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The SciNapse code generation system transforms high-level descriptions of partial
differential equation problems into customized, efficient, and documented C or Fortran
code. Modelers can specify mathematical problems, solution techniques, and I/O formats
with a concise blend of mathematical expressions and keywords. An algorithm template
language supports convenient extension of the system’s built-in knowledge base.

. artial differential equations can represent the
[ essence of a broad range of problems in engi-
neering, science, and other technical fields.

Those who need to solve systems of these equa-
tions numerically, however, often do not have the right
combination of knowledge-—expertise in a technical dis-
cipline, in numerical analysis, and in computer science
or programming—to do an efficient job of it. Therefore
many researchers have been attracted to the vision of a
problem-solving environment, or PSE, that could provide
comprehensive help in solving systems of PDEs.!

‘We have worked on such PSEs for nearly 10 years, us-
ing applications ranging from wave propagation®? and
computational fluid dynamics to financial modeling.*
Our current PSE, SciNapse, focuses on code generation;
it is a system for solving scientific computing problems
without actually programming by hand, and could func-
tion as part of a larger PSE system. SciNapse has gener-
ated codes that solve

¢ the unsteady Maxwell’s equations in 3D dispersive,
anisotropic media; 5

¢ the Black-Scholes equation for valuation of multi-
ple-asset derivative securities in computational finance,
including the effects of stochastic asset price volatility

32

L 4

1070-9924/97/310.00 © 1997 IEEE

and interest rates, and discrete sampling of spot prices;
¢ nonlinear, mulddimensional, multspecies reaction dif-
fusion equations for chemical and nuclear applications; and
¢ time-domain solution of viscoelastodynamic equa-
tions in 3D anisotropic media.

SciNapse currently can generate codes that solve a wide
range of inital boundary value problems for systems of
PDEs, as well as many steady-state problems. The sys-
tem can apply finite-difference methods to any region
that can be mapped to a rectangle in any number of di-
mensions, though codes using’very high dimensions may
require excessive computational power to execute.

The codes SciNapse generates for these applications
can include features such as general coordinate transfor-
mations and grid generators, various linear solvers and
preconditioners, higher-order differencing techniques,
automatic interpolation of equation parameters from
multidimensional tabular input data, jump conditions in
both space and time dimensions, free boundaries, and im-
position of solution constraints such as positivity. Sci-
Napse currently does not have the data structures to rep-
resent finite-element solutions on unstructured grids. It
also currently lacks the knowledge to solve PDE prob-
lems with boundary element, boundary integral, or
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Monte Carlo techniques. We are in the process
of adding algorithms for solving nonlinear PDEs
and knowledge about nonlinear optmization al-
gorithms. The goal is to generate codes in which
the finite-ditference PDE solution becomes the
forward engine for solving multiparameter in-
verse problems via nonlinear optmizadon.
Crucial aspects of our PSE technology that
make it useful in practice include the specifica-
tion language, refinement of specification to
code, reporting and help systems, customization
of the environment, and the use of templates for
representing algorithms. Problem specifications
in SciNapse typically range from several lines to
a half page, and the synthesized code is usually
about 25 times the length of the specification.
On a 200-MHz personal computer, the system
generates code at about 50 lines per minute.

History and plans

The SciNapse project has evolved over about
eight years with an average of two or three com-
puter scientists as implementers and one or two
mathematicians and physicists as advisors,
testers, and users. Three of the project members
have been involved continuously. ScilNapse cur-
rently comprises approximately 75,000 lines of
Mathematica code. About half (the most rapidly
growing section) represents knowledge of math-
ematics and PDE solutions, about one quarter
is general computer science knowledge, and
about one quarter is problem-solving system
and interface support.

We originally developed the system at Schlum-
berger, focusing on oil-field applications such as
the modeling of seismic and acoustic logging
tools, with Connection Machine Fortran as a tar-
get language. Several of the generated codes, after
some hand tuning, were used in company design
projects. After founding SciComp and transfer-
ring the project to this new company, we gradually
shifted much of the focus to financial applications
such as the pricing and hedging of derivative se-
curites and the generadon of C code. The gen-
erated codes have been extensively tested, with
some in use at major investment banks.

At this point the system development is well
advanced in the financial modeling area, and
SciComp plans to release a commercial finance
product within the next year. We plan to pro-
duce PDE packages for students and profes-
sional engineers in the future.

