
CS 375, Compilers: Class Notes

Gordon S. Novak Jr.

Department of Computer Sciences
University of Texas at Austin
novak@cs.utexas.edu

http://www.cs.utexas.edu/users/novak

Copyright c© Gordon S. Novak Jr.1

1A few slides reproduce figures from Aho, Lam, Sethi, and Ullman, Compilers: Principles, Techniques,
and Tools, Addison-Wesley; these have footnote credits.

1

I wish to preach not the doctrine of ignoble
ease, but the doctrine of the strenuous life.

– Theodore Roosevelt

Innovation requires Austin, Texas. We need
faster chips and great compilers. Both those things
are from Austin.

– Guy Kawasaki

2

Course Topics

• Introduction

• Lexical Analysis: characters → words

– Regular grammars

– Hand-written lexical analyzer

– Number conversion

– Regular expressions

– LEX

• Syntax Analysis: words → sentences

– Context-free grammars

– Operator precedence

– Recursive descent parsing

– Shift-reduce parsing, YACC

– Intermediate code

– Symbol tables

• Code Generation

– Code generation from trees

– Register assignment

– Array references

– Subroutine calls

• Optimization

– Constant folding, partial evaluation

– Data flow analysis

3

Pascal Test Program

{ program 4.9 from Jensen & Wirth: graph1.pas }

program graph1(output);

const d = 0.0625; {1/16, 16 lines for [x,x+1]}

s = 32; {32 character widths for [y,y+1]}

h = 34; {character position of x-axis}

c = 6.28318; {2*pi} lim = 32;

var x,y : real; i,n : integer;

begin

for i := 0 to lim do

begin x := d*i; y := exp(-x)*sin(c*x);

n := round(s*y) + h;

repeat write(’ ’); n := n-1

until n=0;

writeln(’*’)

end

end.

calling graph1

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

4

Introduction

•What a compiler does; why we need compilers

• Parts of a compiler and what they do

• Data flow between the parts

5

Machine Language

A computer is basically a very fast pocket calculator
attached to a large memory. Machine instructions specify
movement of data between the memory and calculator
(ALU or Arithmetic/Logic Unit) or tell the ALU to
perform operations.

Machine language is the only language directly executable
on a computer, but it is very hard for humans to write:

• Absolute Addresses: hard to insert code.

• Numeric Codes, e.g. for operations: hard to
remember.

• Bit fields, e.g. for registers: hard to pack into numeric
form.

6

Assembly Language

Assembly Language is much easier to program in than
Machine Language:

• Addresses are filled in by assembler: makes it easy to
insert or remove code.

• Mnemonic codes for operations, e.g. ADD.

• Bit fields are handled by assembler.

However, it still is fairly difficult to use:

• One-to-one translation: one output instruction per
source line.

– Programmers write a fixed (small: 8 to 16) number
of lines of code per day, independent of language.

– A programmer costs $2 per minute, $1000 per day!

• Minimal error checking.

7

High-Level Language

• Higher-level language constructs:

– Arithmetic Expressions: x := a + b * c

– Control Constructs:
while expression do statement

– Data Structures:
people[i].spouse^.mother

– Messages:
obj.draw()

• One-to-many translation: one statement of input
generates many machine instructions.

• Cost per machine instruction is much less than using
assembly language.

• Error checking, e.g. detection of type errors. Compile-
time errors are much cheaper to fix than runtime
errors.

8

Compilers2

A compiler translates language X to language Y;
“language” is understood very broadly:

• Compile a program to another program. High-level to
machine language is the original definition of compiler.

• Compile a specification into a program.

• Compile a graph into a program.

• Translate one realization of an algorithm to another
realization.

• Compile a program or specification to hardware.

2This slide is by John Werth.

9

Sequential Phases of a Compiler3

Input is a source program.

• Lexical analyzer: characters → words

• Syntax analyzer: words → sentences

– Semantic analyzer

– Intermediate code generator

• Code optimizer

• Code generator

We may think of this as an analysis process
(understanding what the programmer wants to be done)
followed by synthesis of a program that performs the
intended computation.

These two modules are active throughout the compilation
process:

• Symbol table manager

• Error handler

3This slide adapted from one by John Werth.

10

Data Flow through the Compiler

Source Program

I/O IF I>J THEN K := 0

Line Handler

Chars IF I>J THEN K := 0

Lexical Analyzer

Tokens Res Id Op Id Res Id Op Num

IF I > J THEN K := 0

Syntax Analyzer

IF

/ \

Trees > :=

/ \ / \

I J K 0

Code Generator

LDA I

CMP J

Code BLE L17

LDAI 0

STA K

L17:

11

Line Handler

Below the level of the lexical analyzer will be low-level
routines that perform input of the source file and get
characters from it.

An input line will be treated as an array of characters,
with a pointer to the next character (an index in the
array).

Interfaces:

• getchar() Get the next character from the input line
and move the pointer.

• peekchar() Get the next character from the input
line without moving the pointer.

• peek2char() Get the second character from the
input line without moving the pointer.

The Line Handler will do such things as skipping
whitespace (blanks, tabs, newlines), ignoring comments,
handling continuation lines, etc. It may return special
“end of statement” or “end of file” pseudo-characters.

12

Lexical Analyzer

The Lexical Analyzer (or Lexer) will convert characters
into “words” or tokens, such as:

• Identifiers, e.g. position

• Reserved words or keywords, e.g. begin

• Numbers, e.g. 3.1415926e2

• Operators, e.g. >=

The Lexical Analyzer may be called as a subroutine such
as gettoken() to get the next token from the input
string. It, in turn, calls the Line Handler routines.

The Lexical Analyzer returns a token data structure,
consisting of:

• Token Type: identifier, reserved word, number,
operator.

• Token Value:

– Identifiers: string and symbol table pointer

– Reserved words: integer code.

– Numbers: internal binary form.

– Operators: integer code.

13

Syntactic Analyzer

The Syntactic Analyzer (or Parser) will analyze
groups of related tokens (“words”) that form larger
constructs (“sentences”) such as arithmetic expressions
and statements:

• while expression do statement ;

• x := a + b * 7

It will convert the linear string of tokens into structured
representations such as expression trees and program flow
graphs.

14

Semantic Analysis

This phase is concerned with the semantics, or meaning,
of the program. Semantic processing is often performed
along with syntactic analysis. It may include:

• Semantic error checking, such as checking for type
errors.

• Insertion of extra operations, such as type coercion
or code for array references.

15

Lexical Analysis

If speed is needed, the Line Handler and Lexical Analyzer
can be coded in assembly language.

The Lexical Analyzer does the following:

• Reads input characters.

• Groups characters into meaningful units or “words”,
producing data structures called tokens.

• Converts units to internal form, e.g. converts
numbers to machine binary form.

• Serves as a front end for and provides input to the
Parser.

16

Character Classes

At the lowest level of grammar, there is a need to classify
characters into classes. This can be done by lookup in
an array indexed by the character code. Typical classes
include:

• Numerals: 0 1 2 3 4 5 6 7 8 9

• Alphabetic: A B C ... Z

•Whitespace: blank, tab, newline.

• Special: () [] + = . etc.

• Other: characters not in the language ~ @ #

Special characters may be mapped to consecutive integers
to allow the resulting index to be used in case

statements.

Char ASCII Class
...
0 608 0

1 618 0

...
A 1018 1

B 1028 1

...

17

Implementation of Character Classes

Character class names are defined as small-integer
constants. A character class array is initialized to map
from a character code to the appropriate class.

#define ALPHA 1 /* char class names */

#define NUMERIC 2

#define SPECIAL 3

int CHARCLASS[256]; /* char class array */

char specchar[] = "+-*/:=<>^.,;()[]{}";

for (i = ’a’; i <= ’z’; ++i) /* init */

CHARCLASS[i] = ALPHA;

for (i = ’0’; i <= ’9’; ++i)

CHARCLASS[i] = NUMERIC;

for (i = 0 ; specchar[i] != ’\0’; ++i)

CHARCLASS[specchar[i]] = SPECIAL;

The class of a character is looked up in the array:

c = peekchar();

if (CHARCLASS[c] == ALPHA) ...

18

Hand-written Lexical Analyzer

A lexical analyzer can easily be written by hand.
Typically, such a program will call functions getchar()
and peekchar() to get characters from the input.

The lexical analyzer is likewise called as a function, with
an entry such as gettoken(). The program is structured
as:

1. A “big switch” that skips white space, peeks at the
next character to guess what kind of token will be
next, and calls the appropriate routine.

2. A set of routines to get particular kinds of tokens,
such as identifiers, numbers, strings, or operators.

Typically, a routine will process all tokens that look alike,
e.g., all kinds of numbers, or both identifiers and reserved
words.

19

Example Lexical Analyzer

/* The ‘‘big switch’’: guess token type,

call a routine to parse it */

TOKEN gettoken()

{ TOKEN tok; int c, cclass;

tok = talloc(); /* allocate new token */

skipblanks(); /* and comments */

if ((c = peekchar()) != EOF)

{

cclass = CHARCLASS[c];

if (cclass == ALPHA)

identifier(tok);

else if (cclass == NUMERIC)

number(tok);

else if (c == ’\’’)

getstring(tok);

else special(tok);

}

else EOFFLG = 1;

return(tok);

}

20

Flowchart for Parsing Identifier

21

Lexical Language Design

A language designer should avoid ambiguity in the design
of the lexical syntax of a language.

1. Reserved words are a good idea to avoid ambiguity
between user symbols and language command words.

DO 10 I = 1,25 3.EQ.J

DO 10 I = 1.25 3.E7+X

FORMAT(I5)

FORMAT(I5) = 1.2

There should not be too many reserved words.

2. Don’t allow spaces inside tokens. Space should never
be an operator.

3. Different kinds of tokens should look different at the
left end (initial character).

4. Avoid ambiguous combinations of tokens that would
require long look-ahead.

5. Avoid “noise” such as ugly special characters. These
require extra keystrokes and make programs hard to
read. %rax

6. Are upper- and lower-case letters equivalent?

22

Token Data Structure

Converting lexical items into tokens simplifies later
processing by reducing the input to a few standard kinds
of tokens: reserved words, identifiers, numbers, operators,
strings, delimiters. The tokens serve as the terminal
symbols of the parser grammar.

