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Abstrat

Finanial and insurane ontrats do not sound like promis-

ing territory for funtional programming and formal seman-

tis, but in fat we have disovered that insights from pro-

gramming languages bear diretly on the omplex subjet

of desribing and valuing a large lass of ontrats.

We introdue a ombinator library that allows us to de-

sribe suh ontrats preisely, and a ompositional denota-

tional semantis that says what suh ontrats are worth.

We sketh an implementation of our ombinator library in

Haskell. Interestingly, lazy evaluation plays a ruial role.

1 Introdution

Consider the following �nanial ontrat, C: the right to

hoose on 30 June 2000 between

D

1

Both of:

D

11

Reeive $100 on 29 Jan 2001.

D

12

Pay $105 on 1 Feb 2002.

D

2

An option exerisable on 15 De 2000 to hoose one of:

D

21

Both of:

D

211

Reeive $100 on 29 Jan 2001.

D

212

Pay $106 on 1 Feb 2002.

D

22

Both of:

D

221

Reeive $100 on 29 Jan 2001.

D

222

Pay $112 on 1 Feb 2003.

The details of this ontrat are not important, but it is a

simpli�ed but realisti example of the sort of ontrat that is

traded in �nanial derivative markets. What is important is

that omplex ontrats, suh as C, are formed by ombining

together simpler ontrats, suh as D

1

, whih in turn are

formed from simpler ontrats still, suh as D

11

, D

12

.

To appear in the International Conferene on Fun-

tional Programming, Montreal, Sept 2000

At this point, any red-blooded funtional programmer

should start to foam at the mouth, yelling \build a om-

binator library". And indeed, that turns out to be not only

possible, but tremendously bene�ial.

The �nane industry has an enormous voabulary of jargon

for typial ombinations of �nanial ontrats (swaps, fu-

tures, aps, oors, swaptions, spreads, straddles, aptions,

European options, Amerian options, ...the list goes on).

Treating eah of these individually is like having a large

atalogue of prefabriated omponents. The trouble is that

someone will soon want a ontrat that is not in the ata-

logue.

If, instead, we ould de�ne eah of these ontrats using

a �xed, preisely-spei�ed set of ombinators, we would be

in a muh better position than having a �xed atalogue.

For a start, it beomes muh easier to desribe new, unfore-

seen, ontrats. Beyond that, we an systematially analyse,

and perform omputations over these new ontrats, beause

they are desribed in terms of a �xed set of primitives.

The major thrust of this paper is to draw insights from the

study of funtional programming to illuminate the world of

�nanial ontrats. More spei�ally, our ontributions are

the following:

� We de�ne a arefully-hosen set of ombinators, and,

through an extended sequene of examples in Haskell,

we show that these ombinators an indeed be used to

desribe a wide variety of ontrats (Setion 3).

� Our ombinators an be used to desribe a ontrat, but

we also want to proess a ontrat. Notably, we want to

be able to �nd the value of a ontrat. In Setion 4 we

desribe how to give an abstrat valuation semantis to

our ombinators. A fundamentally-important property

of this semantis is that it is ompositional ; that is, the

value of a ompound ontrat is given by ombining

the values of its sub-ontrats.

� We sketh an implementation of our valuation seman-

tis, using as an example a simple interest rate model

and its assoiated lattie (Setion 5). Lazy evaluation

turns out to be tremendously important in translating

the ompositional semantis into a modular implemen-

tation (Setion 5.3).

Stated in this way, our work sounds like a perfetly rou-

tine appliation of the idea of using a funtional language



, d, u Contrat

o Observable

t, s Date, time

k Curreny

x Dimensionless real value

p Value proess

v Random variable

Figure 1: Notational onventions

to de�ne a domain-spei� ombinator library, thereby ef-

fetively reating an appliation-spei� programming lan-

guage. Suh languages have been de�ned for parsers,

musi, animations, hardware iruits, and many others

[van Deursen et al., 2000℄. However, from the standpoint of

�nanial engineers, our language is truly radial: they a-

knowledge that the lak of a preise way to desribe omplex

ontrats is \the bane of our lives"

1

.

It has taken us a long time to boil down the immense soup

of atively-traded ontrats into a reasonably small set of

ombinators; but one that is done, new vistas open up,

beause a single formal desription an drive all manner of

automated proesses. For example, we an generate shed-

ules for bak-oÆe ontrat exeution, perform risk analysis

optimisations, present ontrats in new graphial ways (e.g.

deision trees), provide animated simulations, and so on.

This paper is addressed to a funtional programming audi-

ene. We will introdue any �nanial jargon as we go.

2 Getting started

In this setion we will informally introdue our notation for

ontrats, and show how we an build more ompliated on-

trats out of simpler ones. We use the funtional language

Haskell [Peyton Jones et al., 1999℄ throughout.

2.1 A simple ontrat

Consider the following simple ontrat, known to the indus-

try as zero-oupon disount bond : \reeive $100 on 1st Jan-

uary 2010". We an speify this ontrat, whih we name

1, thus:

1 :: Contrat

1 = zb t1 100 GBP

Figure 1 summarises the notational onventions we use

throughout the paper for variables, suh as 1 and t1 in

this de�nition.

The ombinator zb used in 1's de�nition has the following

type:

zb :: Date -> Double -> Curreny -> Contrat

The �rst argument to zb is a Date, whih spei�es a parti-

ular moment in time (i.e. both date and time). We provide

a funtion, date, that onverts a date expressed as a friendly

harater string to a Date.

date :: String -> Date

1

The quote is from an informal response to a draft of our work

Now we an de�ne our date t1:

t1,t2 :: Date

t1 = date "1530GMT 1 Jan 2010"

t2 = date "1200GMT 1 Feb 2010"

We will sometimes need to subtrat dates, to get a time

di�erene, and add a date and a time di�erene to get a

new date.

type Days = Double -- A time differene

diff :: Date -> Date -> Days

add :: Date -> Days -> Date

We represent a time di�erene as a oating-point number in

units of days (parts of days an be important).

2.2 Combining ontrats

So zb lets us build a simple ontrat. We an also ombine

ontrats to make bigger ontrats. A good example of suh

a ombining form is and, whose type is:

and :: Contrat -> Contrat -> Contrat

Using and we an de�ne 3, a ontrat that involves two

payments

2

:

2,3 :: Contrat

2 = zb t2 200 GBP

3 = 1 `and` 2

That is, the holder of ontrat 3 will bene�t from a payment

of $100 at time t1, and another payment of $200 at time

t2.

In general, the ontrats we an desribe are between two

parties, the holder of the ontrat, and the ounter-party.

