
ACL2

A Computational Logic
for Applicative Common Lisp

ACL2 is both a programming language (Lisp subset) and
a logic for theorem proving, developed at UT.

Authors:

� Robert S. Boyer

� J Strother Moore

� Matt Kaufmann

� Warren Hunt

1



Rewrite Rules

Rewrite Rules express the fact that two things are equal,
so one can be rewritten as the other.

(defthm plus-commutes

(equal (+ x y) (+ y x)))

(defthm append-nil

(implies (true-listp x)

(equal (append x nil) x)))

(defthm member-append

(implies

(and

(true-listp x)

(true-listp y))

(iff (member e (append x y))

(or (member e x) (member e y)))))

Rewrite rules also include heuristics and loop-stopper
conditions such as a limit on backchaining.

2



Proof Techniques

ACL2 uses a variety of proof techniques:

� Rewriting

� Simplification: (true-listp ’()) = true

� Partial Evaluation: (and true q) = q

� Induction

� Backchaining

3



Uses of ACL2

ACL2 can be used to prove that a hardware
implementation meets a specification, e.g. that the AMD
X86 chip does in fact implement the X86 instruction set
(for which they have a formal specification).

For example, the result of a floating divide instruction is
correct according to the IEEE floating point specification.

4


