Composing contracts:

an adventure in financial engineering

Functional pearl

Simon Peyton Jones
Microsoft Research, Cambridge
simonpj@microsoft.com

Jean-Marc Eber
LexiFi Technologies, Paris
jeanmarc.eber@lexifi.com

Julian Seward
University of Glasgow
v-sewardj@microsoft.com

23rd August 2000

Abstract

Financial and insurance contracts do not sound like promis-
ing territory for functional programming and formal seman-
tics, but in fact we have discovered that insights from pro-
gramming languages bear directly on the complex subject
of describing and valuing a large class of contracts.

We introduce a combinator library that allows us to de-
scribe such contracts precisely, and a compositional denota-
tional semantics that says what such contracts are worth.
We sketch an implementation of our combinator library in
Haskell. Interestingly, lazy evaluation plays a crucial role.

1 Introduction

Consider the following financial contract, C: the right to
choose on 30 June 2000 between

D, Both of:

D11 Receive £100 on 29 Jan 2001.
D;; Pay £105 on 1 Feb 2002.

D> An option exercisable on 15 Dec 2000 to choose one of:

D21 BOth Of:

D311 Receive £100 on 29 Jan 2001.
D312 Pay £106 on 1 Feb 2002.

D> Both of:

D221 Receive £100 on 29 Jan 2001.
D222 Pay £112 on 1 Feb 2003.

The details of this contract are not important, but it is a
simplified but realistic example of the sort of contract that is
traded in financial derivative markets. What is important is
that complex contracts, such as C, are formed by combining
together simpler contracts, such as D;, which in turn are
formed from simpler contracts still, such as D11, Dia.

To appear in the International Conference on Func-
tional Programming, Montreal, Sept 2000

At this point, any red-blooded functional programmer
should start to foam at the mouth, yelling “build a com-
binator library”. And indeed, that turns out to be not only
possible, but tremendously beneficial.

The finance industry has an enormous vocabulary of jargon
for typical combinations of financial contracts (swaps, fu-
tures, caps, floors, swaptions, spreads, straddles, captions,
European options, American options, ...the list goes on).
Treating each of these individually is like having a large
catalogue of prefabricated components. The trouble is that
someone will soon want a contract that is not in the cata-
logue.

If, instead, we could define each of these contracts using
a fixed, precisely-specified set of combinators, we would be
in a much better position than having a fixed catalogue.
For a start, it becomes much easier to describe new, unfore-
seen, contracts. Beyond that, we can systematically analyse,
and perform computations over these new contracts, because
they are described in terms of a fixed set of primitives.

The major thrust of this paper is to draw insights from the
study of functional programming to illuminate the world of
financial contracts. More specifically, our contributions are
the following:

e We define a carefully-chosen set of combinators, and,
through an extended sequence of examples in Haskell,
we show that these combinators can indeed be used to
describe a wide variety of contracts (Section 3).

e Our combinators can be used to describe a contract, but
we also want to process a contract. Notably, we want to
be able to find the value of a contract. In Section 4 we
describe how to give an abstract valuation semantics to
our combinators. A fundamentally-important property
of this semantics is that it is compositional; that is, the
value of a compound contract is given by combining
the values of its sub-contracts.

e We sketch an implementation of our valuation seman-
tics, using as an example a simple interest rate model
and its associated lattice (Section 5). Lazy evaluation
turns out to be tremendously important in translating
the compositional semantics into a modular implemen-
tation (Section 5.3).

Stated in this way, our work sounds like a perfectly rou-
tine application of the idea of using a functional language

c, d, Contract
Observable
t, Date, time
Currency

Dimensionless real value
Value process
Random variable

S K N uoe

Figure 1: Notational conventions

to define a domain-specific combinator library, thereby ef-
fectively creating an application-specific programming lan-
guage. Such languages have been defined for parsers,
music, animations, hardware circuits, and many others
[van Deursen et al., 2000]. However, from the standpoint of
financial engineers, our language is truly radical: they ac-
knowledge that the lack of a precise way to describe complex
contracts is “the bane of our lives”!.

It has taken us a long time to boil down the immense soup
of actively-traded contracts into a reasonably small set of
combinators; but once that is done, new vistas open up,
because a single formal description can drive all manner of
automated processes. For example, we can generate sched-
ules for back-office contract execution, perform risk analysis
optimisations, present contracts in new graphical ways (e.g.
decision trees), provide animated simulations, and so on.

This paper is addressed to a functional programming audi-
ence. We will introduce any financial jargon as we go.

2 Getting started

In this section we will informally introduce our notation for
contracts, and show how we can build more complicated con-
tracts out of simpler ones. We use the functional language
Haskell [Peyton Jones et al., 1999] throughout.

2.1 A simple contract

Consider the following simple contract, known to the indus-
try as zero-coupon discount bond: “receive £100 on 1lst Jan-
uary 2010”. We can specify this contract, which we name
c1, thus:

cl :: Contract
cl = zcb t1 100 GBP

Figure 1 summarises the notational conventions we use
throughout the paper for variables, such as c1 and t1 in
this definition.

The combinator zcb used in c1’s definition has the following
type:

zcb :: Date -> Double -> Currency -> Contract
The first argument to zcb is a Date, which specifies a partic-
ular moment in time (i.e. both date and time). We provide

a function, date, that converts a date expressed as a friendly
character string to a Date.

date :: String -> Date

1The quote is from an informal response to a draft of our work

Now we can define our date t1:

t1,t2 :: Date
tl = date "1530GMT 1 Jan 2010"
t2 = date "1200GMT 1 Feb 2010"

We will sometimes need to subtract dates, to get a time
difference, and add a date and a time difference to get a
new date.

type Days = Double -- A time difference
diff :: Date -> Date -> Days
add :: Date -> Days -> Date

We represent a time difference as a floating-point number in
units of days (parts of days can be important).

2.2 Combining contracts

So zcb lets us build a simple contract. We can also combine
contracts to make bigger contracts. A good example of such
a combining form is and, whose type is:

and :: Contract -> Contract -> Contract

Using and we can define ¢3, a contract that involves two
payments?:

c2,c3 :: Contract
c2 = zcb t2 200 GBP
c3 = cl ‘and‘ c2

That is, the holder of contract ¢3 will benefit from a payment
of £100 at time t1, and another payment of £200 at time
t2.

In general, the contracts we can describe are between two
parties, the holder of the contract, and the counter-party.
Notwithstanding Biblical advice (Acts 20.35), by default the
owner of a contract receives the payments, and makes the
choices, specified in the contract. This situation can be re-
versed by the give combinator:

give :: Contract -> Contract

The contract give c is simply ¢ with rights and obligations
reversed, a statement we will make precise in Section 4.2. In-
deed, when two parties agree on a contract, one acquires the
contract c, and the other simultaneously acquires (give c);
each is the other’s counter-party. For example, c4 is a con-
tract whose holder receives £100 at time t1, and pays £200
at time t2:

c4 = cl ‘and‘ give c2

So far, each of our definitions has defined a new contract
(c1, c2, etc). It is also easy to define a new combinator
(a function that builds a contract). For example, we could
define andGive thus:

andGive :: Contract -> Contract -> Contract
andGive ¢ d = ¢ ‘and‘ give d

Now we can give an alternative definition of c4 (which we
built earlier):

c4 = cl1 ‘andGive‘ c2

2In Haskell, a function can be turned into an infix operator by
enclosing it in back-quotes.