An overview of SciNapse
A critical feature of any PSE for PDEs is hav-
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ing an easily understood, high-level problem spec-
ification language, or PSL, that supports natural
descriptions of the problem’s geometry, mathe-
matics, and desired interfaces. SciNapse’s PSL
allows problems and solution strategies to be
stated concisely and abstractly, much as one
might describe the problem to a colleague. The
language allows easy specification and modifi-
cation of input and output formats, and (op-
tonally) of solution algorithms and interfaces to
numerical libraries.

Because the specifications are at such a high
level, the synthesis system must bridge the gap
from coordinate-free mathematics to target-lan-
guage code. SciNapse has an extensive knowl-
edge base of coordinate-free constructs (such as
Laplacian), equations (such as Navier-Stokes),
discretization rules (such as Crank Nicholson),
solvers (such as preconditioned conjugate gra-
dient and SOR), optimization rules, and so on
that it applies to produce code. Users can extend
and customize the knowledge base. Using this
knowledge base, the system converts equations
into discretized, scalar components, and weaves

4

SciNapse allows users to focus on
physics and mathematics rather than
on the mechanics of combining
library components.

4

them into algorithm templates that can be spec-
ified by name. The system chooses appropriate
data structures and generates a pseudocode so-
lution that is then translated into the desired tar-
get language. Along the way, it optimizes the
mathematical problem, the abstract algorithms
and data structures, and the resulting code.
The user interface in ScilNapse consists of the
PSL, “level summaries” that track the progress
of the code generation process, an information
system or help system that contains a hyper-
linked glossary and specification language de-
scriptions, and a simple graphics display system.
ScilNapse is built on top of a general-purpose
knowledge-based system that includes objects,
rules, and the use of computer algebra (the en-
tire system is implemented in Mathematica).
Much of the algorithmic information is stored
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Geometry *)
Region[0 <= %x <= 2 &% 0 <= y <= 3 && 0 <= t <= 1,
Cartesian{{x,y},tl1;
The PDE *)

When[Interior, der[f,t] == a laplacian[f]; a == 2; SolveFor[f]];
*diffusion constant”];

variablela, Scalar, DiffusionConstant,
Boundary Condition (for full boundary) *)
When [Boundary, £ == 0];
Boundary Condition (override on one edge) *)
Whenly == 3, £ == 100;1;
Initial Condition *)
When[Initialvalue,
Parameters *)
Inline[{a}l;
Evolution Algorithm *)
Movie[frames == 5];
Discretization *)
CrankNicholson;
RelativeErrorTolerance[.01];
Double;
Solver Algorithm*)
ConjugateGradient [SSORPre[omega == 1.0, maxit == 1]1;
Runtime Interfaces *)
output [f, OneFile, Labelled,

f == 50 Sin[Pi x/2] Sin[Pi y/311:

“PCG-SSOR.dat”];

made by individual compo-
nents, and performs global
optimization of programs.
Components can be created
to have the target language,
data structures, and inter-
face needed for a particular
environment, yet be easily
modified for reuse.
Although some of Sci-
Napse’s templates generally
correspond to the modules
or objects found in conven-
tional or C++ libraries
(solvers, time-steppers, evo-
lution algorithms), the
combination of highly ab-
stract templates with code
synthesis has several impor-

Figure 1. Specification for a diffusion problem.
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as transformation rules or in extensible collec-
tions of very abstract templates.

Important features of code synthesis

Code synthesis systems such as SciNapse are
much more powerful for numerically solving
PDEs than are numerical prototyping environ-
ments such as Matlab, the classical assembly of
components from a numerical library, or even a
C++ numerical library with an intelligent front
end. SciNapse can, in fact, do all the things these
systems can do, but it is far more flexible.

A system that can automatically synthesize
code makes it possible to have specification lan-
guages of an even higher level than prototyping
languages. For example, simple keywords can
stand for known equations, algorithms, and dis-
cretzation methods. Synthesis allows the gener-
ation of efficient implementations, whereas in-
terpreted code executes slowly and may not scale
up to large data sets. Because the knowledge-
based kernel of SciNapse is a general intelligent
agent, the system could be extended in the areas
of equadon and algorithm selecton, model iden-
aficadon, and results analysis.