A token will contain:

1. token type (identifier, operator, etc.)

2. data type: a numeric code indicating integer, real,
etc.

3. pointers to the symbol table

4. pointers for making trees from tokens

5. value of the token (identifier name, number value,
numeric code indicating which operator).

23

Example Token Data Structure

typedef struct tokn {

int tokentype; /* OPERATOR, etc */

int basicdt; /* INTEGER, REAL, etc */

struct symtbr * symtype;

struct symtbr * symentry;

struct tokn *operands;

struct tokn *link;

union { char tokenstring[16];

int which;

long intnum;

float realnum; } tokenval;

} TOKENREC, *TOKEN;

symtype pointer to type in symbol table
symentry pointer to variable in symbol table
operands down pointer to operand tokens
link side pointer to sibling token
whichval integer code: which operator, etc.

defined as tokenval.which
stringval string constant or variable name
intval value of integer constant
realval value of real constant

24

Number Conversion

Arabic (Indian) numerals are written in the form
anan−1...a1a0 denoting, in number base r, the integer:

an · rn + an−1 · rn−1 + ... + a1 · r1 + a0

Factoring this expression yields:

((...((0 · r + an) · r + an−1) · r + ...) · r + a1) · r + a0

This suggests an algorithm for converting a number
expressed by digits dndn−1...d1d0 to internal form in a
left-to-right scan:

1. Initialize the accumulator, num = 0.

2. For each new digit, di, let a be the number denoted
by di:
In C, (di - ’0’)

In Lisp, (- (char-code di) (char-code #\0))

Then set num = num * r + a .

3. After all digits have been processed, num is the
numeric value in internal form.

25

Simple Number Scanner

void number (TOKEN tok)

{ long num;

int c, charval;

num = 0;

while ((c = peekchar()) != EOF

&& CHARCLASS[c] == NUMERIC)

{ c = getchar();

charval = (c - ’0’);

num = num * 10 + charval;

}

tok->tokentype = NUMBERTOK;

tok->basicdt = INTEGER;

tok->intval = num;

}

26

Lexical Analyzer Output

Started scanner test.

tokentype: 2 which: 19 program

tokentype: 3 value: graph1

tokentype: 1 which: 4 (

tokentype: 3 value: output

tokentype: 1 which: 5)

tokentype: 1 which: 2 ;

tokentype: 2 which: 4 const

tokentype: 3 value: d

tokentype: 0 which: 6 =

tokentype: 5 type: 1 6.250000e-02

tokentype: 1 which: 2 ;

tokentype: 3 value: s

tokentype: 0 which: 6 =

tokentype: 5 type: 0 32

tokentype: 1 which: 2 ;

tokentype: 3 value: h

tokentype: 0 which: 6 =

tokentype: 5 type: 0 34

tokentype: 1 which: 2 ;

tokentype: 3 value: c

tokentype: 0 which: 6 =

tokentype: 5 type: 1 6.283180e+00

tokentype: 1 which: 2 ;

27

Floating Point Numbers

Numbers containing a decimal point can be converted in
a manner similar to that used for integers.

The important thing to note is that the decimal point is
only a place marker to denote the boundary between the
integer and fraction parts.

1. Convert the number to an integer as if the decimal
point were not present.

2. Count the number of digits after the decimal point
has been found.

3. Include only an appropriate number of significant
digits in the mantissa accumulation.

4. Leading zeros are not significant, but must be counted
if they follow the decimal point.

5. At the end:

(a) Float the accumulated mantissa

(b) Combine the digit counts and the specified
exponent, if any.

(c) Multiply or divide the number by the appropriate
power of 10 (from a table).

28

IEEE Floating Point Standard

29

Floating Point Examples

/* floats.exmp Print out floating point numbers 06 Feb 91 */

static float nums[30] = { 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0,

9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 3.1, 3.14,

3.1415927, 0.5, 0.25, 0.125, -1.0, -2.0, -3.0, -0.5, -0.25, -3.1415927 };

printnum(f,plainf)

float f; unsigned plainf; /* look at the float as a bit string */

{ int sign, exp, expb; long mant, mantb;

{ sign = (plainf >> 31) & 1;

exp = (plainf >> 20) & 2047;

expb = exp - 1023;

mant = plainf & 1048575;

mantb = mant + 1048576;

printf("%12f %11o %1o %4o %5d %7o %7o\n",

f, plainf, sign, exp, expb, mant, mantb); } }

/* This appears to be double-precision floating point format: */

/* 1 bit sign, 11 bits biased exponent, 20 bits mantissa + 32 in next word */

floating octal sign biased corrected actual corrected

exponent exponent mantissa mantissa

0.000000 0 0 0 -1023 0 4000000

1.000000 7774000000 0 1777 0 0 4000000

2.000000 10000000000 0 2000 1 0 4000000

3.000000 10002000000 0 2000 1 2000000 6000000

4.000000 10004000000 0 2001 2 0 4000000

5.000000 10005000000 0 2001 2 1000000 5000000

9.000000 10010400000 0 2002 3 400000 4400000

3.100000 10002146314 0 2000 1 2146314 6146314

3.140000 10002217270 0 2000 1 2217270 6217270

3.141593 10002220773 0 2000 1 2220773 6220773

0.500000 7770000000 0 1776 -1 0 4000000

0.250000 7764000000 0 1775 -2 0 4000000

0.125000 7760000000 0 1774 -3 0 4000000

-1.000000 27774000000 1 1777 0 0 4000000

-2.000000 30000000000 1 2000 1 0 4000000

-3.000000 30002000000 1 2000 1 2000000 6000000

-0.500000 27770000000 1 1776 -1 0 4000000

-3.141593 30002220773 1 2000 1 2220773 6220773

30

Errors4

Several kinds of errors are possible:

• Lexical: x := y ~ z

The character ~ is not allowed in Pascal.

• Syntactic: x := y z

There is no operator between y and z.

• Semantic: x := y mod 3.14

The operator mod requires integer arguments.

The seriousness of errors can vary:

• Diagnostic: not necessarily an error, but might be:
x == 3.14 may not be a meaningful comparison.

• Error: definitely an error; code generation will be
aborted, but compilation may continue.

• Fatal error: so bad that the compiler must stop
immediately.

Cascading errors occur when one real error causes many
reported errors, e.g. forgetting to declare a variable can
cause an error at each use.

4This slide adapted from one by John Werth.

31

Error Messages

The compiler writer has a serious obligation: the compiler
must produce either correct output code or an error
message.

Good error messages can save a great deal of programmer
time; this makes it worth the trouble to produce them.

1. The message should be written out as text.

2. A pointer to the point of the error in the input
program should be provided when appropriate.

3. Values from the program should be included in the
message where appropriate.

4. Diagnostic messages (e.g., unused variables) should
be included, but user should be able to turn them off.

X[CVAR] := 3.14

↑

ERROR CVAR, of type COMPLEX,

may not be used as a subscript.

32

Formal Syntax

There is a great deal of mathematical theory
concerning the syntax of languages. This theory
is based on the work of Chomsky.

Formal syntax is better at describing artificial languages
such as programming languages than at describing
natural languages.

33

Grammar

A grammar specifies the legal syntax of a language.
The kind of grammar most commonly used in
computer language processing is a context-free
grammar. A grammar specifies a set of
productions; non-terminal symbols (phrase names
or parts of speech) are enclosed in angle brackets.
Each production specifies how a nonterminal
symbol may be replaced by a string of terminal or
nonterminal symbols, e.g., a Sentence is composed of a
Noun Phrase followed by a Verb Phrase.

<S> --> <NP> <VP>

<NP> --> <ART> <ADJ> <NOUN>

<NP> --> <ART> <NOUN>

<NP> --> <ART> <NOUN> <PP>

<VP> --> <VERB> <NP>

<VP> --> <VERB> <NP> <PP>

<PP> --> <PREP> <NP>

<ART> --> A | AN | THE

<NOUN> --> BOY | DOG | LEG | PORCH

<ADJ> --> BIG

<VERB> --> BIT

<PREP> --> ON

34

Language Generation

Sentences can be generated from a grammar by the
following procedure:

• Start with the sentence symbol, <S>.

• Repeat until no nonterminal symbols remain:

– Choose a nonterminal symbol in the current string.

– Choose a production that begins with that
nonterminal.

– Replace the nonterminal by the right-hand side of
the production.

<S>

<NP> <VP>

<ART> <NOUN> <VP>

THE <NOUN> <VP>

THE DOG <VP>

THE DOG <VERB> <NP>

THE DOG <VERB> <ART> <NOUN>

THE DOG <VERB> THE <NOUN>

THE DOG BIT THE <NOUN>

THE DOG BIT THE BOY

35

Parsing

Parsing is the inverse of generation: the assignment
of structure to a linear string of words according to
a grammar; this is much like the “diagramming” of a
sentence taught in grammar school.

Parts of the parse tree can then be related to object
symbols in the computer’s memory.

36

Ambiguity

Unfortunately, there may be many ways to
assign structure to a sentence (e.g., what does a
PP modify?):

37

Notation

The following notations are used in describing
grammars and languages:

V ∗ Kleene closure: a string of 0 or more
elements from the set V.

V + 1 or more elements from V

V ? 0 or 1 elements from V (i.e., optional)

a|b either a or b

< nt > a nonterminal symbol or phrase name

ε the empty string

38

Phrase Structure Grammar

A grammar describes the structure of the sentences of
a language in terms of components, or phrases. The
mathematical description of phrase structure grammars
is due to Chomsky.5

Formally, a Grammar is a four-tuple
G = (T,N, S, P) where:

• T is the set of terminal symbols or words of the
language.

• N is a set of nonterminal symbols or phrase
names that are used in specifying the grammar.
We say V = T ∪ N is the vocabulary of the
grammar.

• S is a distinguished element of N called the start
symbol.

• P is a set of productions, P ⊆ V ∗NV ∗ × V ∗. We
write productions in the form a → b where a is
a string of symbols from V containing at least one
nonterminal and b is any string of symbols from V.

