
Composing
ontra
ts:

an adventure in �nan
ial engineering

Fun
tional pearl

Simon Peyton Jones

Mi
rosoft Resear
h, Cambridge

simonpj�mi
rosoft.
om

Jean-Mar
 Eber

LexiFi Te
hnologies, Paris

jeanmar
.eber�lexifi.
om

Julian Seward

University of Glasgow

v-sewardj�mi
rosoft.
om

23rd August 2000

Abstra
t

Finan
ial and insuran
e
ontra
ts do not sound like promis-

ing territory for fun
tional programming and formal seman-

ti
s, but in fa
t we have dis
overed that insights from pro-

gramming languages bear dire
tly on the
omplex subje
t

of des
ribing and valuing a large
lass of
ontra
ts.

We introdu
e a
ombinator library that allows us to de-

s
ribe su
h
ontra
ts pre
isely, and a
ompositional denota-

tional semanti
s that says what su
h
ontra
ts are worth.

We sket
h an implementation of our
ombinator library in

Haskell. Interestingly, lazy evaluation plays a
ru
ial role.

1 Introdu
tion

Consider the following �nan
ial
ontra
t, C: the right to

hoose on 30 June 2000 between

D

1

Both of:

D

11

Re
eive $100 on 29 Jan 2001.

D

12

Pay $105 on 1 Feb 2002.

D

2

An option exer
isable on 15 De
 2000 to
hoose one of:

D

21

Both of:

D

211

Re
eive $100 on 29 Jan 2001.

D

212

Pay $106 on 1 Feb 2002.

D

22

Both of:

D

221

Re
eive $100 on 29 Jan 2001.

D

222

Pay $112 on 1 Feb 2003.

The details of this
ontra
t are not important, but it is a

simpli�ed but realisti
 example of the sort of
ontra
t that is

traded in �nan
ial derivative markets. What is important is

that
omplex
ontra
ts, su
h as C, are formed by
ombining

together simpler
ontra
ts, su
h as D

1

, whi
h in turn are

formed from simpler
ontra
ts still, su
h as D

11

, D

12

.

To appear in the International Conferen
e on Fun
-

tional Programming, Montreal, Sept 2000

At this point, any red-blooded fun
tional programmer

should start to foam at the mouth, yelling \build a
om-

binator library". And indeed, that turns out to be not only

possible, but tremendously bene�
ial.

The �nan
e industry has an enormous vo
abulary of jargon

for typi
al
ombinations of �nan
ial
ontra
ts (swaps, fu-

tures,
aps,
oors, swaptions, spreads, straddles,
aptions,

European options, Ameri
an options, ...the list goes on).

Treating ea
h of these individually is like having a large

atalogue of prefabri
ated
omponents. The trouble is that

someone will soon want a
ontra
t that is not in the
ata-

logue.

If, instead, we
ould de�ne ea
h of these
ontra
ts using

a �xed, pre
isely-spe
i�ed set of
ombinators, we would be

in a mu
h better position than having a �xed
atalogue.

For a start, it be
omes mu
h easier to des
ribe new, unfore-

seen,
ontra
ts. Beyond that, we
an systemati
ally analyse,

and perform
omputations over these new
ontra
ts, be
ause

they are des
ribed in terms of a �xed set of primitives.

The major thrust of this paper is to draw insights from the

study of fun
tional programming to illuminate the world of

�nan
ial
ontra
ts. More spe
i�
ally, our
ontributions are

the following:

� We de�ne a
arefully-
hosen set of
ombinators, and,

through an extended sequen
e of examples in Haskell,

we show that these
ombinators
an indeed be used to

des
ribe a wide variety of
ontra
ts (Se
tion 3).

� Our
ombinators
an be used to des
ribe a
ontra
t, but

we also want to pro
ess a
ontra
t. Notably, we want to

be able to �nd the value of a
ontra
t. In Se
tion 4 we

des
ribe how to give an abstra
t valuation semanti
s to

our
ombinators. A fundamentally-important property

of this semanti
s is that it is
ompositional ; that is, the

value of a
ompound
ontra
t is given by
ombining

the values of its sub-
ontra
ts.

� We sket
h an implementation of our valuation seman-

ti
s, using as an example a simple interest rate model

and its asso
iated latti
e (Se
tion 5). Lazy evaluation

turns out to be tremendously important in translating

the
ompositional semanti
s into a modular implemen-

tation (Se
tion 5.3).

Stated in this way, our work sounds like a perfe
tly rou-

tine appli
ation of the idea of using a fun
tional language

, d, u Contra
t

o Observable

t, s Date, time

k Curren
y

x Dimensionless real value

p Value pro
ess

v Random variable

Figure 1: Notational
onventions

to de�ne a domain-spe
i�

ombinator library, thereby ef-

fe
tively
reating an appli
ation-spe
i�
 programming lan-

guage. Su
h languages have been de�ned for parsers,

musi
, animations, hardware
ir
uits, and many others

[van Deursen et al., 2000℄. However, from the standpoint of

�nan
ial engineers, our language is truly radi
al: they a
-

knowledge that the la
k of a pre
ise way to des
ribe
omplex

ontra
ts is \the bane of our lives"

1

.

It has taken us a long time to boil down the immense soup

of a
tively-traded
ontra
ts into a reasonably small set of

ombinators; but on
e that is done, new vistas open up,

be
ause a single formal des
ription
an drive all manner of

automated pro
esses. For example, we
an generate s
hed-

ules for ba
k-oÆ
e
ontra
t exe
ution, perform risk analysis

optimisations, present
ontra
ts in new graphi
al ways (e.g.

de
ision trees), provide animated simulations, and so on.

This paper is addressed to a fun
tional programming audi-

en
e. We will introdu
e any �nan
ial jargon as we go.

2 Getting started

In this se
tion we will informally introdu
e our notation for

ontra
ts, and show how we
an build more
ompli
ated
on-

tra
ts out of simpler ones. We use the fun
tional language

Haskell [Peyton Jones et al., 1999℄ throughout.

2.1 A simple
ontra
t

Consider the following simple
ontra
t, known to the indus-

try as zero-
oupon dis
ount bond : \re
eive $100 on 1st Jan-

uary 2010". We
an spe
ify this
ontra
t, whi
h we name

1, thus:

1 :: Contra
t

1 = z
b t1 100 GBP

Figure 1 summarises the notational
onventions we use

throughout the paper for variables, su
h as
1 and t1 in

this de�nition.

The
ombinator z
b used in
1's de�nition has the following

type:

z
b :: Date -> Double -> Curren
y -> Contra
t

The �rst argument to z
b is a Date, whi
h spe
i�es a parti
-

ular moment in time (i.e. both date and time). We provide

a fun
tion, date, that
onverts a date expressed as a friendly

hara
ter string to a Date.

date :: String -> Date

1

The quote is from an informal response to a draft of our work

Now we
an de�ne our date t1:

t1,t2 :: Date

t1 = date "1530GMT 1 Jan 2010"

t2 = date "1200GMT 1 Feb 2010"

We will sometimes need to subtra
t dates, to get a time

di�eren
e, and add a date and a time di�eren
e to get a

new date.

type Days = Double -- A time differen
e

diff :: Date -> Date -> Days

add :: Date -> Days -> Date

We represent a time di�eren
e as a
oating-point number in

units of days (parts of days
an be important).

2.2 Combining
ontra
ts

So z
b lets us build a simple
ontra
t. We
an also
ombine

ontra
ts to make bigger
ontra
ts. A good example of su
h

a
ombining form is and, whose type is:

and :: Contra
t -> Contra
t -> Contra
t

Using and we
an de�ne
3, a
ontra
t that involves two

payments

2

:

2,
3 :: Contra
t

2 = z
b t2 200 GBP

3 =
1 `and`
2

That is, the holder of
ontra
t
3 will bene�t from a payment

of $100 at time t1, and another payment of $200 at time

t2.

In general, the
ontra
ts we
an des
ribe are between two

parties, the holder of the
ontra
t, and the
ounter-party.