The combination of highly abstract ScilNapse
templates with code synthesis allows users to focus
on the physics and mathematics of problem solu-
dons rather than on the mechanics of combining
library components. This methodology allows the
use of arbitrary higher-order methods without ex-
plicit target-language representadion, validates
whether specific compositions sadsfy assumptions

tant differences. With most

libraries, vou have to write

the stencil setups or dis-
cretization routines yourself, make data-structure
decisions, and explicidy call many low-level rou-
tines to initialize, allocate, free, and finalize codes.
SciNapse’s templates are not code subroutines
that are called. Rather, they are very abstract
skeletons of algorithms (such as solvers) that are
independent of spatial dimensionality, data struc-
tures, and target language consideradons. The
system automatically generates optimized data
structures based on the automatically generated

- stencil arrays or discretized equations and uses

those data souctures in custom-generated solvers.
It automatcally optimizes control structures ac-
cording to dataflow requirements. Further global
optimization is used to generate code appropri-
ate to the specified output architecture (such as
serial, parallel, or distwibuted) and language (the
choice of which may allow array-level operations
or may affect the order of nested loops).

The ability to genérate a variety of program in-
terfaces makes synthesis especially useful for gen-
erating target codes suitable for PSEs having par-
adigms such as plug and play or dynamic
assembly. Flexible generation of interfaces also
facilitates incremental replacement of compo-
nents of legacy codes with automadcally synthe-
sized codes, retaining the high-level specifications
for modification and reuse. Easily understandable
specifications also promote cooperative use of
PSEs. Although we are quite some distance from
this full vision, high-level problem specification
with synthesis of target codes provides many op-
portunities for realizing the full power of PSEs.
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Specifying PDE problems in SciNapse
To illustrate the problem specification language,
we will describe a simple diffusion equation and
summarize how it is specified in SciNapse.

Specifying the equation

Diffusion equations have many applications,
such as modeling the cooling of electrical and
mechanical components, the diffusion of chem-
icals, and the diffusion of populations in biology.
Despite their simplicity, solving even the most
elementary diffusion equations numerically is
nontrivial. The diffusion equation specification
illustrated in the PSL (Figure 1) is often given in
textbooks in coordinate-free notaton as

of o,
So=aviy, )

where V- is the Laplacian (written lapla-
cian(] in the PSL) and 4 is the diffusion co-
efficient. When described in Cartesian coordi-
nates with x and y as spatial variables and r as the
time variable, Equation 1 becomes

o 2L 2L
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where the solution f'= f(x, y, #) is a function of
the space and time variables.

The physical region in x-y-space where the
PDE is to be solved is the simple rectangle 0 <y
<3 and 0 <x < 2. A Dirichlet boundary condi-
tion is chosen for the full boundary; that is, the
solution is set to zero on each piece of the
boundary, except where overridden by f= 100
on the y = 3 edge. Time is the infinite interval
starting at ¢ = 0, and the initial condition is

Fx, ,0)=50 sin(%?-} sm{-’f}l} 3)

Because the solution of this problem decays
rapidly to zero, we set the final time #7 to a
rather low value, say 1. The goal is to create a
movie of the solution: a sequence of 3D plots of
the solution f{x, y, t) at equally spaced times.
Figure 1 gives a problem specification that
will generate a Fortran code to solve this prob-
lem. Comments, delineated as (* cornment ¥), are
optional. The specification language mirrors a
typical mathematical specification to make it as
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natural as possible. So the statements in Figure 1
are direct wranslations of the mathematical state-
ments into specifications in the PSL. We discuss
such specifications in detail elsewhere.’

For straightforward problems, this is the most
that needs to be specified. ScilNapse makes any
remaining choices required to translate the
problem specification into a numerical code. For
example, SciNapse will select appropriate dis-
cretization methods and solvers if the specifica-
ton does not indicate what to do.

How specifications are organized

A specification typically has a mathematical
part and an interface part.

The mathematcal specificadon is organized in
an outline, with the description of the geometric
region’s parts providing the structure. Equations
can be associated with the interior, boundary and
boundary parts, and inidal dme. This outline also
provides a structure for expressing the discretiza-
tion rules to be used on particular parts of the re-
gions and for algorithms used to solve the prob-
lem. Equations have a similar parts structure
including systems of equadons, individual equa-
dons, and terms of equatons. Again, discretiza-
tions or other directives can be applied to sys-
termns, equations, Or terms.

The interface part includes the specification
of the target code language, how variables are to
be initialized (read interactively, from files, in-
lined, computed from functions, and so on), and
output formats. SciNapse can generate data ap-
propriate for use with visualization packages, it
can read and interpolate data sets, and it has a
simple interface to Mathematica’s graphics utli-
tes. The system also can generate some types of
external subroutines and calls to them. We will
extend it so that generated code can include calls
to sophisticated graphics packages, extensive ex-
ternal libraries, and complex external data sets.