Notwithstanding Biblial advie (Ats 20.35), by default the

owner of a ontrat reeives the payments, and makes the

hoies, spei�ed in the ontrat. This situation an be re-

versed by the give ombinator:

give :: Contrat -> Contrat

The ontrat give  is simply  with rights and obligations

reversed, a statement we will make preise in Setion 4.2. In-

deed, when two parties agree on a ontrat, one aquires the

ontrat , and the other simultaneously aquires (give );

eah is the other's ounter-party. For example, 4 is a on-

trat whose holder reeives $100 at time t1, and pays $200

at time t2:

4 = 1 `and` give 2

So far, eah of our de�nitions has de�ned a new ontrat

(1, 2, et). It is also easy to de�ne a new ombinator

(a funtion that builds a ontrat). For example, we ould

de�ne andGive thus:

andGive :: Contrat -> Contrat -> Contrat

andGive  d =  `and` give d

Now we an give an alternative de�nition of 4 (whih we

built earlier):

4 = 1 `andGive` 2

2

In Haskell, a funtion an be turned into an in�x operator by

enlosing it in bak-quotes.
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This ability to de�ne new ombinators, and use them just

as if they were built in, is quite routine for funtional pro-

grammers, but not for �nanial engineers.

3 Building ontrats

We have now ompleted our informal introdution. In this

setion we will give the full set of primitives, and show how a

wide variety of other ontrats an be built using them. For

referene, Figure 2 gives the primitive ombinators over on-

trats; we will introdue these primitives as we need them.

3.1 Aquisition date and horizon

Figure 2 gives an English-language, but quite preise, de-

sription of eah ombinator. To do so, it uses two tehnial

terms: aquisition date, and horizon. We begin by intro-

duing them briey.

Our language desribes what a ontrat is. However, what

the onsequenes for the holder of the ontrat depends on

the date at whih the ontrat is aquired, its aquisition

date. (By \onsequenes for the holder" we mean the rights

and obligations that the ontrat onfers on the holder of

a ontrat.) For example, the ontrat \reeive $100 on 1

Jan 2000 and reeive $100 on 1 Jan 2001" is worth a lot less

if aquired after 1 Jan 2000, beause any rights and obliga-

tions that fall due before the aquisition date are simply

disarded.

The seond fundamental onept is that of a ontrat's hori-

zon, or expiry date: the horizon, or expiry date, of a ontrat

is the latest date at whih it an be aquired. A ontrat's

horizon may be �nite or in�nite. The horizon of a ontrat is

ompletely spei�ed by the ontrat itself: given a ontrat,

we an easily work out its horizon using the de�nitions in

Figure 2. Note arefully, though, that a ontrat's rights

and obligations may, in priniple, extend well beyond its

horizon. For example, onsider the ontrat \the right to

deide on or before 1 Jan 2001 whether to have ontrat

C". This sort of ontrat is alled an option. Its horizon

is 1 Jan 2001 | it annot be aquired after that date |

but if one aquires it before then, the underlying ontrat

C may (indeed, typially will) have onsequenes extending

well beyond 1 Jan 2001.

To reiterate, the horizon of a ontrat is a property of the

ontrat, while the aquisition date is not.

3.2 Disount bonds

Earlier, we desribed the zero-oupon disount bond: \re-

eive $100 at time t1" (Setion 2.1). At that time we as-

sumed that zb was a primitive ombinator, but in fat it

isn't. It is obtained by omposing no fewer than four more

primitive ombinators. We begin with the one ombinator:

5 = one GBP

Figure 2 gives a areful, albeit informal, de�nition of one:

if you aquire (one GBP), you immediately reeive $1. The

ontrat has an in�nite horizon; that is, there is no restri-

tion on when you an aquire this ontrat.

But the bond we want pays $100 at t1, and no earlier,

regardless of when the bond itself is aquired. To obtain

this e�et we use two other ombinators, get and trunate,

thus:

6 = get (trunate t1 (one GBP))

(trunate t ) is a ontrat that trims 's horizon so that

it annot be aquired any later than t. (get ) is a on-

trat that, when aquired, aquires the underlying ontrat

 at 's horizon | that is, at the last possible moment |

regardless of when the omposite ontrat (get ) is a-

quired. The ombination of the two is exatly the e�et

we want, sine the horizon of (trunate t1 (one GBP)) is

exatly t1. Like one, get and trunate are de�ned in Fig-

ure 2.

We are still not �nished. The bond we want pays $100

not $1. We use the ombinator saleK to \sale up" the

ontrat, thus:

7 = saleK 100 (get (trunate t1 (one GBP)))

We will de�ne saleK shortly, in Setion 3.3. It has the type

saleK :: Double -> Contrat -> Contrat

To aquire (saleK x ) is to aquire , but all the pay-

ments and reeipts in  are multiplied by x. So we an,

�nally, de�ne zb orretly:

zb :: Date -> Double -> Curreny -> Contrat

zb t x k = saleK x (get (trunate t (one k)))

This de�nition of zb e�etively extends our repertoire of

ombinators, just as andGive did in Setion 2.2, only more

usefully. We will ontinually extend our library of ombina-

tors in this way.

Why did we go to the trouble of de�ning zb in terms of

four ombinators, rather than making it primitive? Beause

it turns out that saleK, get, trunate, and one are all in-

dependently useful. Eah embodies a distint piee of fun-

tionality, and by separating them we signi�antly simplify

the semantis and enrih the algebra of ontrats (Setion 4).

The ombinators we present are the result of an extended,

iterative proess of re�nement, leading to an interloking

set of deisions | programming language designers will be

quite familiar with this proess.

3.3 Observables and saling

A real ontrat often mentions quantities that are to be mea-

sured on a partiular date. For example, a ontrat might

say \reeive an amount in dollars equal to the noon Centi-

grade temperature in Los Angeles"; or \pay an amount in

pounds sterling equal to the 3-month LIBOR spot rate

3

mul-

tiplied by 100". We use the term observable for an objetive,

but perhaps time-varying, quantity. By \objetive" we mean

that at any partiular time the observable has a value that

both parties to the ontrat will agree. The temperature in

Los Angeles an be objetively measured; but the value to

me of insuring my house is subjetive, and is not an observ-

able. Observables are thus a di�erent \kind of thing" from

ontrats, so we give them a di�erent type:

3

The LIBOR spot rate is published daily in the �nanial press. For

present purposes it does not matter what it means; all that matters

is that it is an observable quantity.

3



zero :: Contrat

zero is a ontrat that may be aquired at any

time. It has no rights and no obligations, and

has an in�nite horizon. (Setion 3.4.)

one :: Curreny -> Contrat

(one k) is a ontrat that immediately pays the

holder one unit of the urreny k. The ontrat

has an in�nite horizon. (Setion 3.2.)

give :: Contrat -> Contrat

To aquire (give ) is to aquire all 's rights

as obligations, and vie versa. Note that for a

bilateral ontrat q between parties A and B, A

aquiring q implies that B aquires (give q).

(Setion 2.2.)

and :: Contrat -> Contrat -> Contrat

If you aquire (1 `and` 2) then you immedi-

ately aquire both 1 (unless it has expired) and

2 (unless it has expired). The omposite on-

trat expires when both 1 and 2 expire. (Se-

tion 2.2.)

or :: Contrat -> Contrat -> Contrat

If you aquire (1 `or` 2) you must immedi-

ately aquire either 1 or 2 (but not both). If

either has expired, that one annot be hosen.