Notwithstanding Bibli
al advi
e (A
ts 20.35), by default the

owner of a
ontra
t re
eives the payments, and makes the

hoi
es, spe
i�ed in the
ontra
t. This situation
an be re-

versed by the give
ombinator:

give :: Contra
t -> Contra
t

The
ontra
t give
 is simply
 with rights and obligations

reversed, a statement we will make pre
ise in Se
tion 4.2. In-

deed, when two parties agree on a
ontra
t, one a
quires the

ontra
t
, and the other simultaneously a
quires (give
);

ea
h is the other's
ounter-party. For example,
4 is a
on-

tra
t whose holder re
eives $100 at time t1, and pays $200

at time t2:

4 =
1 `and` give
2

So far, ea
h of our de�nitions has de�ned a new
ontra
t

(
1,
2, et
). It is also easy to de�ne a new
ombinator

(a fun
tion that builds a
ontra
t). For example, we
ould

de�ne andGive thus:

andGive :: Contra
t -> Contra
t -> Contra
t

andGive
 d =
 `and` give d

Now we
an give an alternative de�nition of
4 (whi
h we

built earlier):

4 =
1 `andGive`
2

2

In Haskell, a fun
tion
an be turned into an in�x operator by

en
losing it in ba
k-quotes.

2

This ability to de�ne new
ombinators, and use them just

as if they were built in, is quite routine for fun
tional pro-

grammers, but not for �nan
ial engineers.

3 Building
ontra
ts

We have now
ompleted our informal introdu
tion. In this

se
tion we will give the full set of primitives, and show how a

wide variety of other
ontra
ts
an be built using them. For

referen
e, Figure 2 gives the primitive
ombinators over
on-

tra
ts; we will introdu
e these primitives as we need them.

3.1 A
quisition date and horizon

Figure 2 gives an English-language, but quite pre
ise, de-

s
ription of ea
h
ombinator. To do so, it uses two te
hni
al

terms: a
quisition date, and horizon. We begin by intro-

du
ing them brie
y.

Our language des
ribes what a
ontra
t is. However, what

the
onsequen
es for the holder of the
ontra
t depends on

the date at whi
h the
ontra
t is a
quired, its a
quisition

date. (By \
onsequen
es for the holder" we mean the rights

and obligations that the
ontra
t
onfers on the holder of

a
ontra
t.) For example, the
ontra
t \re
eive $100 on 1

Jan 2000 and re
eive $100 on 1 Jan 2001" is worth a lot less

if a
quired after 1 Jan 2000, be
ause any rights and obliga-

tions that fall due before the a
quisition date are simply

dis
arded.

The se
ond fundamental
on
ept is that of a
ontra
t's hori-

zon, or expiry date: the horizon, or expiry date, of a
ontra
t

is the latest date at whi
h it
an be a
quired. A
ontra
t's

horizon may be �nite or in�nite. The horizon of a
ontra
t is

ompletely spe
i�ed by the
ontra
t itself: given a
ontra
t,

we
an easily work out its horizon using the de�nitions in

Figure 2. Note
arefully, though, that a
ontra
t's rights

and obligations may, in prin
iple, extend well beyond its

horizon. For example,
onsider the
ontra
t \the right to

de
ide on or before 1 Jan 2001 whether to have
ontra
t

C". This sort of
ontra
t is
alled an option. Its horizon

is 1 Jan 2001 | it
annot be a
quired after that date |

but if one a
quires it before then, the underlying
ontra
t

C may (indeed, typi
ally will) have
onsequen
es extending

well beyond 1 Jan 2001.

To reiterate, the horizon of a
ontra
t is a property of the

ontra
t, while the a
quisition date is not.

3.2 Dis
ount bonds

Earlier, we des
ribed the zero-
oupon dis
ount bond: \re-

eive $100 at time t1" (Se
tion 2.1). At that time we as-

sumed that z
b was a primitive
ombinator, but in fa
t it

isn't. It is obtained by
omposing no fewer than four more

primitive
ombinators. We begin with the one
ombinator:

5 = one GBP

Figure 2 gives a
areful, albeit informal, de�nition of one:

if you a
quire (one GBP), you immediately re
eive $1. The

ontra
t has an in�nite horizon; that is, there is no restri
-

tion on when you
an a
quire this
ontra
t.

But the bond we want pays $100 at t1, and no earlier,

regardless of when the bond itself is a
quired. To obtain

this e�e
t we use two other
ombinators, get and trun
ate,

thus:

6 = get (trun
ate t1 (one GBP))

(trun
ate t
) is a
ontra
t that trims
's horizon so that

it
annot be a
quired any later than t. (get
) is a
on-

tra
t that, when a
quired, a
quires the underlying
ontra
t

 at
's horizon | that is, at the last possible moment |

regardless of when the
omposite
ontra
t (get
) is a
-

quired. The
ombination of the two is exa
tly the e�e
t

we want, sin
e the horizon of (trun
ate t1 (one GBP)) is

exa
tly t1. Like one, get and trun
ate are de�ned in Fig-

ure 2.

We are still not �nished. The bond we want pays $100

not $1. We use the
ombinator s
aleK to \s
ale up" the

ontra
t, thus:

7 = s
aleK 100 (get (trun
ate t1 (one GBP)))

We will de�ne s
aleK shortly, in Se
tion 3.3. It has the type

s
aleK :: Double -> Contra
t -> Contra
t

To a
quire (s
aleK x
) is to a
quire
, but all the pay-

ments and re
eipts in
 are multiplied by x. So we
an,

�nally, de�ne z
b
orre
tly:

z
b :: Date -> Double -> Curren
y -> Contra
t

z
b t x k = s
aleK x (get (trun
ate t (one k)))

This de�nition of z
b e�e
tively extends our repertoire of

ombinators, just as andGive did in Se
tion 2.2, only more

usefully. We will
ontinually extend our library of
ombina-

tors in this way.

Why did we go to the trouble of de�ning z
b in terms of

four
ombinators, rather than making it primitive? Be
ause

it turns out that s
aleK, get, trun
ate, and one are all in-

dependently useful. Ea
h embodies a distin
t pie
e of fun
-

tionality, and by separating them we signi�
antly simplify

the semanti
s and enri
h the algebra of
ontra
ts (Se
tion 4).

The
ombinators we present are the result of an extended,

iterative pro
ess of re�nement, leading to an interlo
king

set of de
isions | programming language designers will be

quite familiar with this pro
ess.

3.3 Observables and s
aling

A real
ontra
t often mentions quantities that are to be mea-

sured on a parti
ular date. For example, a
ontra
t might

say \re
eive an amount in dollars equal to the noon Centi-

grade temperature in Los Angeles"; or \pay an amount in

pounds sterling equal to the 3-month LIBOR spot rate

3

mul-

tiplied by 100". We use the term observable for an obje
tive,

but perhaps time-varying, quantity. By \obje
tive" we mean

that at any parti
ular time the observable has a value that

both parties to the
ontra
t will agree. The temperature in

Los Angeles
an be obje
tively measured; but the value to

me of insuring my house is subje
tive, and is not an observ-

able. Observables are thus a di�erent \kind of thing" from

ontra
ts, so we give them a di�erent type:

3

The LIBOR spot rate is published daily in the �nan
ial press. For

present purposes it does not matter what it means; all that matters

is that it is an observable quantity.

3

zero :: Contra
t

zero is a
ontra
t that may be a
quired at any

time. It has no rights and no obligations, and

has an in�nite horizon. (Se
tion 3.4.)

one :: Curren
y -> Contra
t

(one k) is a
ontra
t that immediately pays the

holder one unit of the
urren
y k. The
ontra
t

has an in�nite horizon. (Se
tion 3.2.)

give :: Contra
t -> Contra
t

To a
quire (give
) is to a
quire all
's rights

as obligations, and vi
e versa. Note that for a

bilateral
ontra
t q between parties A and B, A

a
quiring q implies that B a
quires (give q).

(Se
tion 2.2.)

and :: Contra
t -> Contra
t -> Contra
t

If you a
quire (
1 `and`
2) then you immedi-

ately a
quire both
1 (unless it has expired) and

2 (unless it has expired). The
omposite
on-

tra
t expires when both
1 and
2 expire. (Se
-

tion 2.2.)

or :: Contra
t -> Contra
t -> Contra
t

If you a
quire (
1 `or`
2) you must immedi-

ately a
quire either
1 or
2 (but not both). If

either has expired, that one
annot be
hosen.

When both have expired, the
ompound
ontra
t

expires. (Se
tion 3.4.)

trun
ate :: Date -> Contra
t -> Contra
t

(trun
ate t
) is exa
tly like
 ex
ept that it

expires at the earlier of t and the horizon of
.

Noti
e that trun
ate limits only the possible a
-

quisition date of
; it does not trun
ate
's rights

and obligations, whi
h may extend well beyond

t. (Se
tion 3.4.)

then :: Contra
t -> Contra
t -> Contra
t

If you a
quire (
1 `then`
2) and
1 has not

expired, then you a
quire
1. If
1 has expired,

but
2 has not, you a
quire
2. The
ompound

ontra
t expires when both
1 and
2 expire.