A specification can occur at multiple levels, as
shown in Figure 2. Specifying at the highest
possible level of abstraction maximizes clarity of
understanding and ease of revision and opti-
mization. Most specification is done at the top
three levels in the figure. For example, the user
can simply specify keywords like Convec-
tionDiffusion to obtain the convection-dif-
fusion equation or CrankNicholson to get
the Crank-Nicholson time discretization. The
coordinate-free level allows the specification of
differential equations in terms of the divergence,
gradient, curl, and Laplacian.

Many problems require only keywords and co-
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Keyword specification of model Program refinement

gr:?/::lc;?/smathemaﬁcal Paralleling the steps an expert might take when
model programming by hand, SciNapse automatically
refines a specification in a stepwise fashion from
the most abstract level through several more
concrete levels, finally creating a numerical
code. The system constructs a complete pro-
gram description at a given level by combining
constructs from that level in the specification
with refinements of constructs from earlier lev-
els. It expands keyword specifications at the ap-
propriate process level. The mathematical and
programming constructs used during refine-
ment are represented as objects in the knowl-
edge base; transformation rules expand the key-

Coordinate-free equations

Component-form equations

Approximation/discretization

Produces

Algorithm templates computational model

Data structures

Optimizing transformations Produces

executabie model

Program/code generation

Figure 2. Levels of specification and abstraction in the SciNapse
code generation system.

=) [EEELevelbummary.nb words and more abstract constructs into
File Edit Cell Formal Input Hernel Find Window Help l elaborated constructs. After each stage, Sci-
Summary for CoordinateFree level: J|F Napse checks the problem state for consistency
ToalRegionl: N appropriate to that level of abstraction.

Global: T - .
Discretization: % First, if the PDEs, boundary conditions, or ini-
_ ;iﬁj“‘d‘d‘“‘} tial conditions are given in coordinate-free form,
: by the system refines them into component equa-
l —‘:—f ==aAlf] tions using a specific coordinate system. The re-
Eql: 7 sulting scalar equations must be transformed
D ( from condnuous to discrete form, so Scingse
{Craridlichalson) i analyzes the equations and selects appropriate
m;ggwm, discretization methods (unless overridden by
B q recommendations from the user that are consis-

When [y == 3 &x>= 0&&x <= 2, 1 tent with the rest of the specification).
B % Next comes the algorithm selection level.
o User design decisions, if given, are validated; if
When talVaiue, they are not specified or not valid, SciNapse
MR oy 4 makes the decisions based on the nature of the
= s0sal - Jow{ 7] problem. Next come data-structure decisions,
Omgm,m which the system normally makes without the
Remitfq: user’s input, based on the equations, discretiza-
Du;enmm: bt tions, and algorithm choices. SciNapse then
L (Coniicrdiy makes generic programming choices at the pro-
(CankNichclsam) 1 gram level, constructing a pseudocode from the
All7 templates as elaborated by the data-structure
| — -~

choices. Control structures and operations are
optimized at the pseudocode level. Finally, Sci-
Napse generates target-language code from the
opumized pseudocode.

Figure 3. Summary at the coordinate-free level.
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ordinate-free specifications. At the next step down,
the component level, differential equations can be
specified using a particular coordinate system for
the variables and vector components. The user
rarely specifies directly at the discrete level. Sci-
Napse refines specifications into successively lower
levels, with the final stages involving a numerical
algorithm specified in the internal programming
language that as a last step is translated into a stan-
dard compilable programming language.

“Level summaries” report on progress

After each stage of refinement, SciNapse gen-
erates a “level summary,” an output report that
enables users to see directly how their specifica-
tions were understood and integrated with the
system’s inferences. The summary strucrures re-
flect the geometric organization of the problem
specification, and like the specifications, use a
notation as close to that of traditional math as
possible. We want SciNapse to be a mathemat-
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ical partner, solving the problem with the user.

Figure 3 shows a small part of the Mathemat-
ica notebook that SciNapse produces after the
coordinate-free stage in processing the specifi-
cation in Figure 1. Here the function fin the
equations appears with no arguments in the
Laplacian expression. Users manipulate the
standard Mathematica notebook interface for
viewing and interactng with level-summary re-
ports. The menu burttons at the top show possi-
ble interactions. The nested brackets at the right
break the report contents into hierarchically
grouped cells that can be closed and opened to
show different levels of outlining. Clicking on
an active element (such as a variable or equation
name) produces a disphay elaborating that ele-
ment. Combining this sort of hyperlinking with
outlining provides flexibility without requiring
that the user remember too much context.

