Proceedings of the Third Annual Conference of the
Cognitive Science Society

Berkeley, California, August 1981

GLISP: AN EFFICIENT, ENGLISH-LIKE
PROGRAMMING LANGUAGE

Gordon S. Novak Jr.
Computer Sciences Department
University of Texas at Austin

Austin, Texas

1.0 INTRODUCTION

My earlier research on computer understanding
of physics problems stated in English [1,2] has
convinced me that English 1is best viewed as a
programming language. That is, an English sentence
does not contain the message to be transmitted to
the reader, but rather is a program which provides
the minimum information necessary for the reader to
construct the message from what the reader already
knows. In the case of physics problems, the size
of the model constructed by the ISAAC program is
some 30 times as large as the size of the English
sentences which specified the comstruction of that
model. Woods [3] has suggested that the need to
communicate coumplex concepts over a
bandwidth-limited serial channel (speech) was the
driving force behind the evolution of natural
language abilities in humans.

Study of the ways in which English permits
compact expression of complex ideas reveals several
features which would be useful if incorporated into
programming languages. The reader of an English
text maintains a current context, or focus [4],
which can be used to understand definite references
to objects or features of objects which are mnot
specified completely, but are closely related to
objects din the current context. For example,
consider the following sample of text:

Last night I went to Scholz”s for a beer.
The bartender asked for a ride home,
since his car was disabled. Somebody had
let the air out of the tires.

A person reading this passage can easily understand
a definite reference such as "the air”, which means
“rhe air which was contained in the tires which are
part of the car which is owned by the person who
works as a bartender at the bar named Scholz s”.
The reader has made these connections while reading
the story by using world knowledge and by
maintaining & current context relative to which
definite references to previously unmentioned
cbjects and features can be understood; each
reference to an object or feature causes tt to be
brought into the context, thus enabling further
references relative to it. The ability of the
reader to infer the connection between a definite
reference in a sentence and a “closely related”

78712

object in the current context permits the compact

specification .of complex relationships among
objects.

Another valuable feature of English is that it
provides a standard interface for communicating
information. The writer and the reader may have
very different internal representations for certain
objects, but they both have procedures for
translation between their internal representations
and corresponding English descriptioms. A related
feature is provided by "object~oriented”
programming in the SMALLTALK language [5], which is
based on the idea of Objects which communicate by
exchanging Messages. In most programming
languages, object representations are merely
storage locations; the nature of the representation
is represented implicitly in the prograums which
manipulate the storage locations. In SMALLTALK,
the internal structure of objects is hidden, and
programs cannot manipulate the internal structures
directly; instead, programs query and change values
in the objects by sending them messages, e€.g.,
“what 1s your X?" or "set your X to the value ¥y
Only the object itself knows whether it actually
has an X, or whether its X is a consequence of
other values. In addition, the object can act to
maintain its own internal consistency; for example,
changing the size of an object may require that the
object change the size of its pilcture on a display
screen. Unfortunately, SMALLTALK has been
implemented on special hardware, and has Dbeen
unavailable to most researchers.

2.0 NEED FOR ENGLISH~LIKE PROGRAMMING LANGUAGES

English-like programming provides two features
which are needed by workers in Cognitive Science
and Artificial Intelligence and which are not
provided by most existing programming languages:
brevity of expression and ease of changing
representations. In fact, these two are
i{ntertwined: the more detail one has provided
about how to perform an action on an object, the
more code one will have to change if the basic
structure of the object is to be changed. Most
existing programming languages implicitly specify
the structures. of objects within the code. For
example, in either PASCAL or CLISP [6], referencing

249

a field of a record structure requires that both
the record and a complete path from the record to
the desired field be specified in the code; if the
record structure is to be changed, all the code
which references such records will often have to be
changed also. 1In a large system, such changes are
so difficult that significant changes to data
structures are seldom possible once a large body of
code exists.

3.0 GLISP

GLISP is a LISP-based language which permits
English-like programs containing definite
references. GLISP is implemented by a compiler
which compiles GLISP programs into LISP relative to
a knowledge base which is separate from the
programs; the resulting LISP code can be further
compiled to machine language by the LISP compiler.
In GLISP, the execution of a program causes an
implicit context of computation to be constructed,
just as an English conversation causes an implicit
conversational context to be constructed in the
minds of the conversants. The context is computed
at compile time, wusing flow analysis, from the
previous context, which includes Structure
Descriptions of previously mentioned objects.
Definite references to features of objects which
are currently in context are permitted; these cause
the newly referenced objects to be added to the

context, allowing further references relative to
them. :

The initial countext within a GLISP function
consists of the arguments of the function, its PROG
variables, and any declared global variables. The
context contains, for each variable, its variable
name, reference name, and Structure Description.
When a definite reference is encountered within a
GLISP program, the compiler determines whether the
reference names such a variable or names a
substructure or feature of some variable which 1is
in context. If a substructure or feature is
referenced, the compiler determines how to get it
from the original structure; the resulting code
replaces the definite reference in the compiled
version of the program. In addition to producing
code to get the feature from the starting
structure, the compiler also determines the
Structure Description of the result. The new item
and 1its Structure Description are added to the
context, thus enabling further definite references
relative to it. When the compilation is finished,
the context structures disappear; the compiled code
contains only the LISP code necessary to perform

250

the specified actions. Thus, the code produced by
GLISP is relatively efficient; the user of GLISP
must pay for compilation, but does not incur a
runtime penalty. The GLISP compiler runs
incrementally, so that functions are compiled
automatically the first time they are called.