(Se
tion 3.5.)

s
ale :: Obs Double -> Contra
t -> Contra
t

If you a
quire (s
ale o
), then you a
quire

at the same moment, ex
ept that all the rights

and obligations of
 are multiplied by the value

of the observable o at the moment of a
quisition.

(Se
tion 3.3.)

get :: Contra
t -> Contra
t

If you a
quire (get
) then you must a
quire

at
's expiry date. The
ompound
ontra
t ex-

pires at the same moment that
 expires. (Se
-

tion 3.2.)

anytime :: Contra
t -> Contra
t

If you a
quire (anytime
) you must a
quire
,

but you
an do so at any time between the a
qui-

sition of (anytime
) and the expiry of
. The

ompound
ontra
t expires when
 does. (Se
-

tion 3.5.)

Figure 2: Primitives for de�ning
ontra
ts

noonTempInLA :: Obs Double

libor3m :: Obs Double

In general, a value of type Obs d represents a time-varying

quantity of type d.

In the previous se
tion we used s
aleK to s
ale a
ontra
t

by a �xed quantity. The primitive
ombinator s
ale s
ales

a
ontra
t by a time-varying value, that is, by an observable:

s
ale :: Obs Double -> Contra
t -> Contra
t

With the aid of s
ale we
an de�ne the (strange but re-

alisti
)
ontra
t \re
eive an amount in dollars equal to the

noon Centigrade temperature in Los Angeles":

8 = s
ale noonTempInLA (one USD)

Again, we have to be very pre
ise in our de�nitions. Exa
tly

when is the noon temperature in LA sampled? Answer (in

Figure 2): when you a
quire (s
ale o
) you immediately

a
quire
, s
aling all the payments and re
eipts in
 by the

value of the observable o sampled at the moment of a
quisi-

tion. So we sample the observable at a single, well-de�ned

moment (the a
quisition date) and then use that single num-

ber to s
ale the subsequent payments and re
eipts in
.

A very useful observable is one that has the same value at

every time:

konst :: a -> Obs a

With its aid we
an de�ne s
aleK:

s
aleK :: Double -> Contra
t -> Contra
t

s
aleK x
 = s
ale (konst x)

Any arithmeti

ombination of observables is also an observ-

able. For example, we may write:

ntLAinKelvin :: Obs Double

ntLAinKelvin = noonTempInLA + konst 373

We
an use the addition operator, (+), to add two observ-

ables, be
ause observables are an instan
e of the Num
lass

4

,

whi
h has operations for addition, subtra
tion, multipli
a-

tion, and so on:

instan
e Num a => Num (Obs a)

(Readers who are unfamiliar with Haskell's type
lasses need

not worry | all we need is that we
an employ the usual

arithmeti
 operators for observables.) These observables

and their operations are, of
ourse, reminis
ent of Fran's

behaviours [Elliott and Hudak, 1997℄. Like Fran, we pro-

vide
ombinators for lifting fun
tions to the observable level,

lift, lift2, et
. Figure 3 gives the primitive
ombinators

over observables.

4

And indeed all the other numeri

lasses, su
h as Real,

Fra
tional, et

4

konst :: a -> Obs a

(konst x) is an observable that has value x at

any time.

lift :: (a -> b) -> Obs a -> Obs b

(lift f o) is the observable whose value is the

result of applying f to the value of the observable

o.

lift2 :: (a->b->
) -> Obs a -> Obs b -> Obs

(lift2 f o1 o2) is the observable whose value

is the result of applying f to the values of the

observables o1 and o2.

instan
e Num a => Num (Obs a)

All numeri
 operations lift to the Obs type. The

implementation is simple, using lift and lift2.

time :: Date -> Obs Days

The value of the observable (time t) at time s

is the number of days between s and t, positive

if s is later than t.

There may be an arbitrary number of other primitive

observables provided by a parti
ular implementation.

For example:

libor :: Curren
y -> Days -> Days -> Obs Double

(libor k m1 m2) is an observable equal, at any

time t, to the quoted forward (a
tuarial) rate in

urren
y k over the time interval t `add` m1 to

t `add` m2.

Figure 3: Primitives over observables

3.4 European options

Mu
h of the subtlety in �nan
ial
ontra
ts arises be
ause the

parti
ipants
an exer
ise
hoi
es. We en
apsulate
hoi
e in

two primitive
ombinators, or and anytime. The former al-

lows one to
hoose whi
h of two
ontra
ts to a
quire (this

se
tion), while the latter allows one to
hoose when to a
-

quire it (Se
tion 3.5).

First, we
onsider the
hoi
e between two
ontra
ts:

or :: Contra
t -> Contra
t -> Contra
t

When you a
quire the
ontra
t (
1 `or`
2), you must im-

mediately a
quire either
1 or
2 (but not both). Clearly,

1
an only be
hosen at or before
1's horizon, and sim-

ilarly for
2. The horizon for (
1 `or`
2) is the latest

of the horizons of
1 and
2. A
quiring this
omposite
on-

tra
t, for example, after
1's horizon but before
2's horizon

means that you
an only \
hoose" to a
quire
ontra
t
2.

For example, the
ontra
t

z
b t1 100 GBP `or` z
b t2 110 GBP

gives the holder the right, if a
quired before min(t1; t2), to

hoose immediately either to re
eive $100 at t1, or alterna-

tively to re
eive $110 at t2.

A so-
alled European option gives the right to
hoose, at a

parti
ular date, whether or not to a
quire an \underlying"

ontra
t:

european :: Date -> Contra
t -> Contra
t

For example,
onsider the
ontra
t
5:

5 = european (date "24 Apr 2003") (

z
b (date "12 May 2003") 0.4 GBP `and`

z
b (date "12 May 2004") 9.3 GBP `and`

z
b (date "12 May 2005") 109.3 GBP `and`

give (z
b (date "26 Apr 2003") 100 GBP)

)

This
ontra
t gives the right to
hoose, on 24 Apr 2003,

whether or not to a
quire an underlying
ontra
t
onsisting

of three re
eipts and one payment. In the �nan
ial industry,

this kind of
ontra
t is indeed
alled a
all on a
oupon

bond, giving the right, at a future date, to buy a bond for a

pres
ribed pri
e. As with z
b, we de�ne european in terms

of simpler elements:

european :: Date -> Contra
t -> Contra
t

european t u = get (trun
ate t (u `or` zero))

You
an read this de�nition as follows:

� The primitive
ontra
t zero has no rights or obliga-

tions:

zero :: Contra
t

� The
ontra
t (u `or` zero) expresses the
hoi
e be-

tween a
quiring u and a
quiring nothing.

� We trim the horizon of the
ontra
t (u `or` zero) to

t, using the primitive
ombinator trun
ate (Figure 2).

� Finally, we use our get
ombinator to a
quire it at that

horizon.

We will repeatedly en
ounter the pattern

(trun
ate t (u `or` zero)), so we will pa
kage it

up into a new
omposite
ombinator:

perhaps :: Date -> Contra
t -> Contra
t

perhaps t u = trun
ate t (u `or` zero)

3.5 Ameri
an options

The or
ombinator lets us
hoose whi
h of two
ontra
ts to

a
quire. Let us now
onsider the
hoi
e of when to a
quire

a
ontra
t:

anytime :: Contra
t -> Contra
t

A
quiring the
ontra
t anytime u gives the right to a
quire

the \underlying"
ontra
t u at any time, from a
quisition

date of anytime u up to u's horizon. However, note that u

must be a
quired, albeit perhaps at the latest possible date.

An Ameri
an option o�ers more
exibility than a European

option. Typi
ally, an Ameri
an option
onfers the right

to a
quire an underlying
ontra
t at any time between two

dates, or not to do so at all. Our �rst (in
orre
t) attempt

to de�ne su
h a
ontra
t might be to say:

ameri
an :: (Date,Date) -> Contra
t -> Contra
t

ameri
an (t1,t2) u -- WRONG

= anytime (perhaps t2 u)

5

but that is obviously wrong be
ause it does not mention t1.

We have to arrange that if we a
quire the Ameri
an
ontra
t

before t1 then the bene�ts are the same as if we a
quired it

at t1. So our next attempt is:

ameri
an (t1,t2) u -- WRONG

= get (trun
ate t1 (anytime (perhaps t2 u)))

But that is wrong too, be
ause it does not allow us to a
quire

the Ameri
an
ontra
t after t1. We really want to say \until

t1 you get this, and after t1 you get that". We
an express

this using the then
ombinator:

ameri
an (t1,t2) u

= get (trun
ate t1 opt) `then` opt

where

opt :: Contra
t

opt = anytime (perhaps t2 u)

We give the intermediate
ontra
t opt an (arbitrary) name

in a where
lause, be
ause we need to use it twi
e. The new

ombinator then is de�ned as follows: if you a
quire the

ontra
t (
1 `then`
2) before
1 expires then you a
quire

1, otherwise you a
quire
2 (unless it too has expired).