5See, for example, Aho, A. V. and Ullman, J. D., The Theory of Parsing, Translation, and Compiling,
Prentice-Hall, 1972; Hopcroft, J. E. and Ullman, J. D., Formal Languages and their Relation to Automata,
Addison-Wesley, 1969.

39

Chomsky Hierarchy

Chomsky defined 4 classes of languages, each of which is
a proper superset of the rest:

Type 0: General Phrase-structure
Type 1: Context Sensitive
Type 2: Context Free
Type 3: Regular

These languages can be characterized in several ways:

• Type of allowable productions in the grammar

• Type of recognizing automaton

• Memory required for recognition

40

Recognizing Automaton

A recognizing automaton is an abstract computer that
reads symbols from an input tape. It has a finite control
(computer program) and an auxiliary memory.

The recognizer answers “Yes” or “No” to the question “Is
the input string a member of the language?”

The kinds of languages that can be recognized depend
on the amount of auxiliary memory the automaton has
(finite, pushdown stack, tape whose size is a linear
multiple of input length, infinite tape).

41

Chomsky Language Hierarchy

42

Regular Languages

Productions: A→ xB
A→ x
A,B ∈ N
x ∈ T ∗

• Only one nonterminal can appear in any
derived string, and it must appear at the
right end.

• Equivalent to a deterministic finite automaton
(simple program).

• Parser never has to back up or do search.

• Linear parsing time.

• Used for simplest items (identifiers, numbers, word
forms).

• Any finite language is regular.

• Any language that can be recognized using
finite memory is regular.

43

Example Regular Language

A binary integer can be specified by a regular grammar:

< S > → 0 < S >
< S > → 1 < S >
< S > → 0

< S > → 1

The following is a parse tree for the string 110101. Note
that the tree is linear in form; this is the case for any
regular language.

S

/ \

1 S

/ \

1 S

/ \

0 S

/ \

1 S

/ \

0 S

/

1

44

lex

lex is a lexical analyzer generator, part of a compiler-
compiler system when paired with yacc.6

lex allows a lexical analyzer to be constructed more easily
than writing one by hand. lex allows the grammar to be
specified using regular expressions; these are converted
to a nondeterministic finite automaton (NFA), which is
converted to a deterministic finite automaton (DFA),
which is converted to tables to control a table-driven
parser.

lex reads a source file, named using a .l suffix, compiles
it, and produces an output file that is always called
lex.yy.c . This is a C file that can be compiled using
the C compiler to produce an executable.

6There are Gnu versions of lex and yacc called flex and bison. These are mostly, but not completely,
compatible with lex and yacc.

45

Regular Expressions

Regular expressions are a more convenient way (than a
regular grammar) to specify a regular language. We will
use lex conventions for specifying regular expressions.
An expression is specified in left-to-right order.

Expression: Meaning:

[chars] Any member of the set of characters
chars.

[c1 - c2] Any character from c1 through c2.
[^ chars] Any character except chars.
(specs) Used to group specifications specs.
{ category } An instance of a previously named

category.
" string " Exactly the specified string.
s1 | s2 s1 or s2

spec * Zero or more repetitions of spec.
spec + One or more repetitions of spec.
spec ? Optional spec.
spec { m,n} m through n repetitions of spec.

46

Lex Specifications7

%{ declarations %}

regular definitions

%%

translation rules

%%

auxiliary procedures

• declarations: include and manifest constants
(identifier declared to represent a constant).

• regular definitions: definition of named syntactic
constructs such as letter using regular expressions.

• translation rules: pattern / action pairs

• auxiliary procedures: arbitrary C functions copied
directly into the generated lexical analyzer.

7slide by John Werth.

47

Sample lex Specification8

%{ /* lexasu.l Fig. 3.23 from Aho, Lam, Sethi, and Ullman, Compilers */

#define LT 8 /* Example of use: */

#define LE 9 /* lex /projects/cs375/lexasu.l compile lexasu.l to C */

#define EQ 6 /* cc lex.yy.c -ll Compile lex output with C */

#define NE 7 /* a.out Execute C output */

#define GT 11 /* if switch then 3.14 else 4 Test data */

#define GE 10 /* ^D Control-D for EOF to stop */

#define ID 3

#define NUMBER 5

#define OP 1 /* to avoid returning 0 */

#define IF 13

#define THEN 23

#define ELSE 7

int yylval; /* type of the returned value */

%} /* regular definitions */

delim [\t\n]

ws {delim}+

letter [A-Za-z]

digit [0-9]

id {letter}({letter}|{digit})*

number {digit}+(\.{digit}+)?(E[+\-]?{digit}+)?

%%

{ws} { /* no action and no return */ }

if { return(IF); }

then { return(THEN); }

else { return(ELSE); }

{id} { yylval = install_id(); return(ID); }

{number} { yylval = install_num(); return(NUMBER); }

"<" { yylval = LT; return(OP); }

"<=" { yylval = LE; return(OP); }

"=" { yylval = EQ; return(OP); }

"<>" { yylval = NE; return(OP); }

">" { yylval = GT; return(OP); }

">=" { yylval = GE; return(OP); }

8Runnable version of Fig. 3.23 from Aho, Lam, Sethi, and Ullman, Compilers.

48

C for Lex Sample

%% /* C functions */

install_id() { printf("id %10s n = %4d\n",yytext,yyleng); }

install_num() { printf("num %10s n = %4d\n",yytext,yyleng); }

yywrap() { return(1); } /* lex seems to need this. */

void main() /* Call yylex repeatedly to test */

{ int res, done;

done = 0;

while (done == 0)

{ res = yylex();

if (res != 0)

{

printf("yylex result = %4d\n", res);

}

else done = 1;

}

exit(0);

}

49

lex.yy.c

The file lex.yy.c produced by lex has the following
structure (different versions of lex may put the sections
in different orders).

User declarations

Code derived from user actions

User’s C code

Parsing Table from user’s grammar

“Canned” Parser in C

50

Comments on Sample lex9

Manifest Constants: these definitions are surrounded
by %{ ... %} and will be copied verbatim into the
generated program.

Regular Definitions: these are names followed by a
regular expression. For example, delim is one of the
characters blank, tab, or newline.

Note that if a string is a name then it is surrounded by
braces (as delim is in the definition of ws) so that it will
not be interpreted as a set of characters.

[A-Z] is the set of characters from A to Z.

Parentheses are meta-symbols used to group. | is a meta-
symbol for union. ? is a meta-symbol for 0 or more
occurrences. - is a meta-symbol for range.

\ is an escape which allows a meta-symbol to be used as
a normal character. "" has the same effect.

9slide by John Werth.

51

Translation Section10

The {ws} rule causes the lexical analyzer to skip all
delimiters until the next non-delimiter.

The if rule recognizes the string ’if’. When it is found the
lexical analyzer returns the token IF, a manifest constant.

The {id} rule must do three jobs:

1. record the id in the symbol table

2. return a pointer to the specific id

3. return the token ID to signify that an id was seen

The first two are accomplished by

yylval = install(id);

yylval is a global used for this purpose in Yacc. The
third is accomplished by return(ID);

The action for {number} is similar.

The rules for the relational operators set yylval to
specific manifest constants to show which value was found
and return the token RELOP to signify that a relational
operator was seen.

10slide by John Werth.

52

Lex Conventions11

• The program generated by Lex matches the longest
possible prefix of the input. For example, if <=

appears in the input then rather than matching only
the < (which is also a legal pattern) the entire string
is matched.

• Lex keywords are:

– yylval: value returned by the lexical analyzer
(pointer to token)

– yytext: pointer to lexeme (array of characters
that matched the pattern)

– yyleng: length of the lexeme (number of chars in
yytext).

• If two rules match a prefix of the same and greatest
length then the first rule appearing (sequentially) in
the translation section takes precedence.

For example, if is matched by both if and {id}.
Since the if rule comes first, that is the match that
is used.

11slide by John Werth.

53

The Lookahead Operator12

If r1 and r2 are patterns, then r1/r2 means match r1

only if it is followed by r2.

For example,

DO/({letter}|{digit})*=({letter}|{digit})*,

recognizes the keyword DO in the string DO5I=1,25

12slide by John Werth.

54

Auxiliary Procedures13

In this third section the user may insert any desired code
in the generated program.

This typically will include symbol table routines of some
kind. These routines will use/work with the lex-defined
globals yylval, yytext, and yyleng.

13slide by John Werth.

55

Parser Overview

The Parser is a central part of a compiler.

• The input to the parser is the output of the lexical
analyzer (gettoken).

• The parser analyzes whole statements of the program:
if expression then statement else statement

• Since the language constructs may be recursive, a
context-free grammar must be used.

• The parser builds complex tables, such as the symbol
table, in response to declaration statements. These
tables are used later in the generation of code.

• The output of the parser is intermediate code.

56

Context Free Languages

Productions: A→ α
A ∈ N
α ∈ V ∗

• Since left-hand-side of each production is a
single nonterminal, every derivation is a tree.

• Many good parsers are known. Parsing requires
a recursive program, or equivalently, a stack for
temporary storage.

• Parsing time is at worst O(n3), though programming
languages are commonly O(n).

• Used for language elements that can contain
themselves, e.g.,

– Arithmetic expressions can contain
subexpressions: A + B ∗ (C + D).

– A noun phrase can contain a prepositional phrase,
which contains a noun phrase:
a girl with a hat on her head.

• Any language that requires counting must be at least
context free: anbn, balanced parentheses.

57

Context Sensitive Languages

Productions: α→ β
α ∈ V ∗NV ∗
β ∈ V +

|α| ≤ |β|
The strings around the N on the left-hand side of the
production are the context, so a production works only
in a particular context and is therefore context sensitive.

• Context sensitivity seems applicable for some aspects
of natural language, e.g., subject-verb agreement.

John likes Mary.
* John like Mary.

• No effective parsing algorithm is known.

• Parsing is NP-complete, i.e., may take exponential
time, requires a search.

• Context sensitive languages are not used much in
practice.

58

Derivations

A derivation is the process of deriving a sentence from
the start symbol S according to a grammar, i.e., the
replacement of nonterminal symbols by the right-hand
sides of productions.