Figure 4 shows the component-level sum-
mary, with equations expanded into the variables
determined by the choice of a Cartesian coor-
dinate system. The Laplacian is expanded into
derivatives of the spartial coordinates. Cells
marked with downward-pointing arrowheads,
such as the line *Summary for Discrete level”
near the bottom, indicate groups that have been
closed; the visible line is the first cell of the
group. To open or close the display of a group, a
user double-clicks on its bracket.

Figure 5 shows the problem after discretiza-
tion. The derivatives have now been replaced by
difference expressions, and fis now a function
of the space and time coordinates. The values
for the solver and the evolution algorithm are
NOW present.

The general-purpose knowledge-
based system

SciNapse’s high-level specificaton language sup-
ports and encourages users in the iterative design
and experimentation so critical in problem solv-
ing. Automatically translating such specifications
into efficient code requires code synthesis.

Our code synthesis system is built on top of a
general-purpose knowledge-based system,
which we have written in Mathematica. The sys-
tem includes an integrated object system, rule
system, and planning system. It supports a
mixed decision style in which the system can
make any design decisions not specified by the
user. For instance, the system will make any dis-
cretization or algorithm choices left unspecified.
The algorithmic information is stored as trans-
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r:J {EEELevelSummary.nb *

File Edit Cell Format Input HKernel Find Window

Summary for Component level:
TotalRegioml:
Global:
Disarstization:
{CeankNichalson}
‘When[ Interier,

Diseretimation:
{CrankNicholson}

W’hgn{ Boundary,
When[ [utialValue,
Cutputs:
Diizcretization:

Summary for Discrete level:
Summary for DataStructures level:

Help {

[
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Figure 4. Summary at the component level.
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ConjugateGradient]
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=240, y, dtl + )+ f{x, ~dy +y, dtl +1] +fix, dy +v,dt]l +1] .

4

N d

Figure 5. Summary at the discrete level.

formation rules or in an extensible collection of
templates. SciNapse contains its own internal
numerical programming language that is easily
translated to commonly used languages such as
Fortran or C.
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Representation via objects and rules

SciNapse objects explicitly represent common
mathematical constructs such as a geometric re-
gion or part, a system of equations, an individual
equation, a term, or a problem variable. Objects
also represent programming constructs such as a
linear solver, a subroutine, or a program vari-
able. Objects carry attributes describing meth-
ods for elaborating the object and its properties,
attributes describing associated design decisions,
and explanatory help information.

Refinement rules detail the methods re-
ferred to in the object attributes. For example,
rules may expand keywords and abstract con-
structs, make discretizations, or check specifi-
cations for internal consistency of physical
units and tensor order.

SciNapse creates instances of objects during
the refinement process that persist through-
out the entire synthesis. Some attributes on
object instances record relationships between
objects, such as linking an equation to all the
variables it uses and linking a variable to all its
equations. Users may inspect object instances
to examine intermediate results such as an
equation’s discretization.

Explicitly represented design choices
SciNapse’s knowledge base explicitly repre-
sents design choices to be made by the user or
the system. Considering only the world of ini-
tial boundary value problems, hundreds of de-
sign choices exist, leading to thousands of pos-
sible programs. To maximize flexibility, we want
users to be able to specify any design choices
they desire, but 7oz be required to specify those
for which they have no preferences or those
that should be obvious to the system. Some
choices are simple selection among algorithms,
but the algorithms are represented as highly ab-
stract templates that are customized to the
problem. Other choices involve the method of
input (such as reading from a file, entering in-
teractively, or computing from a subroutine),
file formats, and data structures (for instance,
an array can be full, diagonal, time-indepen-
dent, stencil, and so on). These choices help in-
terface the generated code to the rest of the
PSE. Typically the system will optimize pro-
grams without advice from the specification.
"To make design choices easier for users to find
and understand and easier for developers to ex-
tend, design choices are represented by attrib-
utes on objects. For example, the Discretiza-
tonMethod attribute on an equation, system, or

term can have values such as CrankNicholson
or CentralDifference[4] (the “4” indicates fourth
order). If a design choice is identified by a
unique keyword, simply mentioning that key-
word in the appropriate “When[region, ...]”
context is sufficient (see Figure 1).