3.6 Summary

We have now given the
avour of our approa
h to de�ning

ontra
ts. The
ombinators we have de�ned so far are not

enough to des
ribe all the
ontra
ts that are a
tively traded,

and we are extending the set in ongoing work. However, our

main
on
lusions are una�e
ted:

� Finan
ial
ontra
ts
an be des
ribed in a purely de
lar-

ative way.

� A huge variety of
ontra
ts
an be des
ribed in terms

of a small number of
ombinators.

Identifying the \right" primitive
ombinators is quite a
hal-

lenge. For example, it was a breakthrough to identify and

separate the two forms of
hoi
e, or and anytime, and en
ap-

sulate those
hoi
es (and nothing else) in two
ombinators.

4 Valuation

We now have at our disposal a ri
h language for des
ribing

�nan
ial
ontra
ts. This is already useful for
ommuni
at-

ing between people | the industry la
ks any su
h pre
ise

notation. But in addition, a pre
ise des
ription lends itself

to automati
 pro
essing of various sorts. From a single
on-

tra
t des
ription we may hope to generate legal paperwork,

pi
tures, s
hedules and more besides. The most immediate

question one might ask about a
ontra
t is, however, what

is it worth? That is, what would I pay to own the
ontra
t?

It is to this question that we now turn.

We will express
ontra
t valuation in two \layers":

Abstra
t evaluation semanti
s. First, we will show how

to translate an arbitrary
ontra
t, written in our

language, into a value pro
ess, together with a

handful of operations over these pro
esses. These

pro
esses
orrespond dire
tly to the mathemati
al

and sto
hasti
 ma
hinery used by �nan
ial experts

[Revuz and Yor, 1991, Musiela and Rutkowski, 1997℄.

Con
rete implementation. A pro
ess is an abstra
t

mathemati
al value. To make a
omputer
al
ulate

with pro
esses we have to represent them somehow

| this is the step from abstra
t semanti
s to
on-

rete implementation. An implementation will
onsist

of a �nan
ial model, asso
iated to some dis
rete nu-

meri
al method. A tremendous number of di�erent

�nan
ial models are used today; but only three fam-

ilies of numeri
al methods are widely used in industry:

partial di�erential equations [Willmot et al., 1993℄,

Monte Carlo [Boyle et al., 1997℄ and latti
e methods

[Cox et al., 1979℄.

This approa
h is strongly reminis
ent of the way in whi
h a

ompiler is typi
ally stru
tured. The program is �rst trans-

lated into a low-level but ma
hine-independent intermediate

language; many optimisations are applied at this level; and

then the program is further translated into the instru
tion

set for the desired pro
essor (Pentium, Spar
, or whatever).

In a similar way, we
an transform a
ontra
t into a value

pro
ess, apply meaning-preserving optimising transforma-

tions to this intermediate representation, before
omputing

a value for the pro
ess. This latter step
an be done inter-

pretatively, or one
ould imagine generating spe
ialised
ode

that, when run, would perform the valuation.

Indeed, our abstra
t semanti
s serves as our referen
e model

for what it means for two
ontra
ts to be the same. For

example, here are two
laims:

get (get
) = get

give (
1 `or`
2) = give
1 `or` give
2

In fa
t, the �rst is true, and the se
ond is not, but how

do we know for sure? Answer: we
ompare their valuation

semanti
s, as we shall see in Se
tion 4.6.

4.1 Value pro
esses

De�nition 1 (Value pro
ess.) A value pro
ess, p, over

type a, is a partial fun
tion from time to a random variable

of type a. The random variable p(t) des
ribes the possible

values for p at time t. We write the informal type de�nition

PR a = DAT E ,!RV a

(We use
aligraphi
 font for types at the semanti
 level.) Be-

ause we need to work with di�erent pro
esses but de�ned on

the same \underlying spa
e" (�ltration), su
h a value pro-

ess is more pre
isely des
ribed as an adapted sto
hasti
 pro-

ess, given a �ltration. Su
h pro
esses
ome equipped with

a sophisti
ated mathemati
al theory [Revuz and Yor, 1991,

Musiela and Rutkowski, 1997℄, but it is unlikely to be fa-

miliar to
omputer s
ientists, so we only present informal,

intuitive notions. We usually abbreviate \value pro
ess"

to simply \pro
ess". Be warned, though: \pro
ess" and

\variable" mean quite di�erent things to their
onventional

omputer s
ien
e meanings.

Both
ontra
ts and observables are modeled as pro
esses.

The underlying intuition is as follows:

6

E

k

[[℄℄ : Contra
t ! PR R

(E1) E

k

[[give
℄℄ = �E

k

[[
℄℄

(E2) E

k

[[
1 `and`
2℄℄ = E

k

[[
1℄℄ + E

k

[[
2℄℄ on ft j t � H(
1) ^ t � H(
2)g

E

k

[[
1℄℄ on ft j t � H(
1) ^ t > H(
2)g

E

k

[[
2℄℄ on ft j t > H(
1) ^ t � H(
2)g

(E3) E

k

[[
1 `or`
2℄℄ = max(E

k

[[
1℄℄; E

k

[[
2℄℄) on ft j t � H(
1) ^ t � H(
2)g

E

k

[[
1℄℄ on ft j t � H(
1) ^ t > H(
2)g

E

k

[[
2℄℄ on ft j t > H(
1) ^ t � H(
2)g

(E4) E

k

[[o `s
ale`
℄℄ = V[[o℄℄ � E

k

[[
℄℄

(E5) E

k

[[zero℄℄ = K0

(E6) E

k

[[trun
ate T
℄℄ = E

k

[[
℄℄ on ft j t � Tg

(E7) E

k

[[
1 `then`
2℄℄ = E

k

[[
1℄℄ on ft j t � H(
1)g

E

k

[[
2℄℄ on ft j t > H(
1)g

(E8) E

k

[[one k2℄℄ = ex
h

k

(k2)

(E9) E

k

[[get
℄℄ = dis

H(
)

k

(E

k

[[
℄℄(H(
))) if H(
) 6=1

(E10) E

k

[[anytime
℄℄ = snell

H(
)

k

(E

k

[[
℄℄) if H(
) 6=1

Figure 4: Compositional evaluation semanti
s for
ontra
ts

V[[℄℄ : Obs a ! PR a

V[[konst x℄℄ = K(x)

V[[time s℄℄ = time(s)

V[[lift f o℄℄ = lift(f;V[[o℄℄)

V[[lift2 f o1 o2℄℄ = lift2(f;V[[o1℄℄;V[[o2℄℄)

V[[libor k m1 m2℄℄ = ...omitted

Figure 5: Evaluation semanti
s for observables

� The value pro
ess for an observable omaps a time t to a

random variable des
ribing the possible values of o at t.

For example, the value pro
ess for the observable \IBM

sto
k pri
e in US$" is a (total) fun
tion that maps a

time to a real-valued random variable that des
ribes

the possible values of IBM's sto
k pri
e in US$.

� The value pro
ess for a
ontra
t
, expressed in
ur-

ren
y k is a (partial) fun
tion from a time, t, to a

random variable des
ribing the value, in
urren
y k,

of a
quiring the
ontra
t
 at time t.

These intuitions are essential to understand the rest of the

paper.

A value pro
ess is, in general, a partial fun
tion of time;

that is, it may not be de�ned for all values of its argument.

Observables are de�ned for all time, and so do not need this

exibility; they de�ne total pro
esses. However,
ontra
ts

are not de�ned for all time; the value pro
ess for a
ontra
t

is unde�ned for times beyond its horizon.

4.2 From
ontra
ts to pro
esses

How, then, are we to go from
ontra
ts and observables to

pro
esses? Figure 4 gives the
omplete translation from
on-

tra
ts to pro
esses, while Figure 5 does the same for observ-

ables. These Figures do not look very impressive, but that

is the whole point! Everything so far has been leading up to

this point; our entire design is organised around the desire

to give a simple, tra
table, modular, valuation semanti
s.

Let us look at Figure 4 in more detail.