When both have expired, the ompound ontrat

expires. (Setion 3.4.)

trunate :: Date -> Contrat -> Contrat

(trunate t ) is exatly like  exept that it

expires at the earlier of t and the horizon of .

Notie that trunate limits only the possible a-

quisition date of ; it does not trunate 's rights

and obligations, whih may extend well beyond

t. (Setion 3.4.)

then :: Contrat -> Contrat -> Contrat

If you aquire (1 `then` 2) and 1 has not

expired, then you aquire 1. If 1 has expired,

but 2 has not, you aquire 2. The ompound

ontrat expires when both 1 and 2 expire.

(Setion 3.5.)

sale :: Obs Double -> Contrat -> Contrat

If you aquire (sale o ), then you aquire 

at the same moment, exept that all the rights

and obligations of  are multiplied by the value

of the observable o at the moment of aquisition.

(Setion 3.3.)

get :: Contrat -> Contrat

If you aquire (get ) then you must aquire 

at 's expiry date. The ompound ontrat ex-

pires at the same moment that  expires. (Se-

tion 3.2.)

anytime :: Contrat -> Contrat

If you aquire (anytime ) you must aquire ,

but you an do so at any time between the aqui-

sition of (anytime ) and the expiry of . The

ompound ontrat expires when  does. (Se-

tion 3.5.)

Figure 2: Primitives for de�ning ontrats

noonTempInLA :: Obs Double

libor3m :: Obs Double

In general, a value of type Obs d represents a time-varying

quantity of type d.

In the previous setion we used saleK to sale a ontrat

by a �xed quantity. The primitive ombinator sale sales

a ontrat by a time-varying value, that is, by an observable:

sale :: Obs Double -> Contrat -> Contrat

With the aid of sale we an de�ne the (strange but re-

alisti) ontrat \reeive an amount in dollars equal to the

noon Centigrade temperature in Los Angeles":

8 = sale noonTempInLA (one USD)

Again, we have to be very preise in our de�nitions. Exatly

when is the noon temperature in LA sampled? Answer (in

Figure 2): when you aquire (sale o ) you immediately

aquire , saling all the payments and reeipts in  by the

value of the observable o sampled at the moment of aquisi-

tion. So we sample the observable at a single, well-de�ned

moment (the aquisition date) and then use that single num-

ber to sale the subsequent payments and reeipts in .

A very useful observable is one that has the same value at

every time:

konst :: a -> Obs a

With its aid we an de�ne saleK:

saleK :: Double -> Contrat -> Contrat

saleK x  = sale (konst x) 

Any arithmeti ombination of observables is also an observ-

able. For example, we may write:

ntLAinKelvin :: Obs Double

ntLAinKelvin = noonTempInLA + konst 373

We an use the addition operator, (+), to add two observ-

ables, beause observables are an instane of the Num lass

4

,

whih has operations for addition, subtration, multiplia-

tion, and so on:

instane Num a => Num (Obs a)

(Readers who are unfamiliar with Haskell's type lasses need

not worry | all we need is that we an employ the usual

arithmeti operators for observables.) These observables

and their operations are, of ourse, reminisent of Fran's

behaviours [Elliott and Hudak, 1997℄. Like Fran, we pro-

vide ombinators for lifting funtions to the observable level,

lift, lift2, et. Figure 3 gives the primitive ombinators

over observables.

4

And indeed all the other numeri lasses, suh as Real,

Frational, et
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konst :: a -> Obs a

(konst x) is an observable that has value x at

any time.

lift :: (a -> b) -> Obs a -> Obs b

(lift f o) is the observable whose value is the

result of applying f to the value of the observable

o.

lift2 :: (a->b->) -> Obs a -> Obs b -> Obs 

(lift2 f o1 o2) is the observable whose value

is the result of applying f to the values of the

observables o1 and o2.

instane Num a => Num (Obs a)

All numeri operations lift to the Obs type. The

implementation is simple, using lift and lift2.

time :: Date -> Obs Days

The value of the observable (time t) at time s

is the number of days between s and t, positive

if s is later than t.

There may be an arbitrary number of other primitive

observables provided by a partiular implementation.

For example:

libor :: Curreny -> Days -> Days -> Obs Double

(libor k m1 m2) is an observable equal, at any

time t, to the quoted forward (atuarial) rate in

urreny k over the time interval t `add` m1 to

t `add` m2.

Figure 3: Primitives over observables

3.4 European options

Muh of the subtlety in �nanial ontrats arises beause the

partiipants an exerise hoies. We enapsulate hoie in

two primitive ombinators, or and anytime. The former al-

lows one to hoose whih of two ontrats to aquire (this

setion), while the latter allows one to hoose when to a-

quire it (Setion 3.5).

First, we onsider the hoie between two ontrats:

or :: Contrat -> Contrat -> Contrat

When you aquire the ontrat (1 `or` 2), you must im-

mediately aquire either 1 or 2 (but not both). Clearly,

1 an only be hosen at or before 1's horizon, and sim-

ilarly for 2. The horizon for (1 `or` 2) is the latest

of the horizons of 1 and 2. Aquiring this omposite on-

trat, for example, after 1's horizon but before 2's horizon

means that you an only \hoose" to aquire ontrat 2.

For example, the ontrat

zb t1 100 GBP `or` zb t2 110 GBP

gives the holder the right, if aquired before min(t1; t2), to

hoose immediately either to reeive $100 at t1, or alterna-

tively to reeive $110 at t2.

A so-alled European option gives the right to hoose, at a

partiular date, whether or not to aquire an \underlying"

ontrat:

european :: Date -> Contrat -> Contrat

For example, onsider the ontrat 5:

5 = european (date "24 Apr 2003") (

zb (date "12 May 2003") 0.4 GBP `and`

zb (date "12 May 2004") 9.3 GBP `and`

zb (date "12 May 2005") 109.3 GBP `and`

give (zb (date "26 Apr 2003") 100 GBP)

)

This ontrat gives the right to hoose, on 24 Apr 2003,

whether or not to aquire an underlying ontrat onsisting

of three reeipts and one payment. In the �nanial industry,

this kind of ontrat is indeed alled a all on a oupon

bond, giving the right, at a future date, to buy a bond for a

presribed prie. As with zb, we de�ne european in terms

of simpler elements:

european :: Date -> Contrat -> Contrat

european t u = get (trunate t (u `or` zero))

You an read this de�nition as follows:

� The primitive ontrat zero has no rights or obliga-

tions:

zero :: Contrat

� The ontrat (u `or` zero) expresses the hoie be-

tween aquiring u and aquiring nothing.

� We trim the horizon of the ontrat (u `or` zero) to

t, using the primitive ombinator trunate (Figure 2).

� Finally, we use our get ombinator to aquire it at that

horizon.