Associated with each choice can be constraint
rules, heuristic rules, and defaults. Constraints
are definite requirements on the values allowed.
They can be based on previous choices or on the
nature of the mathematical problem. For exam-
ple, some preconditioner choices can be ruled
out because of solver choices and matrix prop-
erties. Constraints cannot be ignored: violating
them will lead to incorrect codes. Heuristics are
system suggestions and can be overridden by the
specification. Defaults specify what to do in the
absence of decisions made by the heuristics or
the specification file.

The planning system

SciNapse’s planning system sets goals to in-
stantiate objects and then refine them by filling
in attributes. This includes an agenda mecha-
nism that schedules refinements and design de-
cisions for making selections such as algorithms
and data structures. The planning system uses
the method descriptions to automatically deter-
mine an ordering of refinements that ensures
that all data to make choices is in place before a
decision is considered.

Given more knowledge, the planning mech-
anism could be used in several new ways. For ex-
ample, it could derive and/or select equations or
variants thereof based on problem properties,
set up default parameters, or analyze data from
program runs.

Context-dependent code optimization
SciNapse’s internal representation of numer-
ical programs is independent of target language,
and records the maximum parallelism possible
in algorithms and equations. In this abstract rep-
resentation, context-dependent global opti-
mizations are easy and productive. These in-
clude early elimination of problem variables not
needed to compute the desired outputs, and se-
lection of optimal data structures, such as arrays
based on problem-specific stencil sizes. The sys-
temn also applies standard optimizations such as
introducing temporary variables, loop merging
and loop unrolling, and algebraic simplification.
Although the internal representation is lan-
guage-independent, the last step of optimization
before code generation does provide for target-
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language-specific optimizations. Currently Sci-
Napse generates codes in C and Fortran 77, so,
for example, loop enumerations are reversed for
C and Fortran arrays, and dynamic allocation is
available in C.

Because the parallelism inherentin a problem
solution is retained until the very last step of
code synthesis, adding architecture-specific code
generators is reasonably straightforward (at one
point we added a generator for Connection Ma-
chine Fortran, which is similar to Fortran 90).
Here, no loop enumerations will be generated
for array operations. We anticipate generating
codes for distributed architectures using lan-
guages like MPI in the future.

Extensive use of computer algebra

The availability of 2 computer algebra makes
it easy for SciNapse to estimate truncation er-
rors, compute derived quantities (such as sensi-
tivities), transform equations into general coor-
dinates, and discretize terms with arbitrarily
high-order differencing formulas. Computer al-
gebra capabilities allow the system to represent
templates independently from the problem de-
tails, yet still generate efficient code and glob-
ally optimize it—for instance, by determining
stencils from discretzed equations and by using
the knowledge about stencil shape to optimize
array representations.

Testing

Correctness of the codes generated by Sci-
Napse is ensured in several ways, both by over-
all system testing and by testing of individual
codes. We have collected a large number of test
problems for which we compare the results of
SciNapse-generated codes against analytic so-
lutions (when possible) and also against some al-
ternative computations. We have a large regres-
sion suite that we rerun whenever the system is
modified. In testing individual problems, the
equations of the specification are checked for
consistency of tensor order and physical dimen-
sions (if specified). Also, the truncation error for
the approximations is automatically computed
and inserted as a comment in the code. A nu-
merical convergence rate test wrapper is avail-
able to verify that the synthesized code performs
in accordance with the symbolically calculated
truncation error.

Customization

A knowledge-based PSE should be easy to cus-
tomize for ditferent application areas. ScilNapse’s
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PSL allows any chunk of specification language
to be put in a separate file and be called by name.
A typical use for this “macro” construct is to
specify frequently used systems of equations with
“equation generators.” Conditonal specification
keywords can provide more customization. For
example, a keyword parameter to the Navier-
Stokes equation generator can control whether
to include an internal or a total energy conser-
vation equation.

Macro invocations can include keywords and
also rules that replace any symbol with another
symbol, constant value, or expression. Such rules
can change variable names, set
variable values, substitute expres-
slons, or even pass in a set of
problem-specific state equations.

SciNapse users and develop-
ers can customize algorithms,
discretization methods, and de-
cision rules. The template lan-
guage, discussed in the next sec-
tion, enables the definition of
algorithms tailored to a specific

\ 4

Specifying a problem at
the highest possible
level of abstraction
maximizes clarity of

understanding.

application area. Language con-
structs exist to name collections
of discretization methods and to
define new ones. It is also possible to add new
constraints and heuristics on design choices.

