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Rewrite Rules

Rewrite Rules express the fact that two things are equal,
so one can be rewritten as the other.

(defthm plus-commutes

(equal (+ x y) (+ y x)))

(defthm append-nil

(implies (true-listp x)

(equal (append x nil) x)))

(defthm member-append

(implies

(and

(true-listp x)

(true-listp y))

(iff (member e (append x y))

(or (member e x) (member e y)))))

Rewrite rules also include heuristics and loop-stopper
conditions such as a limit on backchaining.
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Proof Techniques

ACL2 uses a variety of proof techniques:

� Rewriting

� Simplification: (true-listp ’()) = true

� Partial Evaluation: (and true q) = q

� Induction

� Backchaining
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Uses of ACL2

ACL2 can be used to prove that a hardware
implementation meets a specification, e.g. that the AMD
X86 chip does in fact implement the X86 instruction set
(for which they have a formal specification).

For example, the result of a floating divide instruction is
correct according to the IEEE floating point specification.
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