We will repeatedly enounter the pattern

(trunate t (u `or` zero)), so we will pakage it

up into a new omposite ombinator:

perhaps :: Date -> Contrat -> Contrat

perhaps t u = trunate t (u `or` zero)

3.5 Amerian options

The or ombinator lets us hoose whih of two ontrats to

aquire. Let us now onsider the hoie of when to aquire

a ontrat:

anytime :: Contrat -> Contrat

Aquiring the ontrat anytime u gives the right to aquire

the \underlying" ontrat u at any time, from aquisition

date of anytime u up to u's horizon. However, note that u

must be aquired, albeit perhaps at the latest possible date.

An Amerian option o�ers more exibility than a European

option. Typially, an Amerian option onfers the right

to aquire an underlying ontrat at any time between two

dates, or not to do so at all. Our �rst (inorret) attempt

to de�ne suh a ontrat might be to say:

amerian :: (Date,Date) -> Contrat -> Contrat

amerian (t1,t2) u -- WRONG

= anytime (perhaps t2 u)

5



but that is obviously wrong beause it does not mention t1.

We have to arrange that if we aquire the Amerian ontrat

before t1 then the bene�ts are the same as if we aquired it

at t1. So our next attempt is:

amerian (t1,t2) u -- WRONG

= get (trunate t1 (anytime (perhaps t2 u)))

But that is wrong too, beause it does not allow us to aquire

the Amerian ontrat after t1. We really want to say \until

t1 you get this, and after t1 you get that". We an express

this using the then ombinator:

amerian (t1,t2) u

= get (trunate t1 opt) `then` opt

where

opt :: Contrat

opt = anytime (perhaps t2 u)

We give the intermediate ontrat opt an (arbitrary) name

in a where lause, beause we need to use it twie. The new

ombinator then is de�ned as follows: if you aquire the

ontrat (1 `then` 2) before 1 expires then you aquire

1, otherwise you aquire 2 (unless it too has expired).

3.6 Summary

We have now given the avour of our approah to de�ning

ontrats. The ombinators we have de�ned so far are not

enough to desribe all the ontrats that are atively traded,

and we are extending the set in ongoing work. However, our

main onlusions are una�eted:

� Finanial ontrats an be desribed in a purely delar-

ative way.

� A huge variety of ontrats an be desribed in terms

of a small number of ombinators.

Identifying the \right" primitive ombinators is quite a hal-

lenge. For example, it was a breakthrough to identify and

separate the two forms of hoie, or and anytime, and enap-

sulate those hoies (and nothing else) in two ombinators.

4 Valuation

We now have at our disposal a rih language for desribing

�nanial ontrats. This is already useful for ommuniat-

ing between people | the industry laks any suh preise

notation. But in addition, a preise desription lends itself

to automati proessing of various sorts. From a single on-

trat desription we may hope to generate legal paperwork,

pitures, shedules and more besides. The most immediate

question one might ask about a ontrat is, however, what

is it worth? That is, what would I pay to own the ontrat?

It is to this question that we now turn.

We will express ontrat valuation in two \layers":

Abstrat evaluation semantis. First, we will show how

to translate an arbitrary ontrat, written in our

language, into a value proess, together with a

handful of operations over these proesses. These

proesses orrespond diretly to the mathematial

and stohasti mahinery used by �nanial experts

[Revuz and Yor, 1991, Musiela and Rutkowski, 1997℄.

Conrete implementation. A proess is an abstrat

mathematial value. To make a omputer alulate

with proesses we have to represent them somehow

| this is the step from abstrat semantis to on-

rete implementation. An implementation will onsist

of a �nanial model, assoiated to some disrete nu-

merial method. A tremendous number of di�erent

�nanial models are used today; but only three fam-

ilies of numerial methods are widely used in industry:

partial di�erential equations [Willmot et al., 1993℄,

Monte Carlo [Boyle et al., 1997℄ and lattie methods

[Cox et al., 1979℄.

This approah is strongly reminisent of the way in whih a

ompiler is typially strutured. The program is �rst trans-

lated into a low-level but mahine-independent intermediate

language; many optimisations are applied at this level; and

then the program is further translated into the instrution

set for the desired proessor (Pentium, Spar, or whatever).

In a similar way, we an transform a ontrat into a value

proess, apply meaning-preserving optimising transforma-

tions to this intermediate representation, before omputing

a value for the proess. This latter step an be done inter-

pretatively, or one ould imagine generating speialised ode

that, when run, would perform the valuation.

Indeed, our abstrat semantis serves as our referene model

for what it means for two ontrats to be the same. For

example, here are two laims:

get (get ) = get 

give (1 `or` 2) = give 1 `or` give 2

In fat, the �rst is true, and the seond is not, but how

do we know for sure? Answer: we ompare their valuation

semantis, as we shall see in Setion 4.6.

4.1 Value proesses

De�nition 1 (Value proess.) A value proess, p, over

type a, is a partial funtion from time to a random variable

of type a. The random variable p(t) desribes the possible

values for p at time t. We write the informal type de�nition

PR a = DAT E ,!RV a

(We use aligraphi font for types at the semanti level.) Be-

ause we need to work with di�erent proesses but de�ned on

the same \underlying spae" (�ltration), suh a value pro-

ess is more preisely desribed as an adapted stohasti pro-

ess, given a �ltration. Suh proesses ome equipped with

a sophistiated mathematial theory [Revuz and Yor, 1991,

Musiela and Rutkowski, 1997℄, but it is unlikely to be fa-

miliar to omputer sientists, so we only present informal,

intuitive notions. We usually abbreviate \value proess"

to simply \proess". Be warned, though: \proess" and

\variable" mean quite di�erent things to their onventional

omputer siene meanings.

Both ontrats and observables are modeled as proesses.

The underlying intuition is as follows:
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E

k

[[℄℄ : Contrat ! PR R

(E1) E

k

[[give ℄℄ = �E

k

[[℄℄

(E2) E

k

[[1 `and` 2℄℄ = E

k

[[1℄℄ + E

k

[[2℄℄ on ft j t � H(1) ^ t � H(2)g

E

k

[[1℄℄ on ft j t � H(1) ^ t > H(2)g

E

k

[[2℄℄ on ft j t > H(1) ^ t � H(2)g

(E3) E

k

[[1 `or` 2℄℄ = max(E

k

[[1℄℄; E

k

[[2℄℄) on ft j t � H(1) ^ t � H(2)g

E

k

[[1℄℄ on ft j t � H(1) ^ t > H(2)g

E

k

[[2℄℄ on ft j t > H(1) ^ t � H(2)g

(E4) E

k

[[o `sale` ℄℄ = V[[o℄℄ � E

k

[[℄℄

(E5) E

k

[[zero℄℄ = K0

(E6) E

k

[[trunate T ℄℄ = E

k

[[℄℄ on ft j t � Tg

(E7) E

k

[[1 `then` 2℄℄ = E

k

[[1℄℄ on ft j t � H(1)g

E

k

[[2℄℄ on ft j t > H(1)g

(E8) E

k

[[one k2℄℄ = exh

k

(k2)

(E9) E

k

[[get ℄℄ = dis

H()

k

(E

k

[[℄℄(H())) if H() 6=1

(E10) E

k

[[anytime ℄℄ = snell

H()

k

(E

k

[[℄℄) if H() 6=1

Figure 4: Compositional evaluation semantis for ontrats

V[[℄℄ : Obs a ! PR a

V[[konst x℄℄ = K(x)

V[[time s℄℄ = time(s)

V[[lift f o℄℄ = lift(f;V[[o℄℄)

V[[lift2 f o1 o2℄℄ = lift2(f;V[[o1℄℄;V[[o2℄℄)

V[[libor k m1 m2℄℄ = ...omitted

Figure 5: Evaluation semantis for observables

� The value proess for an observable omaps a time t to a

random variable desribing the possible values of o at t.