We use the symbol ⇒ to denote a derivation step.

E ⇒ −E ⇒ −(E)⇒ −(id)

shows the steps in deriving the expression −(id) using an
expression grammar.

⇒∗ is used to denote derivation in zero or more steps,
while ⇒+ is used to denote derivation in one or more
steps.

In a leftmost derivation, the leftmost nonterminal is
replaced in each step. If S ⇒∗lm α, then α is called a left-
sentential form of the grammarG. A leftmost derivation
is traced by a predictive, top-down parser.

In a rightmost (or canonical) derivation, the rightmost
nonterminal is replaced in each step. A shift-reduce
parser (e.g. YACC) traces a rightmost derivation
“backwards”.

59

Language Generated by a Grammar

Given a grammar G with start symbol S, the language
generated by G, denoted L(G), is the set of derivable
terminal strings w:

L(G) = {w | S +⇒ w}

Two grammars that generate the same language are
equivalent.

a∗b∗(a|b)∗ = (a|b)∗

The union of two languages is simply set union, i.e.,

L1 ∪ L2 = {l | l ∈ L1 ∨ l ∈ L2}

The concatenation of two languages is:

L1L2 = {l1l2 | l1 ∈ L1 ∧ l2 ∈ L2}

60

Ambiguity and Left Recursion

Many derivations could correspond to a single parse tree.
A grammar for which some sentence has more than one
parse tree is ambiguous. An ambiguous grammar can be
dealt with in two ways:

• Rewrite the grammar to be one that generates the
same language but is unambiguous. For example, the
if-then-else ambiguity can be eliminated.

• Use disambiguating rules to guide the parser. LEX
and YACC have defaults that handle many common
cases correctly. Operator precedence parsing is a form
of disambiguating rules.

A grammar is left recursive iff A +⇒ Aα for some
nonterminal A. A left recursive grammar can cause a
top-down recursive descent parser to go into an infinite
loop. Left recursion can be eliminated by left factoring
to obtain an equivalent grammar.

61

Parsing

A parser is a program that converts a linear string of
input words into a structured representation that shows
how the phrases (substructures) are related and shows
how the input could have been derived according to the
grammar of the language.

Finding the correct parsing of a sentence is an
essential step towards extracting its meaning.

There are several different kinds of parsers:

• Top-down

• Bottom-up

• Chart

• Augmented transition network

62

Top-down Parser

A top-down parser begins with the Sentence
symbol, S, expands a production for S, and so on
recursively until words (terminal symbols) are reached.
If the string of words matches the input, a parsing has
been found.14

This approach to parsing might seem hopelessly
inefficient. However, top-down filtering, that is,
testing whether the next word in the input string could
begin the phrase about to be tried, can prune many failing
paths early.

For languages with keywords, such as program-
ming languages or natural language applications,
top-down parsing can work well. It is easy to
program.

14See the Language Generation slide earlier in this section.

63

Bottom-up Parsing

In bottom-up parsing, words from the input string are
reduced to phrases using grammar productions:

<NP>

/ \

<art> <noun>

| |

The man ate fish

This process continues until a group of phrases can be
reduced to S.

64

Chart Parser

A chart parser is a type of bottom-up parser that
produces all parses in a triangular array called the chart;
each chart cell contains a set of nonterminals. The bottom
level of the array contains all possible parts of speech
for each input word. Successive levels contain reductions
that span the items in levels below: cell ai,k contains
nonterminal N iff there is a parse of N beginning at word
i and spanning k words.

The chart parser eliminates the redundant work that
would be required to reparse the same phrase for different
higher-level grammar rules.

The Cocke-Kasami-Younger (CKY) parser is a chart
parser that guarantees to parse any context-free language
in at most O(n3) time.

65

Augmented Transition Network Grammars

A grammar can be written in network form. Branches are
labeled with parts of speech or phrase names. Actions,
such as constructing a database query, can be taken as
arcs are traversed.

ATN’s are more readable than lists of productions; they
can easily be coded in Lisp.

66

Augmented Transition Networks

An ATN 15 is like a finite state transition network, but is
augmented in three ways:

1. Arbitrary tests can be added to the arcs. A test
must be satisfied for the arc to be traversed. This
allows, for example, tests on agreement of a word and
its modifier.

2. Structure-building actions can be added to
the arcs. These actions may save information in
registers to be used later by the parser, or to build
the representation of the meaning of the sentence.
Transformations, e.g., active/passive, can also be
handled.

3. Phrase names, as well as part-of-speech
names, may appear on arcs. This allows a
grammar to be called as a subroutine.

The combination of these features gives the ATN
the power of a Turing Machine, i.e., it can do
anything a computer program can do.

15Woods, W. A., “Transition Network Grammars for Natural Language Analysis”, Communications of the
ACM, Oct. 1970

67

Context Free Parser

A parser for a Context Free language converts a linear
string of input tokens into a parse tree.

Any program that deals with a tree needs a stack to
maintain the list of ancestors of the current node, either
as:

• a recursive program: e.g., expression parser calls
itself as a subroutine

• a program that maintains a stack.

These are equivalent: as we shall see, a recursive program
is implemented using a runtime stack.

68

Semantics Influences Parsing

Example: Operator Precedence:

A + B * C

means: A + (B * C)

not: (A + B) * C

Possible solutions:

1. Unambiguous operator precedence grammar.
Large, ugly grammar and parser.
In Pascal, the grammar is not large, but lack of
precedence forces the programmer to parenthesize:

if x > y and y > z then ...

generates errors; it must be written as:

if (x > y) and (y > z) then ...

2. Ambiguous grammar; precedence guides parser.
Short, simple, clean grammar and parser.

69

Arithmetic Expressions

Example: (A + B) * C + D

Ambiguous grammar:

E → identifier | number
OP → + | - | * | /
E → E OP E
E → (E)

Unambiguous grammar:

E → E + T | E - T
E → T
T → T * F | T / F
T → F
F → (E)

F → identifier | number
E, T, F stand for expression, term, and factor.

70

Example of Operator Precedence

An operator precedence parser examines the current
operator and the preceding operator on the stack to
decide whether to shift the current operator onto the
stack or to reduce (group) the preceding operator and
its operands.

1 2 3 4 5 6 7 8

A + B * C + D

Pos Operand Stack Operator Stack

1 A

2 A +

3 A B +

4 A B + *

5 A B C + *

6 A (* B C) +

(+ A (* B C))

(+ A (* B C)) +

7 (+ A (* B C)) D +

8 (+ (+ A (* B C)) D)

71

Operator Precedence

Expressions could be written in an unambiguous, fully
parenthesized form. However, this is less convenient for
the programmer.

Precedence specifies which operations in a flat expression
are to be performed first. B * C is performed first in
A + B * C; * takes precedence over +, * >· +.

Associativity specifies which operations are to be
performed first when adjacent operators have the same
precedence. A + B is performed first in A + B + C

since + is left-associative. B ** C is performed first in
A ** B ** C since ** is right-associative.

Typical precedence values [not Pascal]:

10 . (highest precedence)

9 ^

8 - (unary)

7 * /

6 + -

5 = <> >= > <= <

4 not

3 and

2 or

1 := (lowest precedence)

72

Operator Precedence Parsing

Operator precedence parsing is easily done using auxiliary
stacks for operands and operators. Tokens are read and
processed as follows:

• Operands: push (shift) onto the operand stack.

• Operators:
While prec(top− of − stack) ≥ prec(op), reduce.
Push (shift) op onto the operator stack.

• (: Push (onto the operator stack;
prec(() < prec(any operator).

•): While top− of − stack 6= (, reduce.
Then discard both parentheses.

• End: While operator stack is not empty, reduce.
Result is top of operand stack.

reduce combines the two top operands and the top
operator into a subtree, which is pushed onto the operand
stack.

The = part of the ≥ test for operators implements left
associativity, the usual case. For right associativity, use
> instead.

73

Operator Precedence Parsing

A + B * C
op operand input action why

A + B * C start
A + B * C shift A

+ A B * C shift + empty < +
+ A B * C shift B
+ * A B C shift * + < *
+ * A B C shift C
+ A (* B C) reduce

(+ A (* B C)) reduce

A * B + C
op operand input action why

A * B + C start
A * B + C shift A

* A B + C shift * empty < *
* A B + C shift B

(* A B) + C reduce * ≥ +
+ (* A B) C shift + empty < +
+ (* A B) C shift C

(+ (* A B) C) reduce

74

Operator Precedence Parsing ...

(A + B) * C
operator operand input action why

(A + B) * C start
(A + B) * C shift (
(A + B) * C shift A
(+ A B) * C shift + (< +
(+ A B) * C shift B

(+ A B) * C reduce, ())
* (+ A B) C shift * empty < *
* (+ A B) C shift C

(* (+ A B) C) reduce

75

Operator Precedence Parser

(defun expr (inp) ; opprecc.lsp

(let (token *op-stack* *opnd-stack*)

(while inp

(setq token (pop inp))

(if (consp token) ; (exp)

(push (expr token) *opnd-stack*)

(if (operatorp token)

(progn

(while

(>= (prec (first *op-stack*))

(prec token))

(reducex))

(push token *op-stack*))

(push token *opnd-stack*))))

(while *op-stack* (reducex))

(pop *opnd-stack*)))

; Reduce top of stacks to operand

(defun reducex ()

(let ((rhs (pop *opnd-stack*)))

(push (list (pop *op-stack*) ; op

(pop *opnd-stack*) ; lhs

rhs) ; rhs

opnd-stack)))

76

Examples

(expr ’(a + b))

==> (+ A B)

(expr ’(x := a + b * c))

==> (:= X (+ A (* B C)))

(expr ’(x := a * b + c))

==> (:= X (+ (* A B) C))

(expr ’(x := (a + b) * (c + d * e) + f))

==> (:= X (+ (* (+ A B) (+ C (* D E))) F))

77

Stack Handling in C

• Initialize a stack s to Empty:

s = NULL;

• Test if stack s is not Empty:

if (s != NULL) ...

