rest of the Object Description defines Properties,

Adjectives, and Messages fur the object. The MAGNITUDE is defined

in terms of a LISP function, SQRT, whose argument is an expression
involving definite references to the X and Y componcents of the
VECTOR. Adjcctives are used in predicate expressions on objects, €.8.,
(IF THE VECTOR IS NOT NORMALIZED THEN). The
adjective NORMALIZED is casily defined using definite reference to
the property MAGNITUDE, which in wirn is defined in terms of other
properties.

3. Definite Reference and English-Like
Programming

GLISP permits English-like statements, including definite reference
to objects which are in the current computational Context. The
Context, a compile-time construct which initially contains the
arguments of a function, is propagated through the program along
contro! flow paths by the compiler. Newly referenced objects are
added to Context, so that their features may then be referenced directly.
A variable may be referenced by its name ("X") or its type ("The
ELECTRICIAN"). A substructurc or Property of an object may be
referenced in English-like forms ("The SALARY of X" or "The
SALARY" or "SALARY™) or in PASCAL-like syntax ("X:SALARY"),
The forms "The ELECTRICIAN", "The SALARY" and "SALARY"
are definite references, since the source object is unspecified; such
references are resolved by finding an object in the Context which is of
the specified type or has the specified property. Definite reference to
the member(s) of a group which satisfy a specified condition is also
allowed, asin (The Stot with SlotName = NAME) or

(Those Faculty-Members who are Tenured).

Definite reference allows programs to be shorter and more readable,
allows casy definition of object properties in terms of other properties,
and makes programs easier to modify. Definite reference is potentially
ambiguous (i.e., there could be multiple objects in the Context with a
specified property); however, in practice this has not proved to be a
problem. The ordering of the Context search by the compiler and the
user’s skill in usc of definite reference as a speaker of natural language
gencerally prevent inadvertent references; a refercnce can always be

made uhambiguous by specifying the source object.

4. Messages

Object-Centered Programming, inspired by SIMUILA[I] and
SMALLTALK [2}{3], has become increasingly popular; it views objects
as active entities which communicate by exchanging Messages. A
Message specifies the destination object, a Selector which identifies the
message type, and optional Arguments. When a message is received,
the receiving object looks up the Sclector to find a corresponding

procedure to respond to the message and cxecutes it. Typically, objects

are organized in a Class hicrarchy, so that the procedure which is used

to execute a message to an object is inherited from the object’s Class.

GLISP permits optimized compilation of Messages. An Object
Description contains the Selector and associated Response for each
message the object can receive. The Response may be either GLISP
code, which is recursively compiled: in-line, or a function name, in
which case a direct call to the function (or open code) is compiled.
Properties and Adjectives are compiled as if they were messages without
arguments. Because the Response to a message can be GLISP code
which is compiled recursively in the context of the object in question,
and which can use definite reference to access substructures and
propertics of the object, it is casy to define properties in terms of other
propertics. 1f arithmetic operators arc defined as message Selectors for
a class of objects, arithmetic expressions involving objects of that type
will be compiled as calls to the corresponding Response functions, as
illustrated in the VECTOR cxample above; open compilation of the

Responsc for operators allows the resulting code to be efficient.

5. GLISP and Knowledge Representation
Languages

An interface is provided to allow GILISP to be used with a knowledge
representation language of the user’s choice; each Class of objects in the
representation language becomes a valid type for GLISP. Use of a
representation language gives GLISP additional power, since properties
and messages can be inherited through the language’s hicrarchies, In
addition, GLISP can significantly improve runtime performance by
doing procedural inheritance at compile time and compiling a direct
call to an inherited procedure; for simple functions, open compilation
avoids the function call as well. Messages which cannot be resolved at
compile time are interpreted at runtime, as usual. Messages which in
fact specify data access can be recognized as such and can be compiled
to perform the data access directly. Representation languages often
involve structural overhead which is costly in terms of storage and
access time; the overhead encourages users of such a language to have a
mixed representation, with complex objects represented in the language
and simple objects represented as LISP structures which are
manipulated directly. GLISP allows the user to have the best of both
worlds. A LISP structure can be specified as the way of implementing a
Class of objects. While such an object appears the same as other objects
in the representation language in terms of its definition and access
language, direct ISP code is compiled for all accesses to its data values.
In this way, all objects appear uniform, but simple objects are

represented efficiently.

Recursive compilation of object properties can be used to achicve a
certain amount of automatic programming. For example, a knowledge
base can define the property DENSITY as MASS/VOLUME at a high
level, for all physical objects. If a function references the DENSITY of
a PLANET object, this definition of density will be inherited and
compiled recursively in the context of the original object, namely a
PLANET. If PLANET has SPHERE as one of its parent classes, the
definition for VOL.UME can be inherited from SPHERE. The result of
such recursive compilation is that different in-line code is compiled for
different kinds of objects from the same high-level definition of
DENSITY.

6. Discussion
GLISP provides several novel and valuable language features:
1. Object Descriptions provide a powerful abstract datatype
facility, including Propertics, Adjectives, Messages, and

operator overloading for user datatypes. Objects may be
composed from other objects, inheriting their propertics.