For example, the value proess for the observable \IBM

stok prie in US$" is a (total) funtion that maps a

time to a real-valued random variable that desribes

the possible values of IBM's stok prie in US$.

� The value proess for a ontrat , expressed in ur-

reny k is a (partial) funtion from a time, t, to a

random variable desribing the value, in urreny k,

of aquiring the ontrat  at time t.

These intuitions are essential to understand the rest of the

paper.

A value proess is, in general, a partial funtion of time;

that is, it may not be de�ned for all values of its argument.

Observables are de�ned for all time, and so do not need this

exibility; they de�ne total proesses. However, ontrats

are not de�ned for all time; the value proess for a ontrat

is unde�ned for times beyond its horizon.

4.2 From ontrats to proesses

How, then, are we to go from ontrats and observables to

proesses? Figure 4 gives the omplete translation from on-

trats to proesses, while Figure 5 does the same for observ-

ables. These Figures do not look very impressive, but that

is the whole point! Everything so far has been leading up to

this point; our entire design is organised around the desire

to give a simple, tratable, modular, valuation semantis.

Let us look at Figure 4 in more detail.

The funtion E

k

[[℄℄ takes a ontrat, , and maps it to a

proess desribing, for eah moment in time, the value in

urreny k of aquiring  at that moment. For example,

the equation for give (E1) says that the value proess for

give  is simply the negation of E

k

[[℄℄, the value proess for

. Aha! What does \negation" mean? Clearly, we need not

only the notion of a value proess, but also a olletion of

operations over these proesses. Negating a proesses is one

suh operation; the negation of a proess p is simply a fun-

tion that maps eah time, t, to the negation of p(t). It is an

absolutely straightforward exerise to \lift" all operations

on real numbers to operate point-wise on proesses. (This,

in turn, requires us to negate a random variable, but doing

so is simple.) We will need a number of other operations

over proesses. They are summarised in Figure 6, but we

will introdue eah one as we need it.

Next, onsider equation (E2). The and of two ontrats is

modeled by taking the sum of their two value proesses; we

need three equations to give the value of E

k

[[℄℄ when t is ear-

lier than the horizon of both ontrats, when it is earlier

than one but later than the other, and vie versa. In the

fourth ase | i.e. for times beyond both horizons | the

evaluation funtion is simply unde�ned. We use the nota-

tion \onft j : : : t : : :g" to indiate that the orresponding

equation applies for only part of the (time) domain of E

k

[[℄℄.

Figure 7 spei�es formally how to alulate the horizon H()

of a ontrat . It returns 1 as the horizon of a ontrat

with an in�nite horizon; we extend �, min, and max in the

obvious way to suh in�nities.

Equation (E3) does the same for the or ombinator. Again,

by design, the ombinator maps to a simple mathematial

operation, max. One might wonder why we de�ned a value

proess to be a partial funtion, rather than a total funtion

that is zero beyond its horizon. Equation (E3) gives the
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These primitives are independent of the evaluation

model

K : a! PR a

The proess K(x) is de�ned at all times to have

value x.

time : DAT E ! PR R

The proess time(s) is de�ned at all times t to be

the number of days between s and t. It is positive

if t is later than s.

lift : (a! b)! PR a! PR b

Apply the spei�ed funtion to the argument pro-

ess point-wise. The result is de�ned only where

the arguments proess is de�ned.

lift2 : (a! b! )! PR a! PR b! PR 

Combine the two argument proesses point-wise

with the spei�ed funtion. The result is de�ned

only where both arguments are de�ned.

These primitives are dependent on the partiular

model

dis

T

k

: RV

T

R! PR R

The primitive dis

T

k

maps a real-valued random

variable at date T , expressed in urreny k, to its

\fair" equivalent stohasti value proess in the

same urreny k.

exh

k1

(k2) : PR R

exh

k1

(k2) is a real-valued proess representing

the value of one unit of k2, expressed in urreny

k1. This is simply the proess representing the

quoted exhange rate between the urrenies.

snell

T

k

: PR R! PR R

The primitive snell

T

k

alulates the Snell enve-

lope of its argument. It uses the probability mea-

sure assoiated with the urreny k.

Figure 6: Model primitives

answer: beyond 1's horizon one is fored to hoose 2. In

general, max(v

1

; 0) 6= v

1

!

Equation (E4) is nie and simple. To sale a ontrat  by

a time-varying observable o, we simply multiply the value

proess for the ontrat E

k

[[℄℄ by the value proess for the ob-

servable | remember that we are modeling eah observable

by a value proess. We express the latter as V[[o℄℄, de�ned in

Figure 5 in a very similar fashion to E

k

[[℄℄. At �rst this seems

odd: how an we sale point-wise, when the saling applies

to future payments and reeipts in ? Reall that the value

proess for  at a time t gives the value of aquiring  at t.

Well, if this value is v then the value of aquiring the same

ontrat with all payments and reeipts saled by x is er-

tainly v � x. Our de�nition of sale in Figure 2 was in fat

driven diretly by our desire to express its semantis in a

simple way. Simple semantis gives rise to simple algebrai

properties (Setion 4.6).

The equations for zero, trunate, and then are also easy.

Equation (E5) delivers the onstant zero proess, while

H(zero) = 1

H(one k) = 1

H(1 `and` 2) = max(H(1); H(2))

H(1 `or` 2) = max(H(1); H(2))

H(1 `then` 2) = max(H(1); H(2))

H(trunate t ) = min(t; H())

H(sale o ) = H()

H(anytime ) = H()

H(get ) = H()

Figure 7: De�nition of horizon

Equation (E6) trunates a proess simply by limiting its

domain | remember, again, that the time argument of a

proess models the aquisition date. The then ombinator

of equation (E7) behaves like the �rst proess in its domain,

and elsewhere like the seond.

4.3 Exhange rates

The top group of operations over value proesses de�ned in

Figure 6 are generi { they are unrelated to a partiular

�nanial model. But we an't get away with that for ever.

The lower group of primitives in the same �gure are spei�

to �nanial ontrats, and they are used in the remaining

equations of Figure 4.