• Push an item newtok onto stack s:

newtok->link = s;

s = newtok;

or:

s = cons(newtok,s);

• Pop stack s to yield item top:

top = s;

s = s->link; /* s = rest(s) */

78

Basic Routines

TOKEN opstack, opndstack;

/* + - * / ... */

int opprec[20] = { 0, 6, 6, 7, 7, ...};

void pushop (TOKEN tok) /* push op onto stack */

{ tok->link = opstack;

opstack = tok; }

TOKEN popop () /* pop op from stack */

{ TOKEN tok;

tok = opstack;

opstack = tok->link;

return(tok); }

int prec (TOKEN tok) /* precedence of op tok */

{ if (tok == NULL)

return(-1); /* -1 for empty stack */

else if (tok->tokentype == OPERATOR)

return(opprec[tok->whichval]);

else return(-1); } /* -1 for (*/

79

reduceop () /* reduce binary op */

{ TOKEN op, lhs, rhs;

rhs = popopnd(); /* rhs at top */

lhs = popopnd();

op = popop();

op->operands = lhs; /* first child */

lhs->link = rhs; /* next sibling */

rhs->link = NULL; /* null terminate */

pushopnd(op); } /* subtree now operand */

We use the first child - next sibling form of tree; this
represents an arbitrary tree using only two pointers. The
tree form of a binary operator and operands is:

op

/

/

operands /

/

/ link

lhs ----------> rhs

Down arrows are always operands; side arrows are
always link. The pretty-printer will print this as:

(op lhs rhs)

80

Operator Precedence Parser

TOKEN expr ()

{ int done;

TOKEN tok;

done = 0;

opstack = NULL;

opndstack = NULL;

while (done == 0)

{ tok = gettoken();

if (EOFFLG == 0)

switch (tok->tokentype)

{ case IDENTIFIERTOK: case NUMBERTOK:

pushopnd (tok); break;

case DELIMITER:

if (tok->whichval == LPARENTHESIS)

pushop(tok);

else if (tok->whichval

== RPARENTHESIS)

{ while (opstack->whichval

!= LPARENTHESIS)

reduceop();

popop(); }

else done = 1;

break;

81

case RESERVED:

done = 1;

break;

case OPERATOR:

while (prec(tok) <= prec(opstack))

reduceop();

pushop(tok);

break;

}

else done = 1;

}

while (opstack != NULL) reduceop();

return (opndstack); }

82

Additional Considerations

1. Error checking. A current status variable that tracks
the type of the previous token is helpful.

• Previous token was (or start

• Previous token was an operator

• Previous token was an operand

2. Unary operators, such as unary minus. In the proper
context, minus can be converted into a different
operator that represents unary-minus.

3. Right-associative operators. Shift when the top-of-
stack has the same precedence if the operator is right-
associative.

4. Type checking and coercion.

5. Function calls. These can be treated like
parenthesized subexpressions, keeping track of the
number of arguments.

6. Array subscripts. These can be treated like function
calls, then modified to perform subscript calculations.

83

Recursive Descent Parser

A parser for some context-free languages can be written
using the technique of recursive descent. The basic idea
is to write a procedure to parse each kind of statement
or expression in the grammar. When such procedures are
written in a recursive language, they can call each other
as needed.

Example:

if expression then statement else statement

Recursive descent works well for a well-structured
language such as Pascal. In Pascal, each statement other
than assignment statements begins with a unique reserved
word; thus, it is easy for a “big switch” program to
determine which statement parser to call.

It may be necessary to restructure a grammar to avoid
left recursion, which can cause a recursive descent parser
to go into a loop.

Operator precedence can be used for arithmetic
expressions.

84

Bottom-up Table-driven (LR) Parsing

The most general form of this technique can be used for
any language which can be recognized by a deterministic
push down automaton.

As one might expect, the parser consists of a stack and a
state machine which is derived from the grammar. The
overall model is the following:16

16Aho, Lam, Sethi, and Ullman, Compilers, Fig. 4.35.

85

The LR Parsing Algorithm17

A configuration of an LR parser is a pair whose first
component is the stack contents and whose second
component is the unexpended input:

(S0X1S1X2S2...XmSm, ajaj+1...an$)

This configuration represents the right-sentential form:

(X1X2...Xmajaj+1...an)

The next move of the parser is determined by reading aj,
the current input symbol, and Sm, the state on top of the
stack, and then consulting the parsing action table entry,
action[Sm, aj].

17slide by John Werth

86

Shift-Reduce Parser

Based on the current state and current input,
action[Sm, aj] gives one of four possible actions:

• Shift s: Shift the current input aj onto the stack and
go to the specified next state s.

• Reduce r: Given the production r : A → β ,
remove enough items from the stack to match β,
produce output structure from those items, and put
the resulting structure A back on the stack. The next
state is found from the goto table.

• Accept: Parsing is completed; return top of stack as
result.

• Error: The input cannot be parsed according to the
grammar; call an error recovery routine. Error entries
are denoted by blanks in the parsing table.

87

Example Parsing Table18

1. E → E + T
2. E → T
3. T → T ∗ F
4. T → F
5. F → (E)
6. F → id

18Aho, Lam, Sethi, and Ullman, Compilers, Fig. 4.37, p. 252.

88

A Parse of id * id + id19

19Aho, Lam, Sethi, and Ullman, Compilers, Fig. 4.38, p. 253.

89

Synthesized Translation

The term synthesized translation includes two ideas:

• A complex expression is constructed from subexpres-
sions.

if expression then statement

• The translation of a complex expression is constructed
in a mechanical way from the translations of its
subexpressions.

In the statement if x > max then max := x

the code for the if statment is constructed by linking
together the code that is produced for the subexpressions
x > max and max := x.

> :=

/ /

/ /

x ---- max max ---- x

if (if (> x max) (:= max x))

/

/

> ----------- :=

/ /

/ /

x ---- max max ---- x

90

Using yacc

yacc compiles an input file (with .y suffix), always
producing the output file y.tab.c (a C file that can be
compiled to an executable using the C compiler).

y.tab.c contains:

• a table-driven parser,

• tables compiled from the input file’s grammar rules,

• the C code from the input file.

The parser in y.tab.c is designed to call a lexical
analyzer produced by lex. The user’s C code will contain
the main() program; main() calls the code generator as
a subroutine after parsing is complete.

91

y.tab.c

The file y.tab.c produced by YACC has the following
structure:

User’s C code

Parsing Tables from user’s grammar

“Canned” LR Parser in C

Action code from user’s grammar

92

Yacc Specifications20

%{ declarations %}

tokens

%%

translation rules

%%

auxiliary procedures

• declarations: #include and manifest constants
(identifier declared to represent a constant).

• tokens: %token declarations used in the second
section. Each token is defined as a constant (integer
> 255).

• translation rules: pattern / action pairs

• auxiliary procedures: arbitrary C functions copied
directly into the generated parser.

20slide by John Werth.

93

Example: Desk Calculator

%{ /* simcalc.y -- Simple Desk Calculator */

/* Aho, Sethi & Ullman, Compilers, Fig. 4.56 */

#include <ctype.h>

#include <stdio.h>

%}

%token DIGIT

%%

line : expr ’\n’ { printf("%d\n", $1); }

;

expr : expr ’+’ term { $$ = $1 + $3; }

| term

;

term : term ’*’ factor { $$ = $1 * $3; }

| factor

;

factor: ’(’ expr ’)’ { $$ = $2; }

| DIGIT

;

%%

yylex() {

int c;

c = getchar();

if (isdigit(c)) {

yylval = c - ’0’ ;

return DIGIT;

}

return c;

}

94

Yacc: Pascal Subset

program : statement DOT /* change this! */

{ parseresult = $1; } ;

statement : BEGINBEGIN statement endpart

{ $$ = makeprogn($1,cons($2,$3)); }

| IF expr THEN statement endif

{ $$ = makeif($1, $2, $4, $5); }

| assignment ;

endpart : SEMICOLON statement endpart

{ $$ = cons($2, $3); }

| END { $$ = NULL; } ;

endif : ELSE statement { $$ = $2; }

| /* empty */ { $$ = NULL; } ;

assignment : IDENTIFIER ASSIGN expr

{ $$ = binop($2, $1, $3); } ;

expr : expr PLUS term

{ $$ = binop($2, $1, $3); }

| term ;

term : term TIMES factor

{ $$ = binop($2, $1, $3); }

| factor ;

factor : LPAREN expr RPAREN { $$ = $2; }

| IDENTIFIER

| NUMBER ;

95

Auxiliary C Code

TOKEN cons(item, list) /* link item to list */

TOKEN item, list;

{ item->link = list;

return item;

}

TOKEN binop(op, lhs, rhs) /* reduce binary op */

TOKEN op, lhs, rhs;

{ op->operands = lhs; /* link opnds to op */

lhs->link = rhs; /* link 2nd operand */

rhs->link = NULL; /* terminate opnds */

return op;

}

TOKEN makeprogn(tok, statements) /* make progn */

TOKEN tok, statements;

{ tok->tokentype = OPERATOR; /* change tok */

tok->whichval = PROGNOP; /* to progn*/

tok->operands = statements;

return tok;

}

96

Auxiliary C Code ...

TOKEN makeif(tok, exp, thenpart, elsepart)

TOKEN tok, exp, thenpart, elsepart;

{ tok->tokentype = OPERATOR; /* change tok */

tok->whichval = IFOP; /* to if op */

if (elsepart != NULL)

elsepart->link = NULL;

thenpart->link = elsepart;

exp->link = thenpart;

tok->operands = exp;

return tok;

}

97

Controllability and Observability

These are central concepts from control theory. We will
define them as:

• Controllability: the ability to change the behavior
of a system by changing its parameters.

• Observability: the ability to observe the behavior
of a system well enough to control it.

In order to control a system, both controllability and
observability are required.

The implications for large software systems are:

• Aspects of software that cannot easily be observed will
never be debugged.

• All large software systems must have observability
built in.

• Observability is a requirement, not a luxury. The time
spent building in observability will be well repaid.

• In-process traces can be turned on by setting bits in
a bit vector.