This ability to define new combinators, and use them just
as if they were built in, is quite routine for functional pro-
grammers, but not for financial engineers.

3 Building contracts

We have now completed our informal introduction. In this
section we will give the full set of primitives, and show how a
wide variety of other contracts can be built using them. For
reference, Figure 2 gives the primitive combinators over con-
tracts; we will introduce these primitives as we need them.

3.1 Acquisition date and horizon

Figure 2 gives an English-language, but quite precise, de-
scription of each combinator. To do so, it uses two technical
terms: acquisition date, and horizon. We begin by intro-
ducing them briefly.

Our language describes what a contract i¢s. However, what
the consequences for the holder of the contract depends on
the date at which the contract is acquired, its acquisition
date. (By “consequences for the holder” we mean the rights
and obligations that the contract confers on the holder of
a contract.) For example, the contract “receive £100 on 1
Jan 2000 and receive £100 on 1 Jan 2001” is worth a lot less
if acquired after 1 Jan 2000, because any rights and obliga-
tions that fall due before the acquisition date are simply
discarded.

The second fundamental concept is that of a contract’s hori-
zomn, or expiry date: the horizon, or expiry date, of a contract
is the latest date at which it can be acquired. A contract’s
horizon may be finite or infinite. The horizon of a contract is
completely specified by the contract itself: given a contract,
we can easily work out its horizon using the definitions in
Figure 2. Note carefully, though, that a contract’s rights
and obligations may, in principle, extend well beyond its
horizon. For example, consider the contract “the right to
decide on or before 1 Jan 2001 whether to have contract
C”. This sort of contract is called an option. Its horizon
is 1 Jan 2001 — it cannot be acquired after that date —
but if one acquires it before then, the underlying contract
C may (indeed, typically will) have consequences extending
well beyond 1 Jan 2001.

To reiterate, the horizon of a contract is a property of the
contract, while the acquisition date is not.

3.2 Discount bonds

Earlier, we described the zero-coupon discount bond: “re-
ceive £100 at time t1” (Section 2.1). At that time we as-
sumed that zcb was a primitive combinator, but in fact it
isn’t. It is obtained by composing no fewer than four more
primitive combinators. We begin with the one combinator:

cb = one GBP

Figure 2 gives a careful, albeit informal, definition of one:
if you acquire (one GBP), you immediately receive £1. The
contract has an infinite horizon; that is, there is no restric-
tion on when you can acquire this contract.

But the bond we want pays £100 at t1, and no earlier,
regardless of when the bond itself is acquired. To obtain
this effect we use two other combinators, get and truncate,
thus:

c6 = get (truncate tl (one GBP))

(truncate t c¢) is a contract that trims c¢’s horizon so that
it cannot be acquired any later than t. (get c) is a con-
tract that, when acquired, acquires the underlying contract
c at c¢’s horizon — that is, at the last possible moment —
regardless of when the composite contract (get c) is ac-
quired. The combination of the two is exactly the effect
we want, since the horizon of (truncate t1 (one GBP)) is
exactly t1. Like one, get and truncate are defined in Fig-
ure 2.

We are still not finished. The bond we want pays £100
not £1. We use the combinator scaleK to “scale up” the
contract, thus:

c7 = scaleK 100 (get (truncate t1 (one GBP)))
We will define scaleK shortly, in Section 3.3. It has the type

scaleK :: Double -> Contract -> Contract

To acquire (scaleK x c) is to acquire c, but all the pay-
ments and receipts in ¢ are multiplied by x. So we can,
finally, define zcb correctly:

zcb :: Date -> Double -> Currency -> Contract
zcb t x k = scaleK x (get (truncate t (one k)))

This definition of zcb effectively extends our repertoire of
combinators, just as andGive did in Section 2.2, only more
usefully. We will continually extend our library of combina-
tors in this way.

Why did we go to the trouble of defining zcb in terms of
four combinators, rather than making it primitive? Because
it turns out that scalek, get, truncate, and one are all in-
dependently useful. Each embodies a distinct piece of func-
tionality, and by separating them we significantly simplify
the semantics and enrich the algebra of contracts (Section 4).
The combinators we present are the result of an extended,
iterative process of refinement, leading to an interlocking
set of decisions — programming language designers will be
quite familiar with this process.

3.3 Observables and scaling

A real contract often mentions quantities that are to be mea-
sured on a particular date. For example, a contract might
say “receive an amount in dollars equal to the noon Centi-
grade temperature in Los Angeles”; or “pay an amount in
pounds sterling equal to the 3-month LIBOR spot rate® mul-
tiplied by 100”. We use the term observable for an objective,
but perhaps time-varying, quantity. By “objective” we mean
that at any particular time the observable has a value that
both parties to the contract will agree. The temperature in
Los Angeles can be objectively measured; but the value to
me of insuring my house is subjective, and is not an observ-
able. Observables are thus a different “kind of thing” from
contracts, so we give them a different type:

3The LIBOR spot rate is published daily in the financial press. For
present purposes it does not matter what it means; all that matters
is that it is an observable quantity.

zero :: Contract
zero is a contract that may be acquired at any
time. It has no rights and no obligations, and
has an infinite horizon. (Section 3.4.)

one :: Currency -> Contract
(one k) is a contract that immediately pays the
holder one unit of the currency k. The contract
has an infinite horizon. (Section 3.2.)

give :: Contract -> Contract
To acquire (give c) is to acquire all ¢’s rights
as obligations, and vice versa. Note that for a
bilateral contract q between parties A and B, A
acquiring q implies that B acquires (give q).
(Section 2.2.)

and :: Contract -> Contract -> Contract
If you acquire (c1 ‘and‘ c2) then you immedi-
ately acquire both c1 (unless it has expired) and
c2 (unless it has expired). The composite con-
tract expires when both c1 and c2 expire. (Sec-
tion 2.2.)

or :: Contract -> Contract -> Contract
If you acquire (c1 ‘or‘ c2) you must immedi-
ately acquire either c1 or c¢2 (but not both). If
either has expired, that one cannot be chosen.
When both have expired, the compound contract
expires. (Section 3.4.)

truncate :: Date -> Contract -> Contract
(truncate t c) is exactly like c except that it

then :: Contract -> Contract -> Contract

scale :: Obs Double -> Contract -> Contract

get :: Contract -> Contract

anytime ::

expires at the earlier of t and the horizon of c.
Notice that truncate limits only the possible ac-
quisition date of c; it does not truncate c’s rights
and obligations, which may extend well beyond
t. (Section 3.4.)

If you acquire (c1 ‘then‘ c2) and c1 has not
expired, then you acquire c1. If c1 has expired,
but c2 has not, you acquire c2. The compound
contract expires when both ¢l and c2 expire.
(Section 3.5.)