Consider equation (E8) in Figure 4. It says that to get

the value proess for one unit of urreny k2, expressed in

urreny k, is simply the exhange-rate proess between k2

and k namely exh

k

(k2) (Figure 6). Where do we get these

exhange-rate proesses from? When we ome to implemen-

tation, we will need some (numerial) assumption about fu-

ture evolution of exhange rates, but for now it suÆes to

treat the exhange rate proesses as primitives. However,

there are important relationships between them! Notably:

(A1) exh

k

(k) = K(1)

(A2) exh

k

2

(k

1

) � exh

k

3

(k

2

) = exh

k

3

(k

1

)

That is, exhange-rate proess between a urreny and it-

self is everywhere unity; and it makes no di�erene whether

we onvert k

1

diretly into k

3

or whether we go via some

intermediate urreny k

2

. These are partiular ases of no-

arbitrage onditions

5

.

You might also wonder what has beome of the bid-

o�er spread enountered by every traveller at the foreign-

exhange ounter. In order to keep things tehnially

tratable, �nane theory assumes most of the time the ab-

sene of any spreads: one typially �rst omputes a \fair"

prie, before �nally adding a pro�t margin. It is the latter

whih gives rise to the spread, but our modeling applies only

to the former.

5

A no-arbitrage ondition is one that exludes a risk-free oppor-

tunity to earn money. If suh an opportunity were to exist, everyone

would take it, and the opportunity would soon go away!
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4.4 Interest rates

Next, onsider equation (E9). The get ombinator aquires

the underlying ontrat  at its horizon, H(). (get  is

unde�ned if  has an in�nite horizon.) It does not matter

what 's value might be at earlier times; all that matters is

's value at its horizon, whih is desribed by the random

variable E

k

[[℄℄(H()). What is the value of get  at earlier

times? To answer that question we need a spei�ation of

future evolution of interest rates, that is an interest rate

model.

Let's onsider a onrete example:

 = get (saleK 10 (trunate t (one GBP)))

where t is one year from today. The underlying ontrat

(saleK 10 (trunate t (one GBP))) pays out $10 im-

mediately it is aquired; the get aquires it at its horizon,

namely t. So the value of  at t is just $10. Before t,

though, it is not worth as muh. If I expet interest rates

to average

6

(say) 10% over the next year, a fair prie for 

today would be about $9.

Just as the primitive exh enapsulates assumptions about

future exhange rate evolution, so the primitive dis en-

apsulates an interest rate evolution (Figure 6). It maps

a random variable desribing a payout, in a partiular ur-

reny, at a partiular date, into a proess desribing the

value of that payout at earlier dates, in the same urreny.

Like exh, there are some properties that any no-arbitrage

�nanial model should satisfy. Notably:

(A3) dis

t

k

(v)(t) = v

(A4) exh

k

1

(k

2

) � dis

t

k

2

(v) = dis

t

k

1

(exh

k

1

(k

2

)(t) � v)

(A5) dis

t

k

(v

1

+ v

2

) = dis

t

k

(v

1

) + dis

t

k

(v

2

)

The �rst equation says that dis should be the identity at its

horizon; the seond says that the interest rate evolution of

di�erent urrenies should be ompatible with the assump-

tion of evolution of exhange rates. The third

7

is often used

in a right-to-left diretion as optimisations: rather than per-

form disounting on two random variables separately, and

then add the resulting proess trees, it is faster to add the

random variables (a single olumn) and then disount the

result. Just as in an optimising ompiler, we may use iden-

tities like these to transform (the meaning of) our ontrat

into a form that is faster to exeute.

One has to be areful, though. Here is a plausible property

that does not hold:

dis

t

k

(max(v

1

; v

2

)) = max(dis

t

k

(v

1

); dis

t

k

(v

2

))

It is plausible beause it would hold if v

1

; v

2

were single

numbers and dis were a simple multipliative fator. But

v

1

and v

2

are random variables, and the property is false.

Equation (E10) uses the snell operator to give the meaning

of anytime. This operator is mathematially subtle, but

it has a simple haraterisation: snell

t

k

(p) is the smallest

proess q (under an ordering relation we mention briey at

the end of Setion 4.6) suh that

6

For the assoiated risk-neutral probability, but we will not go in

these �nanial details here.

7

The �nanially eduated reader should note that we assume here

impliitly what is alled omplete markets.

� q � p. Sine we an exerise the option at any time,

anytime  is at all times better than .

� 8t:q � dis

t

k

(q(t)). Sine we an always defer exerising

the option, (anytime ) is always better than the same

ontrat aquired later.

4.5 Observables

We an only value ontrats over observables that we an

model. For example, we an only value a ontrat involving

the temperature in Los Angeles if we have a model of the

temperature in Los Angeles. Some suh observables learly

require separate models. Others, suh as the LIBOR rate

and the prie of futures, an inestuously be modeled as the

value of partiular ontrats. We omit all the details here;

Figure 5 gives the semantis only for the simplest observ-

ables. This is not unrealisti, however. One an write a

large range of ontrats with our ontrat ombinators and

only these simple observables.

4.6 Reasoning about ontrats

Now we are ready to use our semantis to answer the ques-

tions we posed at the beginning of Setion 4. First, is this

equation valid?

get (get ) = get 

We take the meaning of the left hand side in some arbitrary

urreny k:

E

k

[[get (get )℄℄

= dis

h

1

k

(E

k

[[get ℄℄(h

1

)) by (E9)

= dis

h

1

k

(dis

h

2

k

(E

k

[[℄℄(h

2

))(h

1

)) by (E9)

= dis

h

2

k

(dis

h

2

k

(E

k

[[℄℄(h

2

))(h

2

)) sine h

1

= h

2

= dis

h

2

k

(E

k

[[℄℄(h

2

)) by (A3)

= E

k

[[get ℄℄ by (E9)

where

h

1

= H(get )

h

2

= H()

In a similar way, we an argue this plausible equation is

false:

give (1 `or` 2)

?

= give 1 `or` give 2

The proof is routine, but its ore is the observation that

�max(a; b) 6= max(�a;�b)

Bak in the real world, the point is that the left hand side

gives the hoie to the ounter-party, whereas in the right

hand side the hoie is made by the holder of the ontrat.

Our ombinators satisfy a rih set of equalities, suh as that

given for get above. Some of these equalities have side on-

ditions; for example:

sale o (1 `or` 2) = sale o 1 `or` sale o 2

holds only if o � 0, for exatly the same reason that get does

not ommute with or. Hang on! What does it mean to say

that \o � 0"? We mean that o is positive for all time. More

generally, as well as equalities between ontrats, we have

9



also developed a notion of ordering between both observables

and ontrats, 1 � 2, pronouned \1 dominates 2".

Roughly speaking, 1 � 2 if it is at all times preferable to

aquire 1 than to aquire 2; that is, H(1) � H(2) and

8t � H(2):E[[1℄℄(t) � E[[2℄℄(t)

Equalities, suh as the ones given above, an be used as op-

timising transformations in a valuation engine. A \ontrat

ompiler" an use these identities to transform a ontrat,

expressed in the intermediate language of value proesses

(see the introdution to Setion 4), into a form that an be

valued more heaply.