98

Example

i:=j. /* input */

binop

79220 OP := link 0 operands 79172

79172 ID I link 79268

79268 ID J link 0

yyparse result = 0

79220 OP := link 0 operands 79172

(:= I J)

99

Examples ...

begin i:=j; j:=7 end. /* input */

binop

79460 OP := link 0 operands 79412

79412 ID I link 79508

79508 ID J link 0

binop

79652 OP := link 0 operands 79604

79604 ID J link 79700

79700 NUM 7 link 0

cons

79652 OP := link 0 operands 79604

0 NULL

cons

79460 OP := link 79652 operands 79412

79652 OP := link 0 operands 79604

makeprogn

79364 OP progn link 0 operands 79460

79460 OP := link 79652 operands 79412

yyparse result = 0

79364 OP progn link 0 operands 79460

(progn (:= I J)

(:= J 7))

100

Examples ...

if i+j then begin i:=j; j:=3 end else k:=i .

binop 79940 OP +, ID I, ID J

binop 80180 OP :=, ID I, ID J

binop 80372 OP :=, ID J, NUM 3

cons 80372 OP :=, 0 NULL

cons 80180 OP :=, 80372 OP :=

makeprogn

80084 OP progn, 80180 OP :=

binop 80612 OP :=, ID K, ID I

makeif

79844 OP if link 0 operands 79940

79940 OP + link 80084 operands 79892

80084 OP progn link 80612 operands 80180

80612 OP := link 0 operands 80564

yyparse result = 0

79844 OP if link 0 operands 79940

(if (+ I J)

(progn (:= I J)

(:= J 3))

(:= K I))

101

Hints for yacc

Some useful hints for using yacc:

• Avoid “empty” productions; these are likely to
generate grammar conflicts that may be hard to find.
Each production should consume some input.

• Follow the Pascal grammar flowcharts exactly. If you
just write the grammar from your memory of Pascal
syntax, it probably won’t work.

•When the action code for a production is called, all of
the $i variables have been completely processed and
have values.

• If you need to process a list of items of the same kind,
the code for begin is a good model.

• The yacc stack has a single type; for our program,
that type is TOKEN. If you want to return something
else (e.g. a SYMBOL), package it in a TOKEN as
symtype.

102

File trivb.tree

program

/

/

graph1 -- progn -- progn

/ /

/ /

output := --- progn

/ /

/ /

lim -- 7 := ---- label -- if

/ / /

/ / /

i -- 0 0 <= ----- progn

/ /

/ /

i -- lim funcall ----- := ---- goto

/ / /

/ / /

writeln -- ’*’ i -- + 0

/

/

i -- 1

(program graph1 (progn output)

(progn (:= lim 7)

(progn (:= i 0)

(label 0)

(if (<= i lim)

(progn (funcall writeln ’*’)

(:= i (+ i 1))

(goto 0))))))

103

The Semantic Actions21

Semantic actions refer to the elements of the production
by a positional notation. $$ denotes the left side
nonterminal. $n refers to the nth symbol on the right-
hand side.

For example:

expr : expr ’+’ term { $$ = $1 + $3; }

The default action action is { $$ = $1; }. For this
reason, we do not need to have an explicit action for

expr : term

21slide by John Werth.

104

Supporting C Routines22

A lexical analyzer named yylex() must be provided in
the third section. This can be user-written or generated
by lex.

yylex must return two values:

• “what is it?”, a small integer that is the return value,
e.g. return(NUMBER);

• the actual value of the item, by setting the value of
yylval, e.g. yylval = tok;

22adapted from slide by John Werth.

105

Example

%{ /* Aho, Lam, Sethi, Ullman, Compilers: Fig. 4.59 */

#include <ctype.h>

#include <stdio.h>

#define YYSTYPE double /* double type for yacc stack */

%}

%token NUMBER

%left ’+’ ’-’

%left ’*’ ’/’

%right UMINUS

%%

lines: lines expr ’\n’ { printf("%f\n",$2); }

| lines ’\n’

| /* epsilon */

| error ’\n’ {yyerror("reenter last line:");

yyerrok; }

;

expr: expr ’+’ expr { $$ = $1 + $3; }

| expr ’-’ expr { $$ = $1 - $3; }

| expr ’*’ expr { $$ = $1 * $3; }

| expr ’/’ expr { $$ = $1 / $3; }

| ’(’ expr ’)’ { $$ = $2; }

| ’-’ expr %prec UMINUS { $$ = - $2; }

| NUMBER

;

%%

yylex() {

int c;

while ((c = getchar()) == ’ ’);

if ((c == ’.’) || (isdigit(c))) {

ungetc(c, stdin);

scanf("%lf", &yylval);

return NUMBER;

}

return c; }

yyerror(s)

char * s;

{ fputs(s,stderr), putc(’\n’,stderr); }

main() /* Call repeatedly to test */

{ int res;

while (1) { res = yyparse(); } }

106

Comments on the Example23

The statement #define YYSTYPE double sets
YYSTYPE, the type of the yacc semantic stack. This
stack parallels the syntax stack maintained by the LALR
parser. References like $1 to values in the the right hand
side of a production are actually references to this stack
of values. This stack could have record type or union
type; the latter is typical for a compiler.

Note that a grammar may be ambiguous, with parsing
action conflicts; yacc will report this.

To see the sets of items and the specific parsing action
conflicts, use the yacc -v option. The diagnostic
information will be produced in a file called y.output

.

23slide by John Werth.

107

Parsing Action Conflicts24

Parsing action conflicts are not necessarily fatal; yacc
resolves them using the following default rules:

• reduce/reduce is resolved by choosing the first listed
production.

• shift/reduce is resolved in favor of shift.

A more general mechanism used to resolve shift reduce
is to associate a precedence and associativity to both
productions and terminal.

Precedence of terminal depends on the order in which it
appears in the specification: for example, * is higher than
+ in the earlier example.

The precedence and associativity of a production is that
of the rightmost terminal by default. It can be set with
%prec to that of any terminal. For example,

expr : ’-’ expr %prec UMINUS

sets the production associativity and precedence to that
of UMINUS.

24slide by John Werth.

108

Resolving Shift/Reduce Conflicts25

The rule for reducing shift/reduce conflicts is:

• reduce if the precedence of the production is greater
than that of the terminal or if they are equal and the
associativity of the production is left.

• shift otherwise.

Our Pascal grammar has a shift/reduce conflict in the
case of the if statement; these rules resolve it in favor of
shift, which does the right thing.

25slide by John Werth.

109

Error Productions26

The earlier example grammar contains an error
production:

lines : error ’\n’ { yyerror("reenter last line:");

yyerrok; }

An error production uses the keyword error followed by
a string: A : error α
yyerrok resets the parser so it can continue.

26slide by John Werth.

110

Error Handling27

During the parse, if an error is encountered (access to a
blank entry in the LALR table) the following happens:

1. the stack is popped until a state is on top whose items
match the right-hand side of an error production.

2. a token error is shifted onto the stack

3. if α is empty, then a reduction takes place and the
semantic action is performed.

4. if α is non-empty, the parser tries to identify α in
the input. It then pushes α on the stack and does a
reduction as usual.

For example, stmt : error ’;’ will have the effect
of causing the parser to skip ahead to the next ; and
assume that a statement has been found.

27slide by John Werth.

111

Parsing Techniques

Recursive Descent and Operator Precedence:

• Advantages:

– Easy to control, understand.

– Good error messages can be produced.

• Disadvantages:

– More code to write.

– Grammar not as clear.
Does the program really match the grammar?

Parser Generator:

• Advantages:

– Less code to write.

– Grammar is clear and easy to change.

• Disadvantages:

– The programmer may get “stuck” on grammar
errors that are hard to understand.

– Error messages during compilation may be
unhelpful and far from the actual error.

112

Looping Statements

Looping statements generate multiple statements in
intermediate code, as shown in the following patterns.
(Generate label numbers by j = labelnumber++;.)

for i := start to end do s

(PROGN (:= i start)

(LABEL j)

(IF (<= i end)

(PROGN s

(:= i (+ 1 i))

(GOTO j))))

while c do s

(PROGN (LABEL j)

(IF c (PROGN s (GOTO j))))

repeat statements until c

(PROGN (LABEL j)

(PROGN statements)

(IF c (PROGN) (GOTO j)))

The empty (PROGN) acts as a no-op.

113

Symbol Table

A symbol table is a data structure that associates names
with information about the objects that are denoted by
the names.

Programming languages have many kinds of symbols:
statement labels, variables, constants, subprogram
names, etc.

A symbol table must be well organized:

• For fast lookup of symbols.
Note that if symbol table lookup takes O(n) time, the
total compilation time becomes O(n2).

• To reflect the organization of the program (block
structure).

A set of symbol table routines for use with the
class programs is provided in the file symtab.c and
documented in the file symtab.txt .

114

Symbol Table Organization

A symbol table is a set of data structures and associated
procedures that allow “symbols” (perhaps defined rather
broadly) and associated information to be stored and
looked up.

Symbol “key” Value

Information about
the Symbol

Operations:

• Insert: Insert a new symbol into the table.

• Search: Search for a symbol in the table.

• Search/Insert: Search for a symbol, Insert if not
found.

We are often interested in the performance (expected
time) of these operations. There are more searches than
insertions.

115

Symbol Table Organizations

Linear, Unsorted:
Symbols are stored in an array; new symbols are inserted
at the end.

Insert: O(1)
Search: O(n) Search half the table on average.

Linear, Sorted:
Symbols are stored in an array that is sorted (e.g.,
alphabetically).

Insert: O(n) Move half the table on average.
Search: O(log n) Binary search.

Good for reserved words (no insertions).

116

Binary Search Tree (BST) Symbol Table

Compare search key to contents of node:

= Found
< Search left subtree
> Search right subtree

Advantage: O(log n) search time if tree is balanced.

Disadvantage: Search time may be long if tree is not
balanced.

117

AVL Trees

An AVL Tree 28 is a binary tree that is approximately
height-balanced: left and right subtrees of any node differ
in height by at most 1.

Advantage: Approximately O(log n) search and insert
time.

Disadvantage: Somewhat complex code (120 - 200
lines).