Using the preceding constructs, developers
can define all the common names of equations,
boundary conditions, derivatives and sensitvity
terms, outputs, solvers, or any other design
choice. Application users can then write speci-
fications completely in terms of those key-
words, yielding very concise specifications that
are easy for practitioners in that application
area to understand.

Algorithm templates

Some of the expert knowledge brought to bear
in code synthesis is represented as abstract algo-
rithm templates.® These templates capture the
essentials of an algorithm; they are elaborated
with problem-specific aspects and then trans-
lated into the chosen target language. Templates
support the scalability of a PSE because they
make it easy for end users as well as developers
to add new algorithms. Many linear solvers and
other algorithms are recorded in the literature
in a form very similar to SciNapse’s templates.”®

The Template Declaration Language
Templates are defined in an algorithm de-
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Template [ConjugateGradient, SolverTemplate,

Subrout ineName [CGSolver],

LocalVars [p[SameaAs{y]), “search direction vector”],
gisameAs[yl, “image of search direction vector”],
zz [SameAs[y], “conditioned residual”],
alpha[Real, "multiple of search direction vector”],
beta[Real, “orthogonalization constant”],
rho[Real, “temporary wvariable”],
old[Real, “old value of rho”],
iter{Integer, “iteration counter”}},

Templates [Preconditioner],

Codel[r = y - svar.xx;
old = r.r;

p = 0;
Untilliter, maxit, StopCode,
comment [“Apply Preconditioner.”];
ZZ = T; )
Preconditioner|[r, svar, zz];
rho = r.zz;
beta = rho / old;
p = 2z + beta p;
g = svar.p;
alpha = p.q;
alpha = rho / alpha;
XX = XX + alpha p;
r = r - alpha q;
old = rholll;

Figure 6. Template declaration for a conjugate gradient solver.

scription language that is independent of spatial
dimensionality, data structures, and target lan-
guage considerations. The rich language of
pseudocode expressions includes various matrix
operators (for example, dot products, arithmetic
operators, transpose, norm, diagonal, and iden-
tity) and transcendental operators, as well as the
usual scalar operators for numbers and
Booleans. It also includes easily recognizable
procedural control structures. In addition to
conventional loop, while, and until constructs,
special constructs allow looping over the range
of abstractly specified subsets or supersets of ar-
ray dimensions, and mapping of operation se-
quences over variable lists. A special dimension
can be identified and loops defined over just the
special or the non-special dimensions. Some
parallel constructs record opportunities for dis-
tributed computation.

Data declarations in templates are more gen-
eral than those of Fortran or C. SciNapse’s type
annotations, rather than providing fixed storage
declarations, allow declarations in terms of con-
figurations of other variables, including those
from the problem’s equations. In this way they
resemble the autornatic data objects of Fortran 90
and avoid the need for large libraries of special
cases. Declarations can state that a new array has
the same shape as another array, or the same
shape but with some dimeénsions deleted or
added, or with dimensionality and range based
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on the ranges and shapes of other problem or
template variables.

Templates can be composed similarly to sub-
routines in a programming language. The need
for a subordinate or “called” template is indi-
cated by including the identfier in the local
“Templates” declaration. In the pseudocode, the
“call” is represented as a reference to that iden-
tifier, signifying only that some class of routine,
such as a solver or a preconditioner, is needed at
that point. The specific choice of solver or pre-
conditioner is not fixed in the calling template
declaration, but rather is a design choice. Dur-
ing synthesis, the template identifier takes on
the “value” of an instance of the subordinate
template class selected by the specification or
system’s decision mechanism. For example, in
Figure 6, we declare the identifier Precondi-
tioner. Its appearance in the code indicates
where the preconditioner call will occur. Argu-
ments to the called template may be automati-
cally inferred by rules.

SciNapse’s knowledge base represents each
template as a class in a hierarchy of template
classes. This hierarchy allows for a separation of
concern in template declarations as well as
defining families of options for various kinds of
algorithms. Among the major classes of tem-
plates are solvers, time evolution templates,
stepping algorithms, interpolatons, and inverse
problem or test wrappers (for automatically gen-
erating convergence rate testing code, for in-
stance). Using normal object inheritance, as-
pects like variables or template place holders
defined high in the hierarchy are known in all
the subclasses and need not be redeclared. For
example, in Figure 6, the StopCode declaration
is inherited by the ConjugateGradient solver
from its superclass, SolverTemplate.

A pardal class hierarchy for time evolution
templates appears in Figure 7.

Names for both variables and template place-
holders can also be drawn from other templates.
Mechanisms are available to refer to the variables
that exist in the template’s “caller” or in the Sci-
Napse problem state, and to pass information
from templates to their subordinate templates.