The fun
tion E

k

[[℄℄ takes a
ontra
t,
, and maps it to a

pro
ess des
ribing, for ea
h moment in time, the value in

urren
y k of a
quiring
 at that moment. For example,

the equation for give (E1) says that the value pro
ess for

give
 is simply the negation of E

k

[[
℄℄, the value pro
ess for

. Aha! What does \negation" mean? Clearly, we need not

only the notion of a value pro
ess, but also a
olle
tion of

operations over these pro
esses. Negating a pro
esses is one

su
h operation; the negation of a pro
ess p is simply a fun
-

tion that maps ea
h time, t, to the negation of p(t). It is an

absolutely straightforward exer
ise to \lift" all operations

on real numbers to operate point-wise on pro
esses. (This,

in turn, requires us to negate a random variable, but doing

so is simple.) We will need a number of other operations

over pro
esses. They are summarised in Figure 6, but we

will introdu
e ea
h one as we need it.

Next,
onsider equation (E2). The and of two
ontra
ts is

modeled by taking the sum of their two value pro
esses; we

need three equations to give the value of E

k

[[℄℄ when t is ear-

lier than the horizon of both
ontra
ts, when it is earlier

than one but later than the other, and vi
e versa. In the

fourth
ase | i.e. for times beyond both horizons | the

evaluation fun
tion is simply unde�ned. We use the nota-

tion \onft j : : : t : : :g" to indi
ate that the
orresponding

equation applies for only part of the (time) domain of E

k

[[
℄℄.

Figure 7 spe
i�es formally how to
al
ulate the horizon H(
)

of a
ontra
t
. It returns 1 as the horizon of a
ontra
t

with an in�nite horizon; we extend �, min, and max in the

obvious way to su
h in�nities.

Equation (E3) does the same for the or
ombinator. Again,

by design, the
ombinator maps to a simple mathemati
al

operation, max. One might wonder why we de�ned a value

pro
ess to be a partial fun
tion, rather than a total fun
tion

that is zero beyond its horizon. Equation (E3) gives the

7

These primitives are independent of the evaluation

model

K : a! PR a

The pro
ess K(x) is de�ned at all times to have

value x.

time : DAT E ! PR R

The pro
ess time(s) is de�ned at all times t to be

the number of days between s and t. It is positive

if t is later than s.

lift : (a! b)! PR a! PR b

Apply the spe
i�ed fun
tion to the argument pro-

ess point-wise. The result is de�ned only where

the arguments pro
ess is de�ned.

lift2 : (a! b!
)! PR a! PR b! PR

Combine the two argument pro
esses point-wise

with the spe
i�ed fun
tion. The result is de�ned

only where both arguments are de�ned.

These primitives are dependent on the parti
ular

model

dis

T

k

: RV

T

R! PR R

The primitive dis

T

k

maps a real-valued random

variable at date T , expressed in
urren
y k, to its

\fair" equivalent sto
hasti
 value pro
ess in the

same
urren
y k.

ex
h

k1

(k2) : PR R

ex
h

k1

(k2) is a real-valued pro
ess representing

the value of one unit of k2, expressed in
urren
y

k1. This is simply the pro
ess representing the

quoted ex
hange rate between the
urren
ies.

snell

T

k

: PR R! PR R

The primitive snell

T

k

al
ulates the Snell enve-

lope of its argument. It uses the probability mea-

sure asso
iated with the
urren
y k.

Figure 6: Model primitives

answer: beyond
1's horizon one is for
ed to
hoose
2. In

general, max(v

1

; 0) 6= v

1

!

Equation (E4) is ni
e and simple. To s
ale a
ontra
t
 by

a time-varying observable o, we simply multiply the value

pro
ess for the
ontra
t E

k

[[
℄℄ by the value pro
ess for the ob-

servable | remember that we are modeling ea
h observable

by a value pro
ess. We express the latter as V[[o℄℄, de�ned in

Figure 5 in a very similar fashion to E

k

[[℄℄. At �rst this seems

odd: how
an we s
ale point-wise, when the s
aling applies

to future payments and re
eipts in
? Re
all that the value

pro
ess for
 at a time t gives the value of a
quiring
 at t.

Well, if this value is v then the value of a
quiring the same

ontra
t with all payments and re
eipts s
aled by x is
er-

tainly v � x. Our de�nition of s
ale in Figure 2 was in fa
t

driven dire
tly by our desire to express its semanti
s in a

simple way. Simple semanti
s gives rise to simple algebrai

properties (Se
tion 4.6).

The equations for zero, trun
ate, and then are also easy.

Equation (E5) delivers the
onstant zero pro
ess, while

H(zero) = 1

H(one k) = 1

H(
1 `and`
2) = max(H(
1); H(
2))

H(
1 `or`
2) = max(H(
1); H(
2))

H(
1 `then`
2) = max(H(
1); H(
2))

H(trun
ate t
) = min(t; H(
))

H(s
ale o
) = H(
)

H(anytime
) = H(
)

H(get
) = H(
)

Figure 7: De�nition of horizon

Equation (E6) trun
ates a pro
ess simply by limiting its

domain | remember, again, that the time argument of a

pro
ess models the a
quisition date. The then
ombinator

of equation (E7) behaves like the �rst pro
ess in its domain,

and elsewhere like the se
ond.

4.3 Ex
hange rates

The top group of operations over value pro
esses de�ned in

Figure 6 are generi
 { they are unrelated to a parti
ular

�nan
ial model. But we
an't get away with that for ever.

The lower group of primitives in the same �gure are spe
i�

to �nan
ial
ontra
ts, and they are used in the remaining

equations of Figure 4.

Consider equation (E8) in Figure 4. It says that to get

the value pro
ess for one unit of
urren
y k2, expressed in

urren
y k, is simply the ex
hange-rate pro
ess between k2

and k namely ex
h

k

(k2) (Figure 6). Where do we get these

ex
hange-rate pro
esses from? When we
ome to implemen-

tation, we will need some (numeri
al) assumption about fu-

ture evolution of ex
hange rates, but for now it suÆ
es to

treat the ex
hange rate pro
esses as primitives. However,

there are important relationships between them! Notably:

(A1) ex
h

k

(k) = K(1)

(A2) ex
h

k

2

(k

1

) � ex
h

k

3

(k

2

) = ex
h

k

3

(k

1

)

That is, ex
hange-rate pro
ess between a
urren
y and it-

self is everywhere unity; and it makes no di�eren
e whether

we
onvert k

1

dire
tly into k

3

or whether we go via some

intermediate
urren
y k

2

. These are parti
ular
ases of no-

arbitrage
onditions

5

.

You might also wonder what has be
ome of the bid-

o�er spread en
ountered by every traveller at the foreign-

ex
hange
ounter. In order to keep things te
hni
ally

tra
table, �nan
e theory assumes most of the time the ab-

sen
e of any spreads: one typi
ally �rst
omputes a \fair"

pri
e, before �nally adding a pro�t margin. It is the latter

whi
h gives rise to the spread, but our modeling applies only

to the former.

5

A no-arbitrage
ondition is one that ex
ludes a risk-free oppor-

tunity to earn money. If su
h an opportunity were to exist, everyone

would take it, and the opportunity would soon go away!

8

4.4 Interest rates

Next,
onsider equation (E9). The get
ombinator a
quires

the underlying
ontra
t
 at its horizon, H(
). (get
 is

unde�ned if
 has an in�nite horizon.) It does not matter

what
's value might be at earlier times; all that matters is

's value at its horizon, whi
h is des
ribed by the random

variable E

k

[[
℄℄(H(
)). What is the value of get
 at earlier

times? To answer that question we need a spe
i�
ation of

future evolution of interest rates, that is an interest rate

model.

Let's
onsider a
on
rete example:

 = get (s
aleK 10 (trun
ate t (one GBP)))

where t is one year from today. The underlying
ontra
t

(s
aleK 10 (trun
ate t (one GBP))) pays out $10 im-

mediately it is a
quired; the get a
quires it at its horizon,

namely t. So the value of
 at t is just $10. Before t,

though, it is not worth as mu
h. If I expe
t interest rates

to average

6

(say) 10% over the next year, a fair pri
e for

today would be about $9.

Just as the primitive ex
h en
apsulates assumptions about

future ex
hange rate evolution, so the primitive dis
 en-

apsulates an interest rate evolution (Figure 6). It maps

a random variable des
ribing a payout, in a parti
ular
ur-

ren
y, at a parti
ular date, into a pro
ess des
ribing the

value of that payout at earlier dates, in the same
urren
y.