28G. M. Adel’son-Vel’skĭi and E. M. Landis, Soviet Math. 3, 1259-1263, 1962; D. Knuth, The Art of
Computer Programming, vol. 3: Sorting and Searching, Addison-Wesley, 1973, section 6.2.3.

118

Hash Table

Symbols are stored in a hash table, indexed by a hash
function applied to the key value (e.g., multiply a symbol
by itself and take some bits from the middle of the
product). The hash function always produces the same
value for a given symbol, but is otherwise “random”. If
there is a collision (two different symbols hash to the
same value), it is necessary to rehash (e.g., try the next
place in the table).

Insert: O(1) Depends on table fullness
Search: O(1) Depends on table fullness

The expected time is short for a table that is under 70%
full; time depends on fullness but not on table size.

Advantages:

• Fast

•Works for symbols without a natural sort order

Disdvantages:

• More complex code

• Have to find a good hashing function

• Must dedicate a large table, or rehash the table to
expand.

119

Hash Functions

Not all hash functions are good; a good one should be
easy to compute and should “randomize” symbols into
different hash locations, not lump them into only a few
hash values.

Some examples of good hash functions:

• Treat the symbol name as an integer, square it, and
take some bits out of the middle.

• Treat the symbol name as an integer and find the
remainder of the name modulo p, where p is prime.

A typical re-hash function is simply to add 1 to the
previous hash function value.

120

Indexed Buckets

A symbol is used to index a table, which provides a
pointer to a linked list of symbols.

Hashed with Buckets:
A hashing function is used to index the table of buckets.

Insert: O(1)
Search: O(n) Actually n/(2 · nb)

nb (number of buckets) can be large.
Since pointers are used for the linked list of symbols, the
table can be expanded by requesting more memory.

Alphabetized Buckets:
The first character of first few characters of a symbol are
used to index the table of buckets.

Insert: O(n) Linked list is sorted
Search: O(n) Actually n/(2 · nb)

Some letter combi-

nations are much more common, so some bucket entries
will be empty. Symbols are in a sorted order.

121

Lexical Scoping29

Scope is the region of program text over which a symbol
can be referenced. In most languages, the scope of a
variable is determined by syntax, e.g. a variable can be
used only inside the procedure that defines it. This notion
of scope is reflected in the symbol table, which is called
lexical scoping. With lexical scoping, a name is defined
when it can be looked up in the lexicon (symbol table) at
the point of use.

Some languages (Algol, Pascal, PL/I) have allowed
procedures to be nested inside other procedures; however,
this has a high runtime cost and only slight benefit.

29adapted from slide by John Werth.

122

Tree of Symbol Tables30

The nested procedures of the previous figure can be
thought of as a tree. Each procedure can access its
symbols and the symbols of its ancestors. A symbol at a
lower level shadows any symbols with the same name at
higher levels, e.g. in method overriding in OOP.

Our symbol table will have only two levels:

• Level 0: predefined symbols such as integer

• Level 1: symbols of the program being compiled

30adapted from slide by John Werth.

123

Stack Symbol Table31

During compilation, the compiler performs a depth-first
traversal of the tree of procedures.

Since a procedure can access its symbols and the symbols
of its ancestors, the symbol table could be structured as
a stack.

Searching backwards through the stack implements
shadowing , i.e. the closest definition of a symbol with a
given name takes precedence.

When parsing of a procedure is finished, its local symbol
table can be popped off the stack.

Alternatively, the whole tree of symbol tables can be
maintained, with each node having a pointer to its parent.

31adapted from slide by John Werth.

124

Use of Symbol Table

Usually, there are some symbols that are predefined by
the language, e.g. integer. These will be put into the
symbol table by the initialization of the compiler.

User symbols are added in response to declaration
statements; these statements usually appear at the
top of a procedure. Declaration statements often do
not generate any code, but cause symbol table entries
to be made and affect code generation for executable
statements.

Symbols encountered in code, e.g. in assignment
statements, are looked up in the symbol table. If a symbol
is not found in the table, an undefined symbol error is
generated. Looking up a symbol provides its type and
its memory address (offset), which are needed for type
checking and code generation.

125

Symbol Table Entry

A symbol table entry stores a variety of information about
a symbol:

link Link to Next Symbol
namestring Name of Symbol
kind Kind of Symbol: VARSYM
basicdt Basic Data Type: REAL
datatype Pointer to Data Type
blocklevel Block Nesting Level: 1
size Size in bytes
offset Offset from Data Area
intnum, realnum Constant Value
lowbound Low Bound
highbound High Bound

126

Kinds of Symbols

A compiler must typically deal with several different kinds
of symbols:

• Symbolic constants: const pi = 3.1415926

Store constant value and type; convert an identifier
with this name to a numeric constant as soon as it
is looked up. The language may have some built-in
symbolic constants, such as maxint.

• Enumerated types:
type color = (red, white, blue);

Simply assign constant values 0, 1, ... to the items.
The name color becomes a subrange 0..2.

• Subrange types: type digit = 0..9;

Store the associated scalar type and the lower and
upper bounds (always integers).

• Scalar types:
boolean integer real char pointer

These are predefined as types in the symbol table.

• Variables: these may have scalar types or complex
types.

127

Kinds of Symbols ...

• Arrays: array[1..10] of date

Store the number of dimensions, lower and upper
bound for each, type of array element, number of
address units per element.

• Records:
type vector = record x,y : integer end;

Store each element name, type, and offset. Variant
records simply restart the offset at the start of the
variant part.

• Functions and procedures: Store number and types of
arguments, result type. Some functions, such as abs
ord succ, may be compiled as in-line code.

• Labels: keep in a separate table if they have a form
different from symbols.

• Objects: a class in OOP packages together a record of
data items and a set of methods, which are procedures
associated with the class. In OOP, some form of
symbol table for the class is output as well as code
for the methods.

128

Looking up ID in Symbol Table

An identifier that is encountered in executable code must
be linked to its appropriate symbol table entries:

TOKEN findid(TOKEN tok) { /* the ID token */

SYMBOL sym, typ;

sym = searchst(tok->stringval);

tok->symentry = sym;

typ = sym->datatype;

tok->symtype = typ;

if (typ->kind == BASICTYPE ||

typ->kind == POINTERSYM)

tok->basicdt = typ->basicdt;

129

Variable Declarations

A variable declaration has a form such as:

var var1, var2, ..., varn : type ;

Such a declaration is processed as follows:

1. Find the symbol table entry for type .

2. For each variable vari,

(a) Allocate storage within the current block using the
storage allocation algorithm and the size of type .

(b) Make a symbol table entry for the variable, filling
in its print name, type, offset, size, and block level.

(c) Enter the symbol in the symbol table for the
current block.

130

Identifier List etc.

idlist : IDENTIFIER COMMA idlist

{ $$ = cons($1, $3); }

| IDENTIFIER { $$ = cons($1, NULL); }

;

vblock : VAR varspecs block { $$ = $3; }

| block

;

varspecs : vargroup SEMICOLON varspecs

| vargroup SEMICOLON

;

vargroup : idlist COLON type

{ instvars($1, $3); }

;

type : simpletype

| ... ;

simpletype : IDENTIFIER { $$ = findtype($1); }

| ... ;

131

Data Addressing

A data area is a contiguous region of storage specified by
its base address and size.

An item within a data area is specified by the base
address of the data area and the offset of the item from
the base address.

Two kinds of data areas are arrays and records.

Note that since an item in a data area may itself be a data
area, the layout of data in memory may be considered to
be a “flattened tree”. A reference to data is a sequence
of steps down this tree until the desired data is reached.

132

Storage Allocation

Allocation of storage is done as an offset to a base
address, which is associated with a block of storage.
Assignment of storage locations is done sequentially by
a simple algorithm:

• Initially, next = 0.

• To allocate an item of size n:

offset = next;

next = next + n;

return offset;

• Finally, next gives the total size of the block.

In our compiler, the next variable for allocating variables
is blockoffs[blocknumber].

133

Alignment and Padding

Certain items must be allocated at restricted locations;
e.g., a floating point number must be allocated at a
word (4-byte or 8-byte) boundary. This is called storage
alignment.

In such cases, next is advanced to the next available
boundary if needed, and the intervening storage is wasted;
this is called padding.

To pad to a boundary of size m , perform:

wordaddress(next, m)

= ((next + m - 1) / m) * m

using truncating integer arithmetic.

For records, a compaction algorithm could be used to
minimize wasted storage.

134

Installing Variables in Symbol Table

/* install variables in symbol table */

void instvars(TOKEN idlist, TOKEN typetok)

{ SYMBOL sym, typesym; int align;

typesym = typetok->symtype;

align = alignsize(typesym);

while (idlist != NULL) /* for each id */

{ sym = insertsym(idlist->stringval);

sym->kind = VARSYM;

sym->offset = /* "next" */

wordaddress(blockoffs[blocknumber],

align);

sym->size = typesym->size;

blockoffs[blocknumber] = /* "next" */

sym->offset + sym->size;

sym->datatype = typesym;

sym->basicdt = typesym->basicdt;

idlist = idlist->link;

};

}

blockoffs[blocknumber] is the offset in the current
block; this is the next value for this storage allocation.

135

Record Declarations

A record declaration has a form such as:
record field1, ..., f ieldn : type1 ; ... end
Such a declaration is processed as follows:

1. Initialize offset within the record, next = 0.

2. For each entry group,

(a) Find the symbol table entry for the type .

(b) Allocate storage within the record using the
storage allocation algorithm and size of type .

(c) Make a symbol table entry for each field, using
makesym(), filling in its print name, type, offset
in the record, and size.

(d) Link the entries for the fields to an entry for the
record.

3. The size of the record is the total size given by the
storage allocation algorithm, rounded up to whole
words, e.g. multiple of 8.

4. Variant records simply restart the storage allocation
at the place where the variant part begins. Total size
is the maximum size of the variants.

136

Symbol Table Structures for Record

type complex = record re, im: real end;

var c: complex;

137

Array Declarations

A simple array declaration has a form such as:

array [low1..high1] of type

Such a declaration is processed as follows:

1. Find the symbol table entry for type .

2. Make a symbol table entry for the array type. The
total size of the array is:
(high1 − low1 + 1) ∗ size(type)

Multiply dimensioned arrays can be treated as arrays of
arrays, in the order specified for the language. In Pascal,
array[a..b,c..d] of T is equivalent to
array[a..b] of array[c..d] of T .