4.7 Summary

This ompletes our desription of the abstrat evaluation

semantis. From a programming-language point of view,

everything is quite routine, inluding our proofs. But we

stress that it is most unusual to �nd formal proofs in the

�nane industry at this level of abstration. We have named

and tamed the ompliated primitives (dis, exh, et): the

laws they must satisfy give us a way to prove identities about

ontrats without having to understand muh about random

variables. The mathematial details are arane, believe us!

5 Implementation

Our evaluation semantis is not only an abstrat beast. We

an also regard Figures 4 and 5 as a translation from our

ontrat language into a lower-level language of proesses,

whose ombinators are the primitives of Figure 6. Then we

an optimise the proess-level desription, using (A1)-(A5).

Finally, all (ha!) we need to do is to implement the proess-

level primitives, and we will be able to value an arbitrary

ontrat.

The key deision is, of ourse, how we implement a value

proess. A value proess has to represent unertainty about

the future in an expliit way. There are numerous ways to

model this unertainty. For the sake of onreteness, we

will simply pik the Ho and Lee model, and use a lattie

method to evaluate ontrats with it [Ho and Lee, 1986℄.

We hoose this model and numerial method for their teh-

nial simpliity and historial importane, but muh of this

setion is also appliable to other models (e.g. Blak Derman

Toy). Changing the numerial method (e.g. to Monte Carlo)

would entail bigger hanges, but nothing in our language or

its semantis (Setions 1-4) would be a�eted. Indeed, it

is entirely possible to use di�erent numerial methods for

di�erent parts of a single ontrat.

5.1 An interest rate model

In the typial Ho and Lee numerial sheme, the interest

rate evolution is represented by a lattie (or \reombining

tree"), as depited in Figure 8. Eah olumn of the tree

represents a disrete time step, and time inreases from left

to right. Time zero represents \now". As usual with disrete

models, there is an issue of how long a time step will be; we

won't disuss that further here, but we note in passing that

the time steps need not be of uniform size.

5%

4%

6%

3%

2%

4%

6%

7%

5%

8%

0 1 2 3

Time step

Figure 8: A short term interest rate evolution

At eah node of the tree is assoiated a one period short

term interest rate, shortly denominated the interest rate

from now on. We know today's interest rate, so the �rst

olumn in the tree has just one element. However, there

is some unertainty of what interest rates will evolve to by

the end of the �rst time step. This is expressed by having

two interest-rate values in the seond olumn; the idea is

that the interest rate will evolve to one of these two val-

ues with equal probability. In the third time step, the rates

split again, but the down/up path joins the up/down path,

so there are only three rates in the third olumn, not four.

This is why the struture is alled a lattie; it makes the

whole sheme omputationally feasible by giving only a lin-

ear growth in the width of the tree with time. Of ourse, the

tree is only a disrete approximation of a ontinuous proess;

its reombining nature is just a hoie for eÆieny reasons.

We write R

t

for the vetor of rates in time-step t, and R

t;i

for the i'th member of that vetor, starting with 0 at the

bottom. Thus, for example, R

2;1

= 5%. The atual numbers

in Figure 8 are unrealistially regular: in more elaborated

interest rate models, they will not be evenly spaed but only

monotonially distributed in eah olumn.

5.2 Value proesses

So muh for the interest rate model. A value proess is

modeled by a lattie of exatly the same shape as the interest

rate evolution, exept that we have a value at eah node

instead of an interest rate. Figure 9 shows the value proess

tree for our favourite zero-oupon bond

7 = get (saleK 10 (trunate t (one GBP)))

evaluated in pounds sterling (GBP). Using our evaluation se-

mantis we have

E

GBP

[[7℄℄ = dis

t

GBP

(K(10)(t))

In the Figure, we assume that the time t is time step 3. At

step 3, therefore, the value of the ontrat  is ertainly 10
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8.64

9.25

8.90

9.71

10

10

10

9.35

9.52

10

0 1 2 3

Time step

Figure 9: A Ho and Lee valuation lattie

at all nodes, beause  unonditionally delivers $10 at that

time | remember axiom (A3). At time step 2, however,

we must disount the $10 by the interest rate appropriate

to that time step. We ompute the value at eah node of

time-step 2 by averaging the two values in its suessors,

and then disounting the average value bak one time step

using the interest rate assoiated to that node

8

. Using the

same notation for the value tree V as we used for the rate

model R, we get the equation:

V

t;i

=

V

t+1;i

+ V

t+1;i+1

2(1 +R

t;i

�t)

where �t is the size of the time step. Using this equation

we an �ll in the rest of the values in the tree, as we have

done in Figure 9. The value in time step 0 is the urrent

value of the ontrat, in pounds sterling. i.e $8:64.

In short, a lattie implementation works as follows:

� A value proess is represented by a lattie, in whih

eah olumn is a disrete representation of a random

variable. The value in eah node is one of the possible

values the variable an take, and in our very simple

setting the number of paths from the root to the node

is proportional to the probability that the variable will

take that value. We will say a bit more about how to

represent suh a tree in the next subsetion.

� The generi operations, in the top half of Figure 6,

are easy to implement. K(x) is a value proess that is

everywhere equal to x. time(t) is a proess in whih

the values in a partiular olumn are all equal to the

number of days between that olumn's time and t.

lift(f; p) applies f to p point-wise; lift2(f; p

1

; p

2

) \zips

together" p

1

and p

2

, ombining orresponding values

point-wise with f .

8

For evident presentation reasons, we don't are about the fat

that the Ho and Lee model is member of a lass of models that admit

in fat a losed-form solution for zero-oupon bonds.

� The model-spei� operations of Figure 6 are a bit

harder. We have desribed how to implement dis,

whih uses the interest rate model. exh is atually

rather easier (multiply the value proess point-wise by

a proess representing the exhange-rate). The snell

primitive takes a bit more work, and we do not de-

sribe it in detail here. Roughly speaking, a possible

implementation may be: take the �nal olumn of the

tree, disount it bak one time step, take the maximum

of that olumn with the orresponding olumn of the

original tree, and then repeat that proess all the way

bak to the root.

The remaining high-level question is: in the (big) set of

possible interest rate models, what is a \good" model? The

answer is rather inestuous. A andidate interest rate model

should prie orretly those ontrats that are widely traded:

one an simply look up the urrent market pries for them,

and ompare them with the alulated results. So we look

for and later adjust the interest rate model until it �ts the

market data for these simple ontrats. Now we are ready to

use the model to ompute pries for more exoti ontrats.

The entire market is a giganti feedbak system, and ative

researh studies the problem of its stability.

5.3 Implementation in Haskell

We have two partial implementations of (earlier versions of)

these ideas, one of whih is implemented as a Haskell om-

binator library. The type Contrat is implemented as an

algebrai data type, with one onstrutor for eah primitive

ombinator:

data Contrat = One Date Curreny

| Give Contrat

| ...

The translation to proesses is done by a straightforward

reursive Haskell implementation of E

k

[[℄℄:

eval :: Model -> Curreny -> Contrat -> ValPro

Here, Model ontains the interest rate evolutions, exhange

rate evolutions, and whatever other \underlyings" are ne-

essary to evaluate the ontrat.