If you acquire (scale o c), then you acquire c
at the same moment, except that all the rights
and obligations of ¢ are multiplied by the value
of the observable o at the moment of acquisition.
(Section 3.3.)

If you acquire (get c) then you must acquire c
at ¢’s expiry date. The compound contract ex-
pires at the same moment that c expires. (Sec-
tion 3.2.)

Contract -> Contract

If you acquire (anytime c) you must acquire c,
but you can do so at any time between the acqui-
sition of (anytime c) and the expiry of c. The
compound contract expires when ¢ does. (Sec-
tion 3.5.)

Figure 2: Primitives for defining contracts

noonTempInLA :: Obs Double
libor3m :: Obs Double

In general, a value of type Obs d represents a time-varying
quantity of type d.

In the previous section we used scaleK to scale a contract
by a fixed quantity. The primitive combinator scale scales
a contract by a time-varying value, that is, by an observable:

scale :: Obs Double -> Contract -> Contract

With the aid of scale we can define the (strange but re-
alistic) contract “receive an amount in dollars equal to the
noon Centigrade temperature in Los Angeles”:

c8 = scale noonTempInLA (one USD)

Again, we have to be very precise in our definitions. Exactly
when is the noon temperature in LA sampled? Answer (in
Figure 2): when you acquire (scale o c) you immediately
acquire c, scaling all the payments and receipts in ¢ by the
value of the observable o sampled at the moment of acquisi-
tion. So we sample the observable at a single, well-defined
moment (the acquisition date) and then use that single num-
ber to scale the subsequent payments and receipts in c.

A very useful observable is one that has the same value at
every time:

konst :: a -> 0Obs a

With its aid we can define scaleK:

scaleK :: Double -> Contract -> Contract
scaleK x ¢ = scale (konst x) c

Any arithmetic combination of observables is also an observ-
able. For example, we may write:

ntLAinKelvin :: Obs Double
ntLAinKelvin = noonTempInLA + konst 373

We can use the addition operator, (+), to add two observ-
ables, because observables are an instance of the Num class®,
which has operations for addition, subtraction, multiplica-
tion, and so on:

instance Num a => Num (Obs a)

(Readers who are unfamiliar with Haskell’s type classes need
not worry — all we need is that we can employ the usual
arithmetic operators for observables.) These observables
and their operations are, of course, reminiscent of Fran’s
behaviours [Elliott and Hudak, 1997]. Like Fran, we pro-
vide combinators for lifting functions to the observable level,
lift, 1ift2, etc. Figure 3 gives the primitive combinators
over observables.

4And indeed all the other numeric classes, such as Real,
Fractional, etc

konst :: a -> Obs a
(konst x) is an observable that has value x at
any time.

lift :: (a -> b) -> Obs a -> Obs b
(1ift £ o) is the observable whose value is the
result of applying f to the value of the observable
O.

1ift2 :: (a->b->c) -> Obs a -> Obs b -> 0Obs c
(1ift2 £ ol 02) is the observable whose value
is the result of applying £ to the values of the
observables ol and o2.

instance Num a => Num (Obs a)
All numeric operations lift to the Obs type. The
implementation is simple, using 1ift and 1ift2.

time :: Date -> Obs Days
The value of the observable (time t) at time s
is the number of days between s and t, positive
if s is later than t.

There may be an arbitrary number of other primitive
observables provided by a particular implementation.
For example:

libor :: Currency -> Days -> Days -> Obs Double
(libor k ml m2) is an observable equal, at any
time ¢, to the quoted forward (actuarial) rate in
currency k over the time interval ¢ ‘add‘ ml to
t ‘add‘ m2.

Figure 3: Primitives over observables

3.4 European options

Much of the subtlety in financial contracts arises because the
participants can exercise choices. We encapsulate choice in
two primitive combinators, or and anytime. The former al-
lows one to choose which of two contracts to acquire (this
section), while the latter allows one to choose when to ac-
quire it (Section 3.5).

First, we consider the choice between two contracts:
or :: Contract -> Contract -> Contract

When you acquire the contract (c1 ‘or‘ c¢2), you must im-
mediately acquire either c1 or c¢2 (but not both). Clearly,
cl can only be chosen at or before c1’s horizon, and sim-
ilarly for c2. The horizon for (c1 ‘or‘ c2) is the latest
of the horizons of c1 and ¢2. Acquiring this composite con-
tract, for example, after c1’s horizon but before c¢2’s horizon
means that you can only “choose” to acquire contract c2.
For example, the contract

zcb t1 100 GBP ‘or‘ zcb t2 110 GBP

gives the holder the right, if acquired before min(t1,t2), to
choose immediately either to receive £100 at t1, or alterna-
tively to receive £110 at t2.

A so-called European option gives the right to choose, at a
particular date, whether or not to acquire an “underlying”
contract:

european :: Date -> Contract -> Contract

For example, consider the contract cb:

cb = european (date "24 Apr 2003") (
zcb (date "12 May 2003") 0.4 GBP ‘and‘
zcb (date "12 May 2004") 9.3 GBP ‘andf
zcb (date "12 May 2005") 109.3 GBP ‘and‘
give (zcb (date "26 Apr 2003") 100 GBP)
)

This contract gives the right to choose, on 24 Apr 2003,
whether or not to acquire an underlying contract consisting
of three receipts and one payment. In the financial industry,
this kind of contract is indeed called a call on a coupon
bond, giving the right, at a future date, to buy a bond for a
prescribed price. As with zcb, we define european in terms
of simpler elements:

Date -> Contract -> Contract
¢ zero))

european ::
european t u = get (truncate t (u ‘or

You can read this definition as follows:

e The primitive contract zero has no rights or obliga-
tions:

zero :: Contract
e The contract (u ‘or‘ zero) expresses the choice be-
tween acquiring u and acquiring nothing.

e We trim the horizon of the contract (u ‘or‘ zero) to
t, using the primitive combinator truncate (Figure 2).

o Finally, we use our get combinator to acquire it at that
horizon.

We will repeatedly encounter the pattern
(truncate t (u ‘or‘ zero)), so we will package it
up into a new composite combinator:

Date -> Contract -> Contract
¢ zero)

perhaps ::
perhaps t u = truncate t (u ‘or

3.5 American options

The or combinator lets us choose which of two contracts to
acquire. Let us now consider the choice of when to acquire
a contract:

anytime :: Contract -> Contract

Acquiring the contract anytime u gives the right to acquire
the “underlying” contract u at any time, from acquisition
date of anytime u up to u’s horizon. However, note that u
must be acquired, albeit perhaps at the latest possible date.

An American option offers more flexibility than a European
option. Typically, an American option confers the right
to acquire an underlying contract at any time between two
dates, or not to do so at all. Our first (incorrect) attempt
to define such a contract might be to say:

american :: (Date,Date) -> Contract -> Contract
american (t1,t2) u -- WRONG
= anytime (perhaps t2 u)

but that is obviously wrong because it does not mention t1.
We have to arrange that if we acquire the American contract
before t1 then the benefits are the same as if we acquired it
at t1. So our next attempt is:

american (t1,t2) u -- WRONG
= get (truncate tl (anytime (perhaps t2 u)))

But that is wrong too, because it does not allow us to acquire
the American contract after t1. We really want to say “until
t1 you get this, and after t1 you get that”. We can express
this using the then combinator:

american (t1,t2) u
= get (truncate tl opt) ‘then‘ opt
where
opt :: Contract
opt = anytime (perhaps t2 u)

We give the intermediate contract opt an (arbitrary) name
in a where clause, because we need to use it twice. The new
combinator then is defined as follows: if you acquire the
contract (c1 ‘then‘ c2) before cl expires then you acquire
cl, otherwise you acquire c2 (unless it too has expired).