Like ex
h, there are some properties that any no-arbitrage

�nan
ial model should satisfy. Notably:

(A3) dis

t

k

(v)(t) = v

(A4) ex
h

k

1

(k

2

) � dis

t

k

2

(v) = dis

t

k

1

(ex
h

k

1

(k

2

)(t) � v)

(A5) dis

t

k

(v

1

+ v

2

) = dis

t

k

(v

1

) + dis

t

k

(v

2

)

The �rst equation says that dis
 should be the identity at its

horizon; the se
ond says that the interest rate evolution of

di�erent
urren
ies should be
ompatible with the assump-

tion of evolution of ex
hange rates. The third

7

is often used

in a right-to-left dire
tion as optimisations: rather than per-

form dis
ounting on two random variables separately, and

then add the resulting pro
ess trees, it is faster to add the

random variables (a single
olumn) and then dis
ount the

result. Just as in an optimising
ompiler, we may use iden-

tities like these to transform (the meaning of) our
ontra
t

into a form that is faster to exe
ute.

One has to be
areful, though. Here is a plausible property

that does not hold:

dis

t

k

(max(v

1

; v

2

)) = max(dis

t

k

(v

1

); dis

t

k

(v

2

))

It is plausible be
ause it would hold if v

1

; v

2

were single

numbers and dis
 were a simple multipli
ative fa
tor. But

v

1

and v

2

are random variables, and the property is false.

Equation (E10) uses the snell operator to give the meaning

of anytime. This operator is mathemati
ally subtle, but

it has a simple
hara
terisation: snell

t

k

(p) is the smallest

pro
ess q (under an ordering relation we mention brie
y at

the end of Se
tion 4.6) su
h that

6

For the asso
iated risk-neutral probability, but we will not go in

these �nan
ial details here.

7

The �nan
ially edu
ated reader should note that we assume here

impli
itly what is
alled
omplete markets.

� q � p. Sin
e we
an exer
ise the option at any time,

anytime
 is at all times better than
.

� 8t:q � dis

t

k

(q(t)). Sin
e we
an always defer exer
ising

the option, (anytime
) is always better than the same

ontra
t a
quired later.

4.5 Observables

We
an only value
ontra
ts over observables that we
an

model. For example, we
an only value a
ontra
t involving

the temperature in Los Angeles if we have a model of the

temperature in Los Angeles. Some su
h observables
learly

require separate models. Others, su
h as the LIBOR rate

and the pri
e of futures,
an in
estuously be modeled as the

value of parti
ular
ontra
ts. We omit all the details here;

Figure 5 gives the semanti
s only for the simplest observ-

ables. This is not unrealisti
, however. One
an write a

large range of
ontra
ts with our
ontra
t
ombinators and

only these simple observables.

4.6 Reasoning about
ontra
ts

Now we are ready to use our semanti
s to answer the ques-

tions we posed at the beginning of Se
tion 4. First, is this

equation valid?

get (get
) = get

We take the meaning of the left hand side in some arbitrary

urren
y k:

E

k

[[get (get
)℄℄

= dis

h

1

k

(E

k

[[get
℄℄(h

1

)) by (E9)

= dis

h

1

k

(dis

h

2

k

(E

k

[[
℄℄(h

2

))(h

1

)) by (E9)

= dis

h

2

k

(dis

h

2

k

(E

k

[[
℄℄(h

2

))(h

2

)) sin
e h

1

= h

2

= dis

h

2

k

(E

k

[[
℄℄(h

2

)) by (A3)

= E

k

[[get
℄℄ by (E9)

where

h

1

= H(get
)

h

2

= H(
)

In a similar way, we
an argue this plausible equation is

false:

give (
1 `or`
2)

?

= give
1 `or` give
2

The proof is routine, but its
ore is the observation that

�max(a; b) 6= max(�a;�b)

Ba
k in the real world, the point is that the left hand side

gives the
hoi
e to the
ounter-party, whereas in the right

hand side the
hoi
e is made by the holder of the
ontra
t.

Our
ombinators satisfy a ri
h set of equalities, su
h as that

given for get above. Some of these equalities have side
on-

ditions; for example:

s
ale o (
1 `or`
2) = s
ale o
1 `or` s
ale o
2

holds only if o � 0, for exa
tly the same reason that get does

not
ommute with or. Hang on! What does it mean to say

that \o � 0"? We mean that o is positive for all time. More

generally, as well as equalities between
ontra
ts, we have

9

also developed a notion of ordering between both observables

and
ontra
ts,
1 �
2, pronoun
ed \
1 dominates
2".

Roughly speaking,
1 �
2 if it is at all times preferable to

a
quire
1 than to a
quire
2; that is, H(
1) � H(
2) and

8t � H(
2):E[[
1℄℄(t) � E[[
2℄℄(t)

Equalities, su
h as the ones given above,
an be used as op-

timising transformations in a valuation engine. A \
ontra
t

ompiler"
an use these identities to transform a
ontra
t,

expressed in the intermediate language of value pro
esses

(see the introdu
tion to Se
tion 4), into a form that
an be

valued more
heaply.

4.7 Summary

This
ompletes our des
ription of the abstra
t evaluation

semanti
s. From a programming-language point of view,

everything is quite routine, in
luding our proofs. But we

stress that it is most unusual to �nd formal proofs in the

�nan
e industry at this level of abstra
tion. We have named

and tamed the
ompli
ated primitives (dis
, ex
h, et
): the

laws they must satisfy give us a way to prove identities about

ontra
ts without having to understand mu
h about random

variables. The mathemati
al details are ar
ane, believe us!

5 Implementation

Our evaluation semanti
s is not only an abstra
t beast. We

an also regard Figures 4 and 5 as a translation from our

ontra
t language into a lower-level language of pro
esses,

whose
ombinators are the primitives of Figure 6. Then we

an optimise the pro
ess-level des
ription, using (A1)-(A5).

Finally, all (ha!) we need to do is to implement the pro
ess-

level primitives, and we will be able to value an arbitrary

ontra
t.

The key de
ision is, of
ourse, how we implement a value

pro
ess. A value pro
ess has to represent un
ertainty about

the future in an expli
it way. There are numerous ways to

model this un
ertainty. For the sake of
on
reteness, we

will simply pi
k the Ho and Lee model, and use a latti
e

method to evaluate
ontra
ts with it [Ho and Lee, 1986℄.

We
hoose this model and numeri
al method for their te
h-

ni
al simpli
ity and histori
al importan
e, but mu
h of this

se
tion is also appli
able to other models (e.g. Bla
k Derman

Toy). Changing the numeri
al method (e.g. to Monte Carlo)

would entail bigger
hanges, but nothing in our language or

its semanti
s (Se
tions 1-4) would be a�e
ted. Indeed, it

is entirely possible to use di�erent numeri
al methods for

di�erent parts of a single
ontra
t.

5.1 An interest rate model

In the typi
al Ho and Lee numeri
al s
heme, the interest

rate evolution is represented by a latti
e (or \re
ombining

tree"), as depi
ted in Figure 8. Ea
h
olumn of the tree

represents a dis
rete time step, and time in
reases from left

to right. Time zero represents \now". As usual with dis
rete

models, there is an issue of how long a time step will be; we

won't dis
uss that further here, but we note in passing that

the time steps need not be of uniform size.

5%

4%

6%

3%

2%

4%

6%

7%

5%

8%

0 1 2 3

Time step

Figure 8: A short term interest rate evolution

At ea
h node of the tree is asso
iated a one period short

term interest rate, shortly denominated the interest rate

from now on. We know today's interest rate, so the �rst

olumn in the tree has just one element. However, there

is some un
ertainty of what interest rates will evolve to by

the end of the �rst time step. This is expressed by having

two interest-rate values in the se
ond
olumn; the idea is

that the interest rate will evolve to one of these two val-

ues with equal probability. In the third time step, the rates

split again, but the down/up path joins the up/down path,

so there are only three rates in the third
olumn, not four.

This is why the stru
ture is
alled a latti
e; it makes the

whole s
heme
omputationally feasible by giving only a lin-

ear growth in the width of the tree with time. Of
ourse, the

tree is only a dis
rete approximation of a
ontinuous pro
ess;

its re
ombining nature is just a
hoi
e for eÆ
ien
y reasons.

We write R

t

for the ve
tor of rates in time-step t, and R

t;i

for the i'th member of that ve
tor, starting with 0 at the

bottom. Thus, for example, R

2;1

= 5%. The a
tual numbers

in Figure 8 are unrealisti
ally regular: in more elaborated

interest rate models, they will not be evenly spa
ed but only

monotoni
ally distributed in ea
h
olumn.