A template declaration can also provide an in-
dexing scheme, that is, a function that trans-
forms the generic indexing operations in the
code declaration to more concrete data repre-
sentations and operations appropriate for the
synthesized data structures.

A template declaration can include program-
ming directives such as whether the system
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should expand the template in line or encapsu-
late it as a named subroutine.

Template translation

SciNapse contains a rich collection of tem-
plates written by its developers and submitted
to the system via a translator that builds them
into the system’s knowledge base of objects and
rules. The same translator will be available to
SciNapse users, so that if the templates they
need are not already in the system, they may de-
clare them and have them incorporated as first
class objects in the synthesis environment. To
ensure that all the pieces fit together in a sensi-
ble manner, the language supports good syntax-
checking and tvpe-checking, and a variety of se-
mantic checks both at template declaradon time
and at synthesis time.

When a template is declared, the template
translator automatically creates an attribute
in the template class corresponding to each
variable that the template can access and each
subordinate template place holder; it also cre-
ates methods for filling in the values of these
attributes.

Templates during synthesis

During synthesis, ScilNapse creates an in-
stance of the selected template class and fills in
its attributes as the problem demands. Next, the
system fills in the names of the specific variables
that can be accessed by extracting them from the
problem state or from calling templates, or, in
the case of local variables, by defining variables
of the appropriate kind and shape. For the at-
tributes corresponding to template placehold-
ers, the methods instantiate the new templates,
and the process continues recursively.

In the next step of template processing, the
system builds pseudocode for the various tem-
plate instances. The work is done by methods
derived by the template translator from the code
part of the template declaration. The first step
is to fill in the pseudocode from the declaration
with the variables and code for subordinate tem-
plates previously derived. Thus, where a subor-
dinate template is called, the template code (see
later) for that template is inserted, either in-line
or as a subroutine call. The pseudocode for the
conjugate gradient solver in the diffusion exam-
ple appears in Figure 8.

Next, the indexing function, if present, is ap-
plied to the pseudocode. This function trans-
forms the abstract indexing given in the
pseudocode to a concrete form appropriate for
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EvolutionTemplate
SteadyState
TimeDependent
TimeDependentEvolve
Movie
Evolve
Motion
DiscreteEventsGeneral
TimeDependentFixed
TestingTemplate
ConvergenceRateTest
EvolveFixed
MotionFixed

Figure 7. Class hierarchy for evolution templates.

seglassignirl, gl - 8Al . xx1}],
assignioldl, rl rll, assignipl, 01,
seglassign{iterl, 1],
seqlifltoll < 8*epsl,
print[“Warning: Linear tolerance is toco small.,”
toll, “ < 8*,” epsl, “ .”], seqlll,
comment { “Compute the static stopping criteria
information”],
commentAbout [ “The norm of the right hand side,”
assignnormgl, norm[glll],

-111

Figure 8. Pseudocode for preconditioned conjugate gradient.

call[CGSolver, epsl, £, gl, iMax, jMax, SAal]

Figure 9. Template code for calling conjugate gradient.

the shape of the data structures for the particu-
lar variables in the code. No such transforma-
don is specified for the conjugate gradient solver
in our example.

Finally, if the template is to be cast into a sub-
routine, ScilNapse encapsulates its code as a
subroutine object with appropriate variable de-
clarations and replaces the pseudocode with a
call to the subroutine. This call will be incor-
porated into the code for the calling templates.
If the code is to be in line, no action is needed.
The resulting code for calling the conjugate
gradient solver in the diffusion example appears
in Figure 9.

Because SciNapse already can handle large
and complex problems, we believe that the
technologies that we have in place form the
basis of a powerful PSE to assist with the solv-
ing of initial boundary value problems for par-
tial differential equations. We plan to extend
the system to include knowledge about more
complex algorithms (such as fractional step-
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ping methods) and geometries (such as un-
structured grids). Toward this end, we con-
tinue to work on improvements to the system’s
algorithm and geometric representations as
well as adding objects and rules to the knowl-
edge base.

SciNapse has now been tested by many users:
some PDE experts, some not. A special finan-
cial package called SciFinance,* which is built
on top of SciNapse, is being used by major fi-
nancial institutions. While this preliminary test-
ing has uncovered a number of problems, none
have to do with the fundamental design of the
system. In fact, all reports indicate that the sys-
tem is easy to understand and use, and impres-
sive in what it can do. ¢
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