3.6 Summary

We have now given the flavour of our approach to defining
contracts. The combinators we have defined so far are not
enough to describe all the contracts that are actively traded,
and we are extending the set in ongoing work. However, our
main conclusions are unaffected:

e Financial contracts can be described in a purely declar-
ative way.

e A huge variety of contracts can be described in terms
of a small number of combinators.

Identifying the “right” primitive combinators is quite a chal-
lenge. For example, it was a breakthrough to identify and
separate the two forms of choice, or and anytime, and encap-
sulate those choices (and nothing else) in two combinators.

4 Valuation

We now have at our disposal a rich language for describing
financial contracts. This is already useful for communicat-
ing between people — the industry lacks any such precise
notation. But in addition, a precise description lends itself
to automatic processing of various sorts. From a single con-
tract description we may hope to generate legal paperwork,
pictures, schedules and more besides. The most immediate
question one might ask about a contract is, however, what
s it worth? That is, what would I pay to own the contract?
It is to this question that we now turn.

We will express contract valuation in two “layers”:

Abstract evaluation semantics. First, we will show how
to translate an arbitrary contract, written in our
language, into a walue process, together with a
handful of operations over these processes. These
processes correspond directly to the mathematical

and stochastic machinery used by financial experts
[Revuz and Yor, 1991, Musiela and Rutkowski, 1997].

Concrete implementation. A process is an abstract
mathematical value. To make a computer calculate
with processes we have to represent them somehow
— this is the step from abstract semantics to con-
crete implementation. An implementation will consist
of a financial model, associated to some discrete nu-
merical method. A tremendous number of different
financial models are used today; but only three fam-
ilies of numerical methods are widely used in industry:
partial differential equations [Willmot et al., 1993],
Monte Carlo [Boyle et al., 1997] and lattice methods
[Cox et al., 1979].

This approach is strongly reminiscent of the way in which a
compiler is typically structured. The program is first trans-
lated into a low-level but machine-independent intermediate
language; many optimisations are applied at this level; and
then the program is further translated into the instruction
set for the desired processor (Pentium, Sparc, or whatever).

In a similar way, we can transform a contract into a value
process, apply meaning-preserving optimising transforma-
tions to this intermediate representation, before computing
a value for the process. This latter step can be done inter-
pretatively, or one could imagine generating specialised code
that, when run, would perform the valuation.

Indeed, our abstract semantics serves as our reference model
for what it means for two contracts to be the same. For
example, here are two claims:

get (get c) = get ¢

give (cl1 ‘orf c2) = give cl ‘or‘

give c2

In fact, the first is true, and the second is not, but how
do we know for sure? Answer: we compare their valuation
semantics, as we shall see in Section 4.6.

4.1 Value processes

Definition 1 (Value process.) A value process, p, over
type a, is a partial function from time to a random variable
of type a. The random variable p(t) describes the possible
values for p at time t. We write the informal type definition

PR a=DATE — RV a

(We use caligraphic font for types at the semantic level.) Be-
cause we need to work with different processes but defined on
the same “underlying space” (filtration), such a value pro-
cess is more precisely described as an adapted stochastic pro-
cess, given a filtration. Such processes come equipped with
a sophisticated mathematical theory [Revuz and Yor, 1991,
Musiela and Rutkowski, 1997], but it is unlikely to be fa-
miliar to computer scientists, so we only present informal,
intuitive notions. We usually abbreviate “value process”
to simply “process”. Be warned, though: “process” and
“variable” mean quite different things to their conventional
computer science meanings.

Both contracts and observables are modeled as processes.
The underlying intuition is as follows:

&[] : Contract — PR R
Elgive c] = —&[c]
Eccl ‘and‘ c2] = &fecl] + &[c2] on {t|t<H(c1l) A t < H(c2)}
Elcl on {t|t<H(cl) A t>H(c2)}
Ex[c2 on {t|t>H(c1) A t < H(c2)}
Elctl forf c2] = max(&[cl], &[c2]) on {t|t<H(ct) At <H(c2)}
Exfcl on {t|t<H(cl) A t> H(c2)}
Exlc2 on {t|t>H(c1) At < H(c2)}
Eco ‘scalef c] = V[o] * &[c]
Ec[zero] = KO
Ectruncate T c] = &[c] on {t|t<T}
Ec[cl ‘thent c2] = &fct on {t|t< H(c1)}
Exlc2 on {t|t>H(cl)}
Exone k2] exchy (k2)
Elget <] = discy ‘“(&[c](H(c))) if H(c) # oo
Ec[anytime c] snellf(c)(gk[[c]]) if H(c) # o

Figure 4: Compositional evaluation semantics for contracts

V[]:0bs a — PR a
V[konst x] = K(x)

V[time s] = time(s)
V[lift £ o] = lift(£,V[o])

V[1ift2 £ ol o2]
V[libor k ml m2] =

lift2(£,V[o1], V[o2])

...omitted

Figure 5: Evaluation semantics for observables

e The value process for an observable o maps a time ¢ to a
random variable describing the possible values of o at t.
For example, the value process for the observable “IBM
stock price in US$” is a (total) function that maps a
time to a real-valued random variable that describes
the possible values of IBM’s stock price in US$.

e The value process for a contract c, expressed in cur-
rency k is a (partial) function from a time, ¢, to a
random variable describing the value, in currency k,
of acquiring the contract c at time t.

These intuitions are essential to understand the rest of the
paper.

A value process is, in general, a partial function of time;
that is, it may not be defined for all values of its argument.
Observables are defined for all time, and so do not need this
flexibility; they define total processes. However, contracts
are not defined for all time; the value process for a contract
is undefined for times beyond its horizon.

4.2 From contracts to processes

How, then, are we to go from contracts and observables to
processes? Figure 4 gives the complete translation from con-
tracts to processes, while Figure 5 does the same for observ-
ables. These Figures do not look very impressive, but that

is the whole point! Everything so far has been leading up to
this point; our entire design is organised around the desire
to give a simple, tractable, modular, valuation semantics.
Let us look at Figure 4 in more detail.

The function &[] takes a contract, c, and maps it to a
process describing, for each moment in time, the value in
currency k of acquiring ¢ at that moment. For example,
the equation for give (E1) says that the value process for
give c is simply the negation of &[c], the value process for
c. Aha! What does “negation” mean? Clearly, we need not
only the notion of a value process, but also a collection of
operations over these processes. Negating a processes is one
such operation; the negation of a process p is simply a func-
tion that maps each time, ¢, to the negation of p(¢). It is an
absolutely straightforward exercise to “lift” all operations
on real numbers to operate point-wise on processes. (This,
in turn, requires us to negate a random variable, but doing
so is simple.) We will need a number of other operations
over processes. They are summarised in Figure 6, but we
will introduce each one as we need it.