5.2 Value pro
esses

So mu
h for the interest rate model. A value pro
ess is

modeled by a latti
e of exa
tly the same shape as the interest

rate evolution, ex
ept that we have a value at ea
h node

instead of an interest rate. Figure 9 shows the value pro
ess

tree for our favourite zero-
oupon bond

7 = get (s
aleK 10 (trun
ate t (one GBP)))

evaluated in pounds sterling (GBP). Using our evaluation se-

manti
s we have

E

GBP

[[
7℄℄ = dis

t

GBP

(K(10)(t))

In the Figure, we assume that the time t is time step 3. At

step 3, therefore, the value of the
ontra
t
 is
ertainly 10

10

8.64

9.25

8.90

9.71

10

10

10

9.35

9.52

10

0 1 2 3

Time step

Figure 9: A Ho and Lee valuation latti
e

at all nodes, be
ause
 un
onditionally delivers $10 at that

time | remember axiom (A3). At time step 2, however,

we must dis
ount the $10 by the interest rate appropriate

to that time step. We
ompute the value at ea
h node of

time-step 2 by averaging the two values in its su

essors,

and then dis
ounting the average value ba
k one time step

using the interest rate asso
iated to that node

8

. Using the

same notation for the value tree V as we used for the rate

model R, we get the equation:

V

t;i

=

V

t+1;i

+ V

t+1;i+1

2(1 +R

t;i

�t)

where �t is the size of the time step. Using this equation

we
an �ll in the rest of the values in the tree, as we have

done in Figure 9. The value in time step 0 is the
urrent

value of the
ontra
t, in pounds sterling. i.e $8:64.

In short, a latti
e implementation works as follows:

� A value pro
ess is represented by a latti
e, in whi
h

ea
h
olumn is a dis
rete representation of a random

variable. The value in ea
h node is one of the possible

values the variable
an take, and in our very simple

setting the number of paths from the root to the node

is proportional to the probability that the variable will

take that value. We will say a bit more about how to

represent su
h a tree in the next subse
tion.

� The generi
 operations, in the top half of Figure 6,

are easy to implement. K(x) is a value pro
ess that is

everywhere equal to x. time(t) is a pro
ess in whi
h

the values in a parti
ular
olumn are all equal to the

number of days between that
olumn's time and t.

lift(f; p) applies f to p point-wise; lift2(f; p

1

; p

2

) \zips

together" p

1

and p

2

,
ombining
orresponding values

point-wise with f .

8

For evident presentation reasons, we don't
are about the fa
t

that the Ho and Lee model is member of a
lass of models that admit

in fa
t a
losed-form solution for zero-
oupon bonds.

� The model-spe
i�
 operations of Figure 6 are a bit

harder. We have des
ribed how to implement dis
,

whi
h uses the interest rate model. ex
h is a
tually

rather easier (multiply the value pro
ess point-wise by

a pro
ess representing the ex
hange-rate). The snell

primitive takes a bit more work, and we do not de-

s
ribe it in detail here. Roughly speaking, a possible

implementation may be: take the �nal
olumn of the

tree, dis
ount it ba
k one time step, take the maximum

of that
olumn with the
orresponding
olumn of the

original tree, and then repeat that pro
ess all the way

ba
k to the root.

The remaining high-level question is: in the (big) set of

possible interest rate models, what is a \good" model? The

answer is rather in
estuous. A
andidate interest rate model

should pri
e
orre
tly those
ontra
ts that are widely traded:

one
an simply look up the
urrent market pri
es for them,

and
ompare them with the
al
ulated results. So we look

for and later adjust the interest rate model until it �ts the

market data for these simple
ontra
ts. Now we are ready to

use the model to
ompute pri
es for more exoti

ontra
ts.

The entire market is a giganti
 feedba
k system, and a
tive

resear
h studies the problem of its stability.

5.3 Implementation in Haskell

We have two partial implementations of (earlier versions of)

these ideas, one of whi
h is implemented as a Haskell
om-

binator library. The type Contra
t is implemented as an

algebrai
 data type, with one
onstru
tor for ea
h primitive

ombinator:

data Contra
t = One Date Curren
y

| Give Contra
t

| ...

The translation to pro
esses is done by a straightforward

re
ursive Haskell implementation of E

k

[[℄℄:

eval :: Model -> Curren
y -> Contra
t -> ValPro

Here, Model
ontains the interest rate evolutions, ex
hange

rate evolutions, and whatever other \underlyings" are ne
-

essary to evaluate the
ontra
t.

Our �rst implementation used the following representation

for a value pro
ess:

type ValPro
 = (TimeStep, [Sli
e℄)

type Sli
e = [Double℄

A value pro
ess is represented by a pair of (a) the pro
ess's

horizon, and (b) a list of sli
es (or
olumns), one per time

step in reverse time order. The �rst sli
e is at the horizon

of the pro
ess, the next sli
e is one time step earlier, and so

on. Sin
e the (fundamental) dis
ount re
urren
e equation

(Se
tion 5.1) works ba
kwards in time, it is
onvenient to

represent the list this way round. Ea
h sli
e is one element

shorter than the one before.

Laziness plays a very important role, for two reasons:

� Pro
ess trees
an be
ome very large, sin
e their size is

quadrati
 in the number of time steps they
over. A

omplex
ontra
t will be represented by
ombining to-

gether many value trees; it would be Very Bad to fully

11

evaluate these sub-trees, and only then
ombine them.

Lazy evaluation automati
ally \pipelines" the evalua-

tion algorithm, so that only the \
urrent sli
e" of ea
h

value tree is required at any one moment.

� Only part of a pro
ess tree may be required. Consider

again our example
ontra
t

 = get (s
aleK 10 (trun
ate t (one GBP)))

The value pro
ess for

(s
aleK 10 (trun
ate t (one GBP))) is a
om-

plete value pro
ess, all the way ba
k to time-step

zero, with value 10 everywhere. But get samples

this value pro
ess only at its horizon | there is no

point in
omputing its value at any earlier time. By

representing a value pro
ess as a lazily-evaluated list

we get the \right" behaviour automati
ally.

Mi
rosoft Resear
h
ollaborates
losely with Lombard Risk

Systems Ltd, who have a produ
tion tree-based valuation

system in C++. It uses a
lever but
omplex event-driven

engine in whi
h a value tree is represented by a single sli
e

that is mutated as time progresses. There is never a no-

tion of a
omplete tree. The Haskell implementation treats

trees as �rst
lass values, and this point of view o�ers a rad-

i
al new perspe
tive on the whole evaluation pro
ess. We

are hopeful that some of the insights from our Haskell im-

plementation may serve to inform and improve the eÆ
ient

C++ implementation.

The Haskell version takes around 900 lines of Haskell to

support a working, albeit limited,
ontra
t valuation engine,

omplete with a COM interfa
e [Finne et al., 1999℄ that lets

it be plugged into Lombard's framework. It is not nearly as

fast as the produ
tion
ode, but it is not unbearably slow

either | for example, it takes around 20 se
onds to
ompute

the value of a
ontra
t with 15 sub-
ontra
ts, over 500 time

steps, on a standard desktop PC. Though it la
ks mu
h

fun
tionality, the
ompositional approa
h means that
an

already value some
ontra
ts, su
h as options over options,

that the produ
tion system
annot. (The produ
tion system

is not fundamentally in
apable of su
h feats; but it is pro-

grammed on a
ase-by-
ase basis, and the more
ompli
ated

ases are dauntingly hard to implement.)

5.4 Memoisation

In fun
tional programming terms, most of this is quite

straightforward. There is a nasty pra
ti
al problem, how-

ever, that repeatedly bites people who embed a domain spe-

i�
 language in a fun
tional language. Consider the
on-

tra
t

10 = join `and` join

where

join = <stuff> `or` <more stuff>

Here, join is a shared sub-
ontra
t of
10 mu
h like opt in

our de�nition of ameri
an (Se
tion 3.5). The trouble is that

eval will evaluate the two bran
hes of the and at the root

of
10, oblivious of the fa
t that these two bran
hes are the

same. In fa
t, eval will do all the work of evaluating join

twi
e! There is no way for eval to tell that it has \seen this

argument before".

This problem arises, in various guises, in almost every

embedded domain-spe
i�
 language. We have seen it in

Fran's rea
tive animations [Elliott and Hudak, 1997℄, the

diÆ
ulty of extra
ting net-lists from Hawk
ir
uit des
rip-

tions [Cook et al., 1998℄, and in other settings besides.

What makes it parti
ularly frustrating is that the sharing is

absolutely apparent in the sour
e program.

One \solution" is to suggest that eval be made a

memo fun
tion [Hughes, 1985, Cook and Laun
hbury, 1997,

Marlow et al., 1999℄, but we do not �nd it satisfa
tory. Los-

ing sharing
an give rise to an unbounded amount of dupli-

ated work, so it seems unpleasant to relegate the mainte-

nan
e of proper sharing to an operational me
hanism. For

example, a memo fun
tion may be de
eived by unevaluated

arguments, or automati
ally-purged memo tables, or what-

ever. For now we simply identify it as an important open

problem that deserves further study. The only paper that

addresses this issue head on is [Claessen and Sands, 1999℄:

it proposes one way to make sharing observable, but leaves

open the question of memo fun
tions.