138

Symbol Table Structures for Array

var x: array[1..10] of real;

var z: array[1..5, 1..10] of real;

139

Type Checking, Coercion, and Inference

When a binary operator is reduced, as in our binop

program, it is necessary to check the types of the
arguments, possibly to coerce an argument to the correct
type, and to infer the result type.

Suppose that X is real and I is integer.

Op Arg1 Arg2 Op New Arg1 New Arg2 Result

+ X X + X X real

+ I I + I I integer

+ I X + (float I) X real

:= I X := I (fix X) integer

< I X < (float I) X boolean

• For most operators, the “higher” type takes
precedence. Numeric types may be organized in a type
lattice where e.g. char < int < float < double.

• For assignment, the type of the left-hand side takes
precedence.

• The result type is generally the operand type, but is
always boolean for relational operators.

The result type is stored in the operator token.

140

Structure References

References to parts of structures within program code are
not hard to handle. The basic principles are:

• Every expression has a type (symtype).

• Types form a tree structure (a graph when pointers
to types are included, but still treated as a tree).

• The structure references in source code specify a
traversal down the type tree.

• A reference to a part of a structure depends on the
type of the structure; the results of the reference are:

– An address expression for the substructure.

– A new type for the substructure.

(code, type)→ (code′, type′)

Repeated application of this procedure handles even
complicated references.

There are several basic cases: arrays, records, and
pointers.

141

Structure References....

1. Arrays: The address is the base address of the array
plus the offset given by the array formula.

(AREF base offset)

The type is the array element type.

2. Records: The address is the base address of the
record plus the offset of the field within the record:
(AREF base offset)
The type is the field type.

3. Pointers: The address is given by accessing the
value of the pointer: (^ pointer)

The type is the type pointed to. This is called
dereferencing the pointer.

Because structure references generate many additive
constants, it is an important and easy optimization to
keep additive constants at the front of the addressing
expression and to combine (fold) additive constants as
structure accesses are processed:

Address = BaseAddress +
n∑
i=1
Offseti

142

Record References

A record is a data area consisting of a sequence of items,
which may be of different sizes and types. Items are
addressed by name.

TYPE Z = RECORD I: INTEGER; X, Y: REAL;

VAR W: Z;

I

X

Y

Field: Offset: Size:
I 0 4

X 8 8

Y 16 8

TOTAL SIZE = 24

W.X would produce the code (AREF W 8).

143

Array References

An array is a data area consisting of a linear sequence of
items, each of which is of the same size and type. Items
are addressed by numeric index.

The address of an array reference must be calculated by
the compiler. We assume that the array is declared as:
A: ARRAY[L1..U1, L2..U2, ... , Ln..Un] OF Type

The address of a reference A[S1, S2, ..., Sn] is given by
the formula:

Address = Base(A) +
n∑
i=1

(Si − Li) ·Di

where for row-major order (C, Pascal),

Dn = length of one datum of Type

Di−1 = Di · (Ui − Li + 1)

or for column-major order (Fortran),

D1 = length of one datum of Type

Di+1 = Di · (Ui − Li + 1)

144

Array References in Pascal

Pascal uses row-major order, making array declarations
and references easy to process.

For array declarations,
array[i..j,k..l] of type

is equivalent to:
array[i..j] of array[k..l] of type

These declarations are reduced starting at the right, so
that each reduction is of the form:

array[...] of type
where type has been completely processed and has a
known size.

For array references,
a[i,j]

is equivalent to:
a[i][j]

These references are processed left-to-right, so that a[i]
is done first, yielding code for a[i] and a type that is an
array type; then [j] is processed relative to that array
type.

Using these conventions, arrays with multiple dimensions
are handled in the same way as singly-dimensioned arrays.

145

Does Array Order Matter?

static double arr[1000][1000];

double test1 ()

{ double sum; int i, j;

sum = 0.0;

for (i=0; i<1000; i++)

for (j=0; j<1000; j++)

sum = sum + arr[i][j];

return (sum); }

double test2 ()

{ double sum; int i, j;

sum = 0.0;

for (j=0; j<1000; j++)

for (i=0; i<1000; i++)

sum = sum + arr[i][j];

return (sum); }

The two programs compute the same result, but
performance is quite different:

test1 result = 1000000.0 time = 430000

test2 result = 1000000.0 time = 1940000

146

Example of Structure Declaration

type date = record mo : 1..12;

day : 1..31;

year : integer end;

person = record name : alfa;

ss : integer;

birth : date end;

var people : array[1..100] of person;

From these declarations, the following symbol table
information might be derived:

Symbol Offset Size Type
date 0 16 Link to fields
mo 0 4 1..12

day 4 4 1..31

year 8 4 integer

person 0 32 Link to fields
name 0 8 alfa

ss 8 4 integer

birth 16 16 date

people 0 3200 person

147

Example of Structure Reference

Given the preceding declarations, the reference

people[i].birth.day

would be processed as follows:

Reference Expression Type
people[i] aref(people, (i-1)*32) person

= aref(people, -32 + i*32)

.birth aref(people, (i-1)*32+16) date

= aref(people, -16 + i*32)

.day aref(people, (i-1)*32+16+4) 1..31

= aref(people, -12 + i*32)

It is useful to think of structure descriptions in nested
Lisp-like form. For example, the preceding declarations
would yield the following type for the array people:

(ARRAY (.. 1 100)

(RECORD (NAME ALFA)

(SS INTEGER)

(BIRTH (RECORD

(MO (.. 1 12))

(DAY (.. 1 31))

(YEAR INTEGER)))))

148

Pointer Reference

An example of a pointer declaration is:

var p: ^person

Note that the POINTERSYM record points to the name of
the record rather than to the RECORDSYM entry.

A pointer reference such as:

p^.friend

is handled like an array reference, with the pointer
reference in the base address location:

(aref (^ p) 4)

where we assume that 4 is the offset of the friend field
from the start of the person record.

The file pasrec.sample contains examples of code that
is compiled for pointer references.

149

Types as Tree Structures

Types can be thought of as tree structures:

• Leaf nodes are basic types (integer, real).

• Interior nodes are type constructors (array, record,
pointer).

A type declaration builds an interior node from leaf nodes
or subtrees.

A structure reference specifies a path through the tree
from root to leaf node.

Pointers provide “back arcs” in the tree.

150

Dynamic Type Checking

Dynamic type checking, used in Lisp, checks types at
runtime before operations are performed on data.

• Types are associated with values. Requires the ability
to determine the type of any data at runtime, e.g. by
storing a type tag with data. Or, pages of memory
can be allocated to specific types; the type of data can
be looked up in a table indexed by page address.

• Slower at runtime due to repeated type checking.

• More flexible: union types can be supported, as in the
copy-tree function.

(defun copy-tree (x)

(if (consp x)

(cons (copy-tree (first x))

(copy-tree (rest x)))

x))

Common Lisp combines dynamic type checking with
optional type declarations to allow compilation of code
using static checks.

151

Static Type Checking

Static type associates type with variables; checking is
done once, at compile time.

• The compiler must be able to determine “all” types
at compile time: type declarations required.

• Faster at runtime: no type checks, only operations.

• Inflexible. Pascal originally included array bounds as
part of the type, making it impossible to write general
subroutines such as matrix inversion.

152

Strong Typing

A sound type system guarantees that no type errors can
occur at runtime. A language with such a system is called
strongly typed. However,

• Some checks can only be done dynamically, e.g. array
bounds checking.

• Such checking can cause serious performance
degradation (factor of 2).

• Even so-called strongly typed languages often have
“holes” in the type system, e.g. variant records in
Pascal.

153

Type Equivalence

If types are required to match, the question of what types
are considered to be “equivalent” arises.

Structural equivalence requires equivalent structures
(tree equivalence, as in the Lisp function equal), i.e.,

• Identical basic types, or

• Same type constructor applied to equivalent types.

However, there is still a question as to what things are
included when testing equivalence, e.g., array bounds
and record field names. Implementations of the “same”
language may vary.

Name equivalence considers types to be equal only if the
same names are used.

C uses structural equivalence except for records, for which
name equivalence is used.

154

Type Signatures

The signature of a procedure is a description of the types
of its arguments (in order) and the type of its result.
Often a signature is written in Cartesian product form:

sqrt : real→ real
mod : integer × integer → integer

Procedure signatures must be put in the symbol table
when compiling languages that require type-checking of
procedure arguments.

In languages such as Ada, which allow separate
compilation of procedures but require argument type
checking, type signatures must be part of the output file
so that type checking of procedure calls can be performed
by the link editor.

155

Polymorphic Procedures

A procedure that has multiple type signatures is called
polymorphic. In the case of operators, the use of the
same operator with different types is called overloading.

+ : integer × integer → integer
+ : real × real→ real

Polymorphic procedures are often found in object-
oriented programming:

(defmethod move-to ((self drawable)

(x integer) (y integer))

(send self ’erase)

(send self ’set-pos x y)

(send self ’draw))

156

Table for Labels

Pascal requires a label statement to pre-declare
statement labels:

label 1492, 1776;

It is necessary to ensure that user labels do not conflict
with compiler-generated labels. An easy way to do that is
to keep user labels in a linear table, whose index becomes
the internal label.

Labels used in statements are converted to the internal
labels. The intermediate code has both label and goto

as operators, each taking an integer internal label number
as argument.

labels[labelnumber++] = tok->intval;

1776: (label 1) goto 1776; (goto 1)

157

Intermediate Code

Intermediate code is:

• the output of the Parser and the input to the Code
Generator.

• relatively machine-independent: allows the compiler
to be retargeted.

• relatively easy to manipulate (optimize).

Kinds of Intermediate Code

1. Trees

2. Quadruples

3. Triples

4. Polish

5. Assembly Language

6. Machine Language

158

Trees

Trees are not commonly used as intermediate code, but
in my opinion trees are the best:

• Trees are easy to manipulate, optimize, partially
evaluate.

• Trees can be transformed using patterns.