Next, consider equation (E2). The and of two contracts is
modeled by taking the sum of their two value processes; we
need three equations to give the value of &[] when ¢ is ear-
lier than the horizon of both contracts, when it is earlier
than one but later than the other, and vice versa. In the

fourth case — i.e. for times beyond both horizons — the
evaluation function is simply undefined. We use the nota-
tion “on{t | ...t...}” to indicate that the corresponding

equation applies for only part of the (time) domain of &[c].

Figure 7 specifies formally how to calculate the horizon H(c)
of a contract c. It returns co as the horizon of a contract
with an infinite horizon; we extend <, min, and max in the
obvious way to such infinities.

Equation (E3) does the same for the or combinator. Again,
by design, the combinator maps to a simple mathematical
operation, maz. One might wonder why we defined a value
process to be a partial function, rather than a total function
that is zero beyond its horizon. Equation (E3) gives the

These primitives are independent of the evaluation
model

K:a—PRa
The process K(x) is defined at all times to have
value z.

time : DATE - PR R
The process time(s) is defined at all times ¢ to be
the number of days between s and ¢. It is positive
if ¢ is later than s.

lift:(a—>b)—>PRa—PRYG
Apply the specified function to the argument pro-
cess point-wise. The result is defined only where
the arguments process is defined.

lift2: (a—>b—¢)>PRa—->PRbO—>PRc
Combine the two argument processes point-wise
with the specified function. The result is defined
only where both arguments are defined.

These primitives are dependent on the particular
model

discf : RVr R - PR R
The primitive disc} maps a real-valued random
variable at date T', expressed in currency k, to its
“fair” equivalent stochastic value process in the
same currency k.

exchr1(k2) : PR R
exchr1(k2) is a real-valued process representing
the value of one unit of k2, expressed in currency
k1. This is simply the process representing the
quoted exchange rate between the currencies.

snelll :PRR—PRR
The primitive snellf calculates the Snell enve-
lope of its argument. It uses the probability mea-
sure associated with the currency k.

Figure 6: Model primitives

answer: beyond c1’s horizon one is forced to choose c2. In
general, maz(v1,0) # v1!

Equation (E4) is nice and simple. To scale a contract ¢ by
a time-varying observable o, we simply multiply the value
process for the contract E[c] by the value process for the ob-
servable — remember that we are modeling each observable
by a value process. We express the latter as V[o], defined in
Figure 5 in a very similar fashion to &J]. At first this seems
odd: how can we scale point-wise, when the scaling applies
to future payments and receipts in c? Recall that the value
process for c at a time ¢ gives the value of acquiring c at ¢t.
Well, if this value is v then the value of acquiring the same
contract with all payments and receipts scaled by x is cer-
tainly v * 2. Our definition of scale in Figure 2 was in fact
driven directly by our desire to express its semantics in a
simple way. Simple semantics gives rise to simple algebraic
properties (Section 4.6).

The equations for zero, truncate, and then are also easy.
Equation (E5) delivers the constant zero process, while

H(zero) = oo
H(one k) = o0
H(cl ‘and® c2) = max(H(cl),H(c2))
H(cl ‘orf c2) = wmax(H(cl),H(c2))
H(cl ‘then‘ c2) = maz(H(cl),H(c2))
H(truncate t ¢) = min(t,H(c))
H(scale o ¢) = H(c)
H(anytime c¢) = H(c)
H(get ¢) = H(c)

Figure 7: Definition of horizon

Equation (E6) truncates a process simply by limiting its
domain — remember, again, that the time argument of a
process models the acquisition date. The then combinator
of equation (E7) behaves like the first process in its domain,
and elsewhere like the second.

4.3 Exchange rates

The top group of operations over value processes defined in
Figure 6 are generic — they are unrelated to a particular
financial model. But we can’t get away with that for ever.
The lower group of primitives in the same figure are specific
to financial contracts, and they are used in the remaining
equations of Figure 4.

Consider equation (E8) in Figure 4. It says that to get
the value process for one unit of currency k2, expressed in
currency k, is simply the exchange-rate process between k2
and k namely exchy (k2) (Figure 6). Where do we get these
exchange-rate processes from? When we come to implemen-
tation, we will need some (numerical) assumption about fu-
ture evolution of exchange rates, but for now it suffices to
treat the exchange rate processes as primitives. However,
there are important relationships between them! Notably:

(A1) exchy(k) = K(1)
(A2) exchp, (k1) * exchi, (k) = exchp, (ki)

That is, exchange-rate process between a currency and it-
self is everywhere unity; and it makes no difference whether
we convert ki directly into ks or whether we go via some
intermediate currency k2. These are particular cases of no-
arbitrage conditions®.

You might also wonder what has become of the bid-
offer spread encountered by every traveller at the foreign-
exchange counter. In order to keep things technically
tractable, finance theory assumes most of the time the ab-
sence of any spreads: one typically first computes a “fair”
price, before finally adding a profit margin. It is the latter
which gives rise to the spread, but our modeling applies only
to the former.

5A no-arbitrage condition is one that excludes a risk-free oppor-
tunity to earn money. If such an opportunity were to exist, everyone
would take it, and the opportunity would soon go away!

4.4 Interest rates

Next, consider equation (E9). The get combinator acquires
the underlying contract c at its horizon, H(c). (get c is
undefined if ¢ has an infinite horizon.) It does not matter
what c¢’s value might be at earlier times; all that matters is
c’s value at its horizon, which is described by the random
variable E;[c](H(c)). What is the value of get c at earlier
times? To answer that question we need a specification of
future evolution of interest rates, that is an interest rate
model.

Let’s consider a concrete example:
c = get (scaleK 10 (truncate t (one GBP)))

where t is one year from today. The underlying contract
(scaleK 10 (truncate t (one GBP))) pays out £10 im-
mediately it is acquired; the get acquires it at its horizon,
namely t. So the value of ¢ at t is just £10. Before t,
though, it is not worth as much. If I expect interest rates
to average® (say) 10% over the next year, a fair price for ¢
today would be about £9.

Just as the primitive exch encapsulates assumptions about
future exchange rate evolution, so the primitive disc en-
capsulates an interest rate evolution (Figure 6). It maps
a random variable describing a payout, in a particular cur-
rency, at a particular date, into a process describing the
value of that payout at earlier dates, in the same currency.
Like exch, there are some properties that any no-arbitrage
financial model should satisfy. Notably:

(A3) disch,(v)(t) = w
(Ad) exchi, (k2) = discy,(v) = discy, (ewchy, (k2)(t) * v)
(A5) disch(vy +v2) = disch(v1) + disch (vs)

The first equation says that disc should be the identity at its
horizon; the second says that the interest rate evolution of
different currencies should be compatible with the assump-
tion of evolution of exchange rates. The third” is often used
in a right-to-left direction as optimisations: rather than per-
form discounting on two random variables separately, and
then add the resulting process trees, it is faster to add the
random variables (a single column) and then discount the
result. Just as in an optimising compiler, we may use iden-
tities like these to transform (the meaning of) our contract
into a form that is faster to execute.