6 Putting our work in
ontext

At �rst sight, �nan
ial
ontra
ts and fun
tional program-

ming do not have mu
h to do with ea
h other. It has been

a surprise and delight to dis
over that many of the insights

useful in the design, semanti
s, and implementation of pro-

gramming languages
an be applied dire
tly to the des
rip-

tion and evaluation of
ontra
ts. One of us (Eber) has been

developing this idea for nearly ten years at So
i�et�e G�en�erale.

The others (Peyton Jones and Seward)
ame to it mu
h more

re
ently, through a fruitful partnership with Lombard Risk

Systems Ltd. The original idea was to apply fun
tional pro-

gramming to a realisti
 problem, and to
ompare our result-

ing program with the existing imperative version | but we

have ended up with a radi
al re-thinking of how to des
ribe

and evaluate
ontra
ts.

Though there is a great deal of work on

domain-spe
i�
 programming languages (see

[Hudak, 1996, van Deursen et al., 2000℄ for surveys),

our work is virtually the only attempt to give a formal de-

s
ription to �nan
ial
ontra
ts. An ex
eption is the RISLA

language developed at CWI [van Deursen and Klint, 1998℄,

an obje
t-oriented domain-spe
i�
 language for �nan
ial

ontra
ts. RISLA is designed for an obje
t-oriented frame-

work, and appears to be more stateful and less de
larative

than our system.

We have presented our design as a
ombinator library em-

bedded in Haskell, and indeed Haskell has proved an ex
el-

lent host language for prototyping both the library design

and various implementation
hoi
es. However, our design is

absolutely not Haskell-spe
i�
. The big payo�
omes from a

de
larative approa
h to des
ribing
ontra
ts. As it happens

we also used a fun
tional language for implementing the
on-

tra
t language, but that is somewhat in
idental. It
ould

equally well be implemented as a free-standing domain-

spe
i�
 language, using domain-spe
i�

ompiler te
hnol-

ogy. Indeed, one of us (Eber) has work afoot do to just this,

ompiling a
ontra
t into
ode that should be as fast or

faster than the best available
urrent valuation engines, us-

12

ing the stri
t fun
tional language OCaml [Leroy et al., 1999℄

as implementation language.

Although Haskell is lazy, and that was useful in our im-

plementation, the really signi�
ant feature of the
ontra
t-

des
ription language is that it is de
larative not that it is

lazy. Our design
an be seen as a de
larative, domain-

spe
i�
 language entirely independent of Haskell, and one

ould readily implement a valuation engine for it in Java or

C++, for example.

There is mu
h left to do. We need to expand the set of

ontra
t
ombinators to des
ribe a wider range of
ontra
ts;

to expand the set of observables; to provide semanti
s for

these new
ombinators; to write down and prove a range of

theorems about
ontra
ts; to
onsider whether the notion of

a \normal form" makes sense for
ontra
ts; to build a robust

implementation; to exploit the dramati
 simpli�
ations that

losed formulas make possible; to give a formal spe
i�
ation

of the evolution of a
ontra
t during its life; and to validate

all this in real �nan
ial settings. We have only just begun.

A
knowledgements

We warmly thank John Wisbey, Jurgen Gaiser-Porter, and

Mal
olm Pymm at Lombard Risk Systems Ltd for their

ollaboration. They invested a great deal of time in edu-

ating two of the present authors (Peyton Jones and Se-

ward) in the mysteries of �nan
ial
ontra
ts and the Bla
k-

Derman-Toy evaluation model. Jean-Mar
 Eber warmly

thanks Philippe Artzner for many very helpful dis
ussions

and So
i�et�e G�en�erale for �nan
ial support of this work. We

also thank Conal Elliott, Andrew Kennedy, Stephen Jarvis,

AndyMoran, Norman Ramsey, Colin Run
iman, David Vin-

ent and the ICFP referees, for their helpful feedba
k.

Referen
es

[Boyle et al., 1997℄ Boyle, P., Broadie, M., and Glasserman,

P. (1997). Monte
arlo methods for se
urity pri
ing. Jour-

nal of E
onomi
 Dynami
s and Control, 21:1267{1321.

[Claessen and Sands, 1999℄ Claessen, K. and Sands, D.

(1999). Observable sharing for fun
tional
ir
uit des
rip-

tion. In Thiagarajan, P. and Yap, R., editors, Advan
es

in Computing S
ien
e (ASIAN'99); 5th Asian Computing

S
ien
e Conferen
e, Le
ture Notes in Computer S
ien
e,

pages 62{73. Springer Verlag.

[Cook and Laun
hbury, 1997℄ Cook, B. and Laun
hbury, J.

(1997). Disposable memo fun
tions. In Laun
hbury, J.,

editor, Haskell workshop, Amsterdam.

[Cook et al., 1998℄ Cook, B., Laun
hbury, J., and

Matthews, J. (1998). Spe
ifying supers
alar mi
ro-

pro
essors in Hawk. In Formal te
hniques for hardware

and hardware-like systems, Marstrand, Sweden.

[Cox et al., 1979℄ Cox, J. C., Ross, S. A., and Rubinstein,

M. (1979). Option pri
ing: a simpli�ed approa
h. Journal

of Finan
ial E
onomi
s, 7:229{263.

[Elliott and Hudak, 1997℄ Elliott, C. and Hudak, P. (1997).

Fun
tional rea
tive animation. In ACM SIGPLAN

International Conferen
e on Fun
tional Programming

(ICFP'97), pages 263{273. ACM, Amsterdam.

[Finne et al., 1999℄ Finne, S., Leijen, D., Meijer, E., and

Peyton Jones, S. (1999). Calling hell from heaven and

heaven from hell. In ACM SIGPLAN International Con-

feren
e on Fun
tional Programming (ICFP'99), pages

114{125, Paris. ACM.

[Ho and Lee, 1986℄ Ho, T. and Lee, S. (1986). Term Stru
-

ture Movements and Pri
ing Interest Rate Contingent

Claims. Journal of Finan
e, 41:1011{1028.

[Hudak, 1996℄ Hudak, P. (1996). Building domain-spe
i�

embedded languages. ACM Computing Surveys, 28.

[Hughes, 1985℄ Hughes, J. (1985). Lazy memo-fun
tions. In

Pro
 Aspenas workshop on implementation of fun
tional

languages.

[Leroy et al., 1999℄ Leroy, X., Vouillon, J., Doligez, D.,

et al. (1999). The Obje
tive Caml system, re-

lease 3.00. Te
hni
al Report, INRIA, available at

http://
aml.inria.fr/o
aml.

[Marlow et al., 1999℄ Marlow, S., Peyton Jones, S., and

Elliott, C. (1999). Stret
hing the storage manager:

weak pointers and stable names in Haskell. In Interna-

tional Workshop on Implementing Fun
tional Languages

(IFL'99), Le
ture Notes in Computer S
ien
e, Lo
hem,

The Netherlands. Springer Verlag.

[Musiela and Rutkowski, 1997℄ Musiela, M. and Rutkowski,

M. (1997). Martingale Methods in Finan
ial Modelling.

Springer.

[Peyton Jones et al., 1999℄ Peyton Jones, S., Hughes, R.,

Augustsson, L., Barton, D., Boutel, B., Burton, W.,

Fasel, J., Hammond, K., Hinze, R., Hudak, P., Johns-

son, T., Jones, M., Laun
hbury, J., Meijer, E., Pe-

terson, J., Reid, A., Run
iman, C., and Wadler, P.

(1999). Report on the programming language Haskell 98.

http:/haskell.org.

[Revuz and Yor, 1991℄ Revuz, D. and Yor, M. (1991). Con-

tinuous Martingales and Brownian Motion. Springer.

[van Deursen et al., 2000℄ van Deursen, A., Kline, P., and

Visser, J. (2000). Domain-spe
i�
 languages: an an-

notated bibliography. Te
hni
al report, Centrum voor

Wiskunde en Informati
a, Amsterdam.

[van Deursen and Klint, 1998℄ van Deursen, A. and Klint,

P. (1998). Little languages: little maintenan
e? Journal

of Software Maintenan
e, 10:75{92.

[Willmot et al., 1993℄ Willmot, P., Dewyne, J., and Howi-

son, S. (1993). Option Pri
ing: Mathemati
al Models and

Computation. Oxford Finan
ial Press.

13