The following example illustrates some of the
features of GLISP. Suppose that a wicked witch
curses a grandmother by decreeing that each of her
calico cats shall age by five years. The code to
accomplish this can be written in GLISP as follows:

(CURSE (GLAMBDA ((A GRANDMOTHER)) (PROG ()
(FOR EACH CAT WITH COLOR = “CALICO
DO AGE <+ 35))3))

The GLAMBDA indicates that this 1s a GLISP
function, and causes the GLISP compiler to be
called when the function is first interpreted
(using the LAMBDATRAN feature of INTERLISP [61).
Since GLISP maintains a context and permits
definite reference, it is often unnecessary to give
names to variables; thus, we need only declare the
type of the argument, (A GRANDMOTHER). Since a
GRANDMOTHER is in context, the compiler can
determine how to access her CATs and how to
generate an appropriate loop £o examine each of
them. Within the loop, of course, the curreut CAT
is in contexr, allowing definite reference to its
features. The compiler generates the appropriate
kind of test to compare the COLOR of the CAT
against the constant “CALICO; if needed, the
constant and the operator could be coerced into the
appropriate forms. For example, “CALICO might have
several possible meanings; in the context of the
COLOR of a CAT, it could be coerced to the unique
constant “CALICO-CAT-COLOR. If the test is
satisfied, the AGE of the CAT is increased by 5;
the operator <€+, which specifies appending when
applied to lists, is interpreted as addition when
applied to numbers.

In the GLISP program, we have implied that
certain objects have certain features, e.g., that a
CAT has a COLOR, but we have said nothing about how
to get or replace the COLOR of a CAT, or about what
type of entity the COLOR actually {is. This
information 1is held separately in the knowledge
base of Structure Descriptions and other
information relative to which the program is
compiled. This makes possible significant changes
to data structures with no changes to the code — a
goal long sought in high-~level languages, but one
which has been largely unrealized for structures
lavolving pointers. GLISP can be viewed as similar
to SMALLTALK in the sense that a program does not

specify directly how to manipulate objects.
Instead of sending a message to an object, we can
think of the GLISP compiler as gemerating the code
to do what the object would do if it received such
a message. This provides some of the flexibility
of SMALLTALK with high runtime efficiency.

The GLISP compiler allows GLISP expressions
and ordinary LISP to be mixed; the user can use as
much or as little GLISP as desired. A Structure
Description language is provided for the common
LISPp data structures, and the compiler
automatically generates code to access such
structures. In addition, the compiler provides a
clean interface to one or more representation
languages; the user can use both ordinary LISP
structures and units in his favorite representation
language, accessing both in a transparent manner.
A more compact, CLISP-like syntax for GLISP
expressions is provided in addition to the
English~like syntax. The GLISP compiler, accessing
both LISP structures and our GIRL representation
language [7], is currently running.

4.0 ACKNOWLEDGMENT

This research was supported by NSF Award No.
SED-7912803 in the Joint KNational Institute of
Education - Natiomal Science Foundation Program of
Research on Cognitive Processes and the Structure
of Knowledye in Science and Mathematics.

5.0 REFERENCES

1. Novak, G., “Computer Understanding of
Physics Problems Stated in Katural
Language”, American Journal of
Computational Linguistics, Microfiche 53,
1976.

2. Novak, G., "Representations of Knowledge
in a Program for Solving Physics
Problems™, Proc. 5th 1JCAI, Cambridge,
Mass., 1977, pp. 286-291.

3. Woods, W. A., Symposium on Formal
Semantics and Natural Language Processing,
University of Texas at Austin, March,
1979.

4. Grosz, B., "The Represeatation and Use of
Focus in Dialogue Understanding”, Ph.D.
thesis, University of California,

Berkeley, 1977. Also Technical Note No.
151, SRI International, Menlo Park,
California.

Ingalls, D., "the Smalltalk-76 Programming
System: Design and Implementation”, Sth
ACM Symposium on Principles of Programming
Languages, Tucson, Arizona, January 1978.

Teitelman, W., "INTERLISP Reference
Manual”, Xerox Palo Alto Research Center,
1978.

Novak, G., "GIRL and GLISP: An Efficient

Representation Language”, submitted to
1JCAI-81.

251