One has to be careful, though. Here is a plausible property
that does not hold:

disch (maz(vi,v2)) = maz(discy(v1), disch(v2))

It is plausible because it would hold if vi,v2 were single
numbers and disc were a simple multiplicative factor. But
v1 and vy are random variables, and the property is false.

Equation (E10) uses the snell operator to give the meaning
of anytime. This operator is mathematically subtle, but
it has a simple characterisation: snelli(p) is the smallest
process g (under an ordering relation we mention briefly at
the end of Section 4.6) such that

SFor the associated risk-neutral probability, but we will not go in
these financial details here.

"The financially educated reader should note that we assume here
implicitly what is called complete markets.

e g > p. Since we can exercise the option at any time,
anytime c is at all times better than c.

e Vt.g > discl(q(t)). Since we can always defer exercising
the option, (anytime c) is always better than the same
contract acquired later.

4.5 Observables

We can only value contracts over observables that we can
model. For example, we can only value a contract involving
the temperature in Los Angeles if we have a model of the
temperature in Los Angeles. Some such observables clearly
require separate models. Others, such as the LIBOR rate
and the price of futures, can incestuously be modeled as the
value of particular contracts. We omit all the details here;
Figure 5 gives the semantics only for the simplest observ-
ables. This is not unrealistic, however. One can write a
large range of contracts with our contract combinators and
only these simple observables.

4.6 Reasoning about contracts

Now we are ready to use our semantics to answer the ques-
tions we posed at the beginning of Section 4. First, is this
equation valid?

get (get c) = get ¢

We take the meaning of the left hand side in some arbitrary
currency k:

Erlget (get c)]

= disczl(gk[[get c](h1)) by (E9)
= disc (disc* (Ex[e](h2))(h1)) by (E9)
= disc;?(disc,? (Ex[c](h2))(h2)) since hy = ho
— disc]? (Exfc](h2) by (A3)
:h Erlget <] by (E9)
hy = H(get c)
ha = H(c)

In a similar way, we can argue this plausible equation is
false:

4

give (c1 ‘or‘ c2) B give cl ‘or‘ give c2

The proof is routine, but its core is the observation that
—max(a,b) # maz(—a,—b)

Back in the real world, the point is that the left hand side
gives the choice to the counter-party, whereas in the right
hand side the choice is made by the holder of the contract.

Our combinators satisfy a rich set of equalities, such as that
given for get above. Some of these equalities have side con-
ditions; for example:

scale o (cl ‘or‘ c2) = scale o cl ‘or‘ scale o c2

holds only if o > 0, for exactly the same reason that get does
not commute with or. Hang on! What does it mean to say
that “o > 0”7 We mean that o is positive for all time. More
generally, as well as equalities between contracts, we have

also developed a notion of ordering between both observables
and contracts, c1 > c2, pronounced “cl dominates c2”.
Roughly speaking, c1 > c2 if it is at all times preferable to
acquire c1 than to acquire c2; that is, H(c1) > H(c2) and
vVt < H(c2).E[c1](t) > E[<2](t)

Equalities, such as the ones given above, can be used as op-
timising transformations in a valuation engine. A “contract
compiler” can use these identities to transform a contract,
expressed in the intermediate language of value processes
(see the introduction to Section 4), into a form that can be
valued more cheaply.

4.7 Summary

This completes our description of the abstract evaluation
semantics. From a programming-language point of view,
everything is quite routine, including our proofs. But we
stress that it is most unusual to find formal proofs in the
finance industry at this level of abstraction. We have named
and tamed the complicated primitives (disc, exch, etc): the
laws they must satisfy give us a way to prove identities about
contracts without having to understand much about random
variables. The mathematical details are arcane, believe us!

5 Implementation

Our evaluation semantics is not only an abstract beast. We
can also regard Figures 4 and 5 as a translation from our
contract language into a lower-level language of processes,
whose combinators are the primitives of Figure 6. Then we
can optimise the process-level description, using (A1)-(A5).
Finally, all (ha!) we need to do is to implement the process-
level primitives, and we will be able to value an arbitrary
contract.

The key decision is, of course, how we implement a value
process. A value process has to represent uncertainty about
the future in an explicit way. There are numerous ways to
model this uncertainty. For the sake of concreteness, we
will simply pick the Ho and Lee model, and use a lattice
method to evaluate contracts with it [Ho and Lee, 1986].
We choose this model and numerical method for their tech-
nical simplicity and historical importance, but much of this
section is also applicable to other models (e.g. Black Derman
Toy). Changing the numerical method (e.g. to Monte Carlo)
would entail bigger changes, but nothing in our language or
its semantics (Sections 1-4) would be affected. Indeed, it
is entirely possible to use different numerical methods for
different parts of a single contract.

5.1 An interest rate model

In the typical Ho and Lee numerical scheme, the interest
rate evolution is represented by a lattice (or “recombining
tree”), as depicted in Figure 8. Each column of the tree
represents a discrete time step, and time increases from left
to right. Time zero represents “now”. As usual with discrete
models, there is an issue of how long a time step will be; we
won'’t discuss that further here, but we note in passing that
the time steps need not be of uniform size.

10

4]
7%
6%
6%
5%
5%
4% 4%
3%
) 2%
Time step

N

Figure 8: A short term interest rate evolution

At each node of the tree is associated a one period short
term interest rate, shortly denominated the interest rate
from now on. We know today’s interest rate, so the first
column in the tree has just one element. However, there
is some uncertainty of what interest rates will evolve to by
the end of the first time step. This is expressed by having
two interest-rate values in the second column; the idea is
that the interest rate will evolve to one of these two val-
ues with equal probability. In the third time step, the rates
split again, but the down/up path joins the up/down path,
so there are only three rates in the third column, not four.
This is why the structure is called a lattice; it makes the
whole scheme computationally feasible by giving only a lin-
ear growth in the width of the tree with time. Of course, the
tree is only a discrete approximation of a continuous process;
its recombining nature is just a choice for efficiency reasons.
We write R: for the vector of rates in time-step ¢, and Ry ;
for the ¢’th member of that vector, starting with 0 at the
bottom. Thus, for example, R2 1 = 5%. The actual numbers
in Figure 8 are unrealistically regular: in more elaborated
interest rate models, they will not be evenly spaced but only
monotonically distributed in each column.

5.2 Value processes

So much for the interest rate model. A value process is
modeled by a lattice of exactly the same shape as the interest
rate evolution, except that we have a wvalue at each node
instead of an interest rate. Figure 9 shows the value process
tree for our favourite zero-coupon bond

c7 = get (scaleK 10 (truncate t (one GBP)))

evaluated in pounds sterling (GBP). Using our evaluation se-
mantics we have

Ecpr[cT] = discipp(K(10)(t))

In the Figure, we assume that the time t is time step 3. At
step 3, therefore, the value of the contract c is certainly 10

9.35
8.90
10
8.64
9.52
9.25 10
9.71
10
Time step
0 1 2

i

Figure 9: A Ho and Lee valuation lattice

at all nodes, because ¢ unconditionally delivers £10 at that
time — remember axiom (A3). At time step 2, however,
we must discount the £10 by the interest rate appropriate
to that time step. We compute the value at each node of
time-step 2 by averaging the two values in its successors,
and then discounting the average value back one time step
using the interest rate associated to that node®. Using the
same notation for the value tree V' as we used for the rate
model R, we get the equation:

Vi — Vigis + Vigr,ir
"7 721 + Ry Al

where At is the size of the time step. Using this equation
we can fill in the rest of the values in the tree, as we have
done in Figure 9. The value in time step 0 is the current
value of the contract, in pounds sterling. i.e £8.64.