2. Objects in Knowledge Representation Languages, as well as
LISP objects, can be used in a uniform fashion.

3. English-like programming, including definite reference
relative to the Context, is allowed.

4. Optimized compilation is performed for access to objects in
hierarchical representation languages.
These capabilities are integrated, and reinforce cach other
synergistically. While other systems, c.g. CLISP[4] and Flavors{s]
provide some of the features of GLISP, none (to our knowledge) do so
in a way that is intcgrated and allows the user to choose the data

representation.

7. Implementation Status

GLISP [6]. including all features described in this paper, is currently
running. To date, it has been interfaced to the GIRL. representation
language, and to the object-centered representation language 1.OOPS
{7}. GLISP was originally implemented within INTERLISP; it is
currently available for INTERLISP, MACLISP, FRANZ LISP, and
UCI LISP. GLISP thus provides a high-level Lisp-based language

which is transportable across the major dialects of Lisp.

8. Example

This section illustrates how the example function discussed carlier is
compiled for a particular choice of data structures. The compiler
optimizes the iteration to avoid explicit construction of the set of
ELECTRICIANS.

(GIVE-RATSE (GLAMBDA ((A COMPANY))
(FOR EACH ELECTRICIAN WHO IS NOT A TRAINEE
DO (SALARY «+(IF SENIORITY > 2
THEN 2.5 ELSE 1.5))
(PRINT THE NAME OF THE ELECTRICIAN)
(PRINT THE PRETTYFORM OF DATE-HIRED)
(PRINT MONTHLY-SALARY))))

(GLISPOBJECTS

(COMPANY (ATOM (PROPLIST
(PRESIDENT (AN EMPLOYEE))
(EMPLOYEES (LISTOF EMPLOYEE))))

PROP ((ELECTRICTANS
((THOSE EMPLOYEES WITH
JOBTITLE="ELECTRICIAN)))))

(EMPLOYEE (LIST (NAME STRING)
(DATE-HIRED (A DATE))
(SALARY REAL)
(JOBTITLE ATOM)
(TRAINEE BOOLEAN))

PROP ((SENTORITY
((THE YEAR OF (CURRENTDATE))
~(THE YEAR OF DATE-HIRED)))
(MONTHLY-SALARY (SALARY * 174)))

ADJ ((HIGH-PAID (MONTHLY-SALARY>2000)))
ISA ((TRAINEE (TRAINEE)))

MSG ((YOURE-FIRED (SALARY « 0))))

(DATE (LIST (MONTH INTEGER)
(DAY INTEGER)

(YEAR INTEGER))

PROP ((MONTHNAME ((CAR (NTH '(January
February March April May
June July August September
October November December)
MONTH))))
(PRETTYFORM
((LIST DAY MONTHNAME YEAR)))
(SHORTYEAR (YEAR - 1800))))

With these data structure definitions, the function GIVE-RAISE is
compiled (for INTERLISP) as follows:

(GIVE-RAISE (LAMBDA (GLVAR1)
(MAPC (GETPROP GLVAR1 (QUOTE EMPLOYEES))
(FUNCTION (LAMBDA (GLVARZ)
(AND (EQ (CADDDR GLVAR2)
(QUOTE ELECTRICIAN))
(COND
{(NOT (CAR (NTH GLVARZ 5)})
[RPLACA (CDDR GLVAR2)
(PLUS (CADDR GLVAR2)
(COND
({IGREATERP (IDIFFERENCE
" (CADDR (CURRENTDATE))
(CADDR (CADR GLVAR2)))
2) 2.5)
(T 1.5]
(PRINT (CAR GLVAR2))
[PRINT (PROG ((self (CADR GLVARZ))})
(RETURN (LIST (CADR self)
(CAR (NTH (QUOTE (January
February March April May
June July August September
October November December))
(CAR self)))
(CADDR self]
(PRINT (TIMES (CADDR GLVAR2) 174]

References

1. Birtwistle, Dahl, Myhrhaug, and Nygaard, SIMULA BEGIN,
Auerbach, Philadelphia, PA, 1973

2. Ingalls, D., “The Smalltalk-76 Programming System: Design and
Implementation,” S5th - ACM Symposium on Principles of
Programming Languages, ACM, 1978, pp. 9-16.

3. Goldberg, A., et al, BYTE Magazine, Special Issue on
Smalitalk., August, 1981 .

4, Teitelman, W.Xerox Palo Alto Research Center, INTERLISP
Reference Manual, 1978.

5. Cannon, Howard 1., “Flavors: A Non-Hicrarchical Approach to
Object-Oriented Programming,” Tech. report (unnumbered),
M.LT. A.lL. Lab, Oct. 1981.

6. Novak, Gordon S., “GLISP Refcrence Manual,” Tech.
report STAN-CS-895, Computer Science Dept., Stanford Univ.,
Jan. 1982.

7. Bobrow, D.G. and Stefik, M., “The LOOPS Manual,” Tech.
report KB-VLSI-81-13, Xcrox Palo Alto Rescarch Center, 1981.

