Solving Equations

Simple equations can be solved by search, using rules
of algebra to transform equations into equivalent forms
until an equation for the desired variable is produced.

We will think of the same data structure in several ways:

e Equation: y=m -z + 0

e List structure: (=Y (+ (*x M X) B))
or Cop lhs rhs ) recursively

e Tree:

VAN
AN
AN

e Executable code: eval can evaluate an
expression using a set of variable bindings.



Solving an Equation by Search

We can perform algebraic operations by manipulating
the list structure representation of an expression tree
(taking apart the original tree and constructing a new
tree). To solve an equation e for a desired variable v:

e Base cases:

— If the 1hs of e is v, return e.

— If the rhs of e is v, rewrite e to switch the 1hs
and rhs of e, and return that.

— If only an undesired variable or constant is on
the right, (rhs is not consp), fail by returning
null.

e Recursive case: Rewrite e using an algebraic
law, and try to solve that equation. Return the
first result that is not null.

Often, there are two possible ways to rewrite an
equation; it is necessary to try both. Thus, the
process will be a binary tree search analogous to
the robot mouse searching for cheese.



Examples: Base Cases

>(solve ’(= x 3) ’x)
(= X 3)
>(solve ’(= 3 x) ’x)
(= X 3)
>(solve (= 3 y) ’x)

NIL



Recursive Cases: Operators

The recursive case has a rhs that is an operation:

(= aCop B v))

We are hoping that the desired wvariable will be
somewhere in 3 or 7y; to get to it, we must apply some
kind of inverse operation to both sides of the equation
to get rid of op and isolate 3 or ~.

In general, there may be two inverse operations to try:.

We can produce the result of the inverse operation by
constructing a new equation from the given one, e.g.,
given:

(= a(+ £ v))

we can construct two new possibilities:

(= (- a B) v) (subtract 8 from both sides)

(= (- a v) B) (subtract v from both sides)

After making a new equation, we simply call solve to
try to solve that equation. We return the first solution
that is not null.



Recursive Tree Search

In effect, the search process will rewrite the original
equation in every possible legal way. Most of these will
not be what we want, and will fail, but one of them will
be solved for the desired variable.

>(solve (= y (+ x b)) ’x)
1> (SOLVE (=Y (+ X B)) X)
2> (SOLVE (= (- Y X) B) X)
<2 (SOLVE NIL)
2> (SOLVE (= (- Y B) X) X)

<2 (SOLVE (= X (- Y B)))
<1 (SOLVE (= X (- Y B)))

(=X (- Y B))
>(solve (= y (+ (* m x) b)) ’x)

(=X (/ (-YB) M)



Big O and Termination

We want to make sure that we cannot get into a loop
by transforming an equation endlessly.

Well-founded Ordering: If a program has an input
that is finite and gets smaller in each recursion, and the
program stops when the input reaches a lower boundary;,
then the program is guaranteed to terminate.

Our program assumes that initially the lhs is only
a single variable. Each recursive step makes the rhs
smaller.

We don’t have to worry about Big O for this problem
because the number of operations is limited by the size
of the expression tree, which is always small.



Solving a Physics Problem

With the collection of programs that we now have,
solving a physics problem becomes easy:

e Make a list (set) of the variables in the problem
(desired variable and variables whose values are
given).

e 'ind an equation that involves those variables.
e Solve the equation for the desired variable.

e evaluate the rhs of the equation for the given
values.



Solving Sets of Equations

Given:

e a set of equations

fall:

gravity ’(q 9.80665 (/ m (x s s))))

horizontal-velocity (q O (/ m s))) ; default
height (x 1/2 (% gravity (expt time 2))))
velocity (* gravity time)) ; vertical

kinetic-energy
(x 1/2 (* mass (expt total-velocity 2))))
horizontal-distance (* horizontal-velocity
time))
total-velocity
(sqrt (+ (expt velocity 2)
(expt horizontal-velocity 2))))

e a set of variables with known values:

((TIME 4))

e a variable whose value is desired: HEIGHT



Solving a Set of Equations by Search

e Try to find an equation where all variables are
known except one.

(=F (*x M A))
e Solve the equation for that variable.
(=A (/ FM)

e Substitute the known values into the right-hand side
of the solved equation (Lisp function sublis).

(= A (/8 2))

e Evaluate the resulting expression (Lisp function
eval) to give the value of the new variable. Add
that variable to the binding list.

(= A 4)

e Keep trying until you get the value of the variable
you want (or quit if you stop making any progress).



Solving Physics Story Problems

By combining the techniques we have discussed with a
simple English parser, a remarkably small Lisp program
can solve physics problems stated in English:

>(phys ’(what is the area of a circle
with radius = 2))

12.566370614359172

>(phys ’(what is the circumference of a circle
with area = 12))

12.279920495357862

>(phys ’(what is the power of a 1lift
with mass = 5 and height = 10
and time = 4))

122.583125

10