In short, a lattice implementation works as follows:

e A value process is represented by a lattice, in which
each column is a discrete representation of a random
variable. The value in each node is one of the possible
values the variable can take, and in our very simple
setting the number of paths from the root to the node
is proportional to the probability that the variable will
take that value. We will say a bit more about how to
represent such a tree in the next subsection.

e The generic operations, in the top half of Figure 6,
are easy to implement. K(x) is a value process that is
everywhere equal to z. time(t) is a process in which
the values in a particular column are all equal to the
number of days between that column’s time and t.
lift(f,p) applies f to p point-wise; li ft2(f, p1,p2) “zips
together” p; and p»2, combining corresponding values
point-wise with f.

8For evident presentation reasons, we don’t care about the fact
that the Ho and Lee model is member of a class of models that admit
in fact a closed-form solution for zero-coupon bonds.

11

e The model-specific operations of Figure 6 are a bit
harder. We have described how to implement disc,
which uses the interest rate model. exch is actually
rather easier (multiply the value process point-wise by
a process representing the exchange-rate). The snell
primitive takes a bit more work, and we do not de-
scribe it in detail here. Roughly speaking, a possible
implementation may be: take the final column of the
tree, discount it back one time step, take the maximum
of that column with the corresponding column of the
original tree, and then repeat that process all the way
back to the root.

The remaining high-level question is: in the (big) set of
possible interest rate models, what is a “good” model? The
answer is rather incestuous. A candidate interest rate model
should price correctly those contracts that are widely traded:
one can simply look up the current market prices for them,
and compare them with the calculated results. So we look
for and later adjust the interest rate model until it fits the
market data for these simple contracts. Now we are ready to
use the model to compute prices for more exotic contracts.
The entire market is a gigantic feedback system, and active
research studies the problem of its stability.

5.3 Implementation in Haskell

We have two partial implementations of (earlier versions of)
these ideas, one of which is implemented as a Haskell com-
binator library. The type Contract is implemented as an
algebraic data type, with one constructor for each primitive
combinator:

data Contract e Date Currency

= On
| Give Contract
|

The translation to processes is done by a straightforward
recursive Haskell implementation of &[]:

eval :: Model -> Currency -> Contract -> ValProc

Here, Model contains the interest rate evolutions, exchange
rate evolutions, and whatever other “underlyings” are nec-
essary to evaluate the contract.

Our first implementation used the following representation
for a value process:

(TimeStep, [Slicel)

[Doublel

type ValProc =
type Slice =

A value process is represented by a pair of (a) the process’s
horizon, and (b) a list of slices (or columns), one per time
step in reverse time order. The first slice is at the horizon
of the process, the next slice is one time step earlier, and so
on. Since the (fundamental) discount recurrence equation
(Section 5.1) works backwards in time, it is convenient to
represent the list this way round. Each slice is one element
shorter than the one before.

Laziness plays a very important role, for two reasons:

e Process trees can become very large, since their size is
quadratic in the number of time steps they cover. A
complex contract will be represented by combining to-
gether many value trees; it would be Very Bad to fully

evaluate these sub-trees, and only then combine them.
Lazy evaluation automatically “pipelines” the evalua-
tion algorithm, so that only the “current slice” of each
value tree is required at any one moment.

o Only part of a process tree may be required. Consider
again our example contract

c = get (scaleK 10 (truncate t (one GBP)))

The value process for
(scaleK 10 (truncate t (one GBP))) is a com-
plete value process, all the way back to time-step
zero, with value 10 everywhere. DBut get samples
this value process only at its horizon — there is no
point in computing its value at any earlier time. By
representing a value process as a lazily-evaluated list
we get the “right” behaviour automatically.

Microsoft Research collaborates closely with Lombard Risk
Systems Ltd, who have a production tree-based valuation
system in C++. It uses a clever but complex event-driven
engine in which a value tree is represented by a single slice
that is mutated as time progresses. There is never a no-
tion of a complete tree. The Haskell implementation treats
trees as first class values, and this point of view offers a rad-
ical new perspective on the whole evaluation process. We
are hopeful that some of the insights from our Haskell im-
plementation may serve to inform and improve the efficient
C++ implementation.

The Haskell version takes around 900 lines of Haskell to
support a working, albeit limited, contract valuation engine,
complete with a COM interface [Finne et al., 1999] that lets
it be plugged into Lombard’s framework. It is not nearly as
fast as the production code, but it is not unbearably slow
either — for example, it takes around 20 seconds to compute
the value of a contract with 15 sub-contracts, over 500 time
steps, on a standard desktop PC. Though it lacks much
functionality, the compositional approach means that can
already value some contracts, such as options over options,
that the production system cannot. (The production system
is not fundamentally incapable of such feats; but it is pro-
grammed on a case-by-case basis, and the more complicated
cases are dauntingly hard to implement.)

5.4 Memoisation

In functional programming terms, most of this is quite
straightforward. There is a nasty practical problem, how-
ever, that repeatedly bites people who embed a domain spe-
cific language in a functional language. Consider the con-
tract

c10 = join ‘and‘ join
where
join =

<stuff> ‘or‘ <more stuff>

Here, join is a shared sub-contract of c10 much like opt in
our definition of american (Section 3.5). The trouble is that
eval will evaluate the two branches of the and at the root
of c10, oblivious of the fact that these two branches are the
same. In fact, eval will do all the work of evaluating join
twice! There is no way for eval to tell that it has “seen this
argument before”.

12

This problem arises, in various guises, in almost every
embedded domain-specific language. We have seen it in
Fran’s reactive animations [Elliott and Hudak, 1997], the
difficulty of extracting net-lists from Hawk circuit descrip-
tions [Cook et al., 1998], and in other settings besides.
What makes it particularly frustrating is that the sharing is
absolutely apparent in the source program.

One “solution” is to suggest that eval be made a
memo function [Hughes, 1985, Cook and Launchbury, 1997,
Marlow et al., 1999], but we do not find it satisfactory. Los-
ing sharing can give rise to an unbounded amount of dupli-
cated work, so it seems unpleasant to relegate the mainte-
nance of proper sharing to an operational mechanism. For
example, a memo function may be deceived by unevaluated
arguments, or automatically-purged memo tables, or what-
ever. For now we simply identify it as an important open
problem that deserves further study. The only paper that
addresses this issue head on is [Claessen and Sands, 1999]:
it proposes one way to make sharing observable, but leaves
open the question of memo functions.