Our �rst implementation used the following representation

for a value proess:

type ValPro = (TimeStep, [Slie℄)

type Slie = [Double℄

A value proess is represented by a pair of (a) the proess's

horizon, and (b) a list of slies (or olumns), one per time

step in reverse time order. The �rst slie is at the horizon

of the proess, the next slie is one time step earlier, and so

on. Sine the (fundamental) disount reurrene equation

(Setion 5.1) works bakwards in time, it is onvenient to

represent the list this way round. Eah slie is one element

shorter than the one before.

Laziness plays a very important role, for two reasons:

� Proess trees an beome very large, sine their size is

quadrati in the number of time steps they over. A

omplex ontrat will be represented by ombining to-

gether many value trees; it would be Very Bad to fully
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evaluate these sub-trees, and only then ombine them.

Lazy evaluation automatially \pipelines" the evalua-

tion algorithm, so that only the \urrent slie" of eah

value tree is required at any one moment.

� Only part of a proess tree may be required. Consider

again our example ontrat

 = get (saleK 10 (trunate t (one GBP)))

The value proess for

(saleK 10 (trunate t (one GBP))) is a om-

plete value proess, all the way bak to time-step

zero, with value 10 everywhere. But get samples

this value proess only at its horizon | there is no

point in omputing its value at any earlier time. By

representing a value proess as a lazily-evaluated list

we get the \right" behaviour automatially.

Mirosoft Researh ollaborates losely with Lombard Risk

Systems Ltd, who have a prodution tree-based valuation

system in C++. It uses a lever but omplex event-driven

engine in whih a value tree is represented by a single slie

that is mutated as time progresses. There is never a no-

tion of a omplete tree. The Haskell implementation treats

trees as �rst lass values, and this point of view o�ers a rad-

ial new perspetive on the whole evaluation proess. We

are hopeful that some of the insights from our Haskell im-

plementation may serve to inform and improve the eÆient

C++ implementation.

The Haskell version takes around 900 lines of Haskell to

support a working, albeit limited, ontrat valuation engine,

omplete with a COM interfae [Finne et al., 1999℄ that lets

it be plugged into Lombard's framework. It is not nearly as

fast as the prodution ode, but it is not unbearably slow

either | for example, it takes around 20 seonds to ompute

the value of a ontrat with 15 sub-ontrats, over 500 time

steps, on a standard desktop PC. Though it laks muh

funtionality, the ompositional approah means that an

already value some ontrats, suh as options over options,

that the prodution system annot. (The prodution system

is not fundamentally inapable of suh feats; but it is pro-

grammed on a ase-by-ase basis, and the more ompliated

ases are dauntingly hard to implement.)

5.4 Memoisation

In funtional programming terms, most of this is quite

straightforward. There is a nasty pratial problem, how-

ever, that repeatedly bites people who embed a domain spe-

i� language in a funtional language. Consider the on-

trat

10 = join `and` join

where

join = <stuff> `or` <more stuff>

Here, join is a shared sub-ontrat of 10 muh like opt in

our de�nition of amerian (Setion 3.5). The trouble is that

eval will evaluate the two branhes of the and at the root

of 10, oblivious of the fat that these two branhes are the

same. In fat, eval will do all the work of evaluating join

twie! There is no way for eval to tell that it has \seen this

argument before".

This problem arises, in various guises, in almost every

embedded domain-spei� language. We have seen it in

Fran's reative animations [Elliott and Hudak, 1997℄, the

diÆulty of extrating net-lists from Hawk iruit desrip-

tions [Cook et al., 1998℄, and in other settings besides.

What makes it partiularly frustrating is that the sharing is

absolutely apparent in the soure program.

One \solution" is to suggest that eval be made a

memo funtion [Hughes, 1985, Cook and Launhbury, 1997,

Marlow et al., 1999℄, but we do not �nd it satisfatory. Los-

ing sharing an give rise to an unbounded amount of dupli-

ated work, so it seems unpleasant to relegate the mainte-

nane of proper sharing to an operational mehanism. For

example, a memo funtion may be deeived by unevaluated

arguments, or automatially-purged memo tables, or what-

ever. For now we simply identify it as an important open

problem that deserves further study. The only paper that

addresses this issue head on is [Claessen and Sands, 1999℄:

it proposes one way to make sharing observable, but leaves

open the question of memo funtions.

6 Putting our work in ontext

At �rst sight, �nanial ontrats and funtional program-

ming do not have muh to do with eah other. It has been

a surprise and delight to disover that many of the insights

useful in the design, semantis, and implementation of pro-

gramming languages an be applied diretly to the desrip-

tion and evaluation of ontrats. One of us (Eber) has been

developing this idea for nearly ten years at Soi�et�e G�en�erale.

The others (Peyton Jones and Seward) ame to it muh more

reently, through a fruitful partnership with Lombard Risk

Systems Ltd. The original idea was to apply funtional pro-

gramming to a realisti problem, and to ompare our result-

ing program with the existing imperative version | but we

have ended up with a radial re-thinking of how to desribe

and evaluate ontrats.

Though there is a great deal of work on

domain-spei� programming languages (see

[Hudak, 1996, van Deursen et al., 2000℄ for surveys),

our work is virtually the only attempt to give a formal de-

sription to �nanial ontrats. An exeption is the RISLA

language developed at CWI [van Deursen and Klint, 1998℄,

an objet-oriented domain-spei� language for �nanial

ontrats. RISLA is designed for an objet-oriented frame-

work, and appears to be more stateful and less delarative

than our system.

We have presented our design as a ombinator library em-

bedded in Haskell, and indeed Haskell has proved an exel-

lent host language for prototyping both the library design

and various implementation hoies. However, our design is

absolutely not Haskell-spei�. The big payo� omes from a

delarative approah to desribing ontrats. As it happens

we also used a funtional language for implementing the on-

trat language, but that is somewhat inidental. It ould

equally well be implemented as a free-standing domain-

spei� language, using domain-spei� ompiler tehnol-

ogy. Indeed, one of us (Eber) has work afoot do to just this,

ompiling a ontrat into ode that should be as fast or

faster than the best available urrent valuation engines, us-
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ing the strit funtional language OCaml [Leroy et al., 1999℄

as implementation language.

Although Haskell is lazy, and that was useful in our im-

plementation, the really signi�ant feature of the ontrat-

desription language is that it is delarative not that it is

lazy. Our design an be seen as a delarative, domain-

spei� language entirely independent of Haskell, and one

ould readily implement a valuation engine for it in Java or

C++, for example.

There is muh left to do. We need to expand the set of

ontrat ombinators to desribe a wider range of ontrats;

to expand the set of observables; to provide semantis for

these new ombinators; to write down and prove a range of

theorems about ontrats; to onsider whether the notion of

a \normal form" makes sense for ontrats; to build a robust

implementation; to exploit the dramati simpli�ations that

losed formulas make possible; to give a formal spei�ation

of the evolution of a ontrat during its life; and to validate

all this in real �nanial settings. We have only just begun.
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