6 Putting our work in context

At first sight, financial contracts and functional program-
ming do not have much to do with each other. It has been
a surprise and delight to discover that many of the insights
useful in the design, semantics, and implementation of pro-
gramming languages can be applied directly to the descrip-
tion and evaluation of contracts. One of us (Eber) has been
developing this idea for nearly ten years at Société Générale.
The others (Peyton Jones and Seward) came to it much more
recently, through a fruitful partnership with Lombard Risk
Systems Ltd. The original idea was to apply functional pro-
gramming to a realistic problem, and to compare our result-
ing program with the existing imperative version — but we
have ended up with a radical re-thinking of how to describe
and evaluate contracts.

Though there is a great deal of work on
domain-specific programming languages (see
[Hudak, 1996, van Deursen et al., 2000] for surveys),

our work is virtually the only attempt to give a formal de-
scription to financial contracts. An exception is the RISLA
language developed at CWI [van Deursen and Klint, 1998],
an object-oriented domain-specific language for financial
contracts. RISLA is designed for an object-oriented frame-
work, and appears to be more stateful and less declarative
than our system.

We have presented our design as a combinator library em-
bedded in Haskell, and indeed Haskell has proved an excel-
lent host language for prototyping both the library design
and various implementation choices. However, our design is
absolutely not Haskell-specific. The big payoff comes from a
declarative approach to describing contracts. As it happens
we also used a functional language for implementing the con-
tract language, but that is somewhat incidental. It could
equally well be implemented as a free-standing domain-
specific language, using domain-specific compiler technol-
ogy. Indeed, one of us (Eber) has work afoot do to just this,
compiling a contract into code that should be as fast or
faster than the best available current valuation engines, us-

ing the strict functional language OCaml [Leroy et al., 1999]
as implementation language.

Although Haskell is lazy, and that was useful in our im-
plementation, the really significant feature of the contract-
description language is that it is declarative not that it is
lazy. Our design can be seen as a declarative, domain-
specific language entirely independent of Haskell, and one
could readily implement a valuation engine for it in Java or
C++, for example.

There is much left to do. We need to expand the set of
contract combinators to describe a wider range of contracts;
to expand the set of observables; to provide semantics for
these new combinators; to write down and prove a range of
theorems about contracts; to consider whether the notion of
a “normal form” makes sense for contracts; to build a robust
implementation; to exploit the dramatic simplifications that
closed formulas make possible; to give a formal specification
of the evolution of a contract during its life; and to validate
all this in real financial settings. We have only just begun.

Acknowledgements

We warmly thank John Wisbey, Jurgen Gaiser-Porter, and
Malcolm Pymm at Lombard Risk Systems Ltd for their
collaboration. They invested a great deal of time in edu-
cating two of the present authors (Peyton Jones and Se-
ward) in the mysteries of financial contracts and the Black-
Derman-Toy evaluation model. Jean-Marc Eber warmly
thanks Philippe Artzner for many very helpful discussions
and Société Générale for financial support of this work. We
also thank Conal Elliott, Andrew Kennedy, Stephen Jarvis,
Andy Moran, Norman Ramsey, Colin Runciman, David Vin-
cent and the ICFP referees, for their helpful feedback.

References

[Boyle et al., 1997] Boyle, P., Broadie, M., and Glasserman,
P. (1997). Monte carlo methods for security pricing. Jour-
nal of Economic Dynamics and Control, 21:1267-1321.

[Claessen and Sands, 1999] Claessen, K. and Sands, D.
(1999). Observable sharing for functional circuit descrip-
tion. In Thiagarajan, P. and Yap, R., editors, Advances
in Computing Science (ASIAN’99); 5th Asian Computing
Science Conference, Lecture Notes in Computer Science,
pages 62-73. Springer Verlag.

[Cook and Launchbury, 1997] Cook, B. and Launchbury, J.
(1997). Disposable memo functions. In Launchbury, J.,
editor, Haskell workshop, Amsterdam.

[Cook et al., 1998] Cook, B., Launchbury, J., and
Matthews, J. (1998). Specifying superscalar micro-
processors in Hawk. In Formal techniques for hardware
and hardware-like systems, Marstrand, Sweden.

[Cox et al., 1979] Cox, J. C., Ross, S. A., and Rubinstein,
M. (1979). Option pricing: a simplified approach. Journal
of Financial Economics, 7:229-263.

[Elliott and Hudak, 1997] Elliott, C. and Hudak, P. (1997).
Functional reactive animation. In ACM SIGPLAN

13

International Conference on Functional Programming
(ICFP’97), pages 263-273. ACM, Amsterdam.

[Finne et al., 1999] Finne, S., Leijen, D., Meijer, E., and
Peyton Jones, S. (1999). Calling hell from heaven and
heaven from hell. In ACM SIGPLAN International Con-
ference on Functional Programming (ICFP’99), pages
114-125, Paris. ACM.

[Ho and Lee, 1986] Ho, T. and Lee, S. (1986). Term Struc-
ture Movements and Pricing Interest Rate Contingent
Claims. Journal of Finance, 41:1011-1028.

[Hudak, 1996] Hudak, P. (1996). Building domain-specific
embedded languages. ACM Computing Surveys, 28.

[Hughes, 1985] Hughes, J. (1985). Lazy memo-functions. In
Proc Aspenas workshop on implementation of functional
languages.

[Leroy et al., 1999] Leroy, X., Vouillon, J., Doligez, D.,
et al. (1999). The Objective Caml system, re-
lease 3.00. Technical Report, INRIA, available at
http://caml.inria.fr/ocaml.

[Marlow et al., 1999] Marlow, S., Peyton Jones, S., and
Elliott, C. (1999). Stretching the storage manager:
weak pointers and stable names in Haskell. In Interna-
tional Workshop on Implementing Functional Languages
(IFL’99), Lecture Notes in Computer Science, Lochem,
The Netherlands. Springer Verlag.

[Musiela and Rutkowski, 1997] Musiela, M. and Rutkowski,
M. (1997). Martingale Methods in Financial Modelling.
Springer.

[Peyton Jones et al., 1999] Peyton Jones, S., Hughes, R.,
Augustsson, L., Barton, D., Boutel, B., Burton, W.,
Fasel, J., Hammond, K., Hinze, R., Hudak, P., Johns-
son, T., Jones, M., Launchbury, J., Meijer, E., Pe-
terson, J., Reid, A., Runciman, C., and Wadler, P.
(1999). Report on the programming language Haskell 98.
http:/haskell.org.

[Revuz and Yor, 1991] Revuz, D. and Yor, M. (1991). Con-
tinuous Martingales and Brownian Motion. Springer.

[van Deursen et al., 2000] van Deursen, A., Kline, P., and
Visser, J. (2000). Domain-specific languages: an an-
notated bibliography. Technical report, Centrum voor
Wiskunde en Informatica, Amsterdam.

[van Deursen and Klint, 1998] van Deursen, A. and Klint,
P. (1998). Little languages: little maintenance? Journal
of Software Maintenance, 10:75-92.

[Willmot et al., 1993] Willmot, P., Dewyne, J., and Howi-
son, S. (1993). Option Pricing: Mathematical Models and
Computation. Oxford Financial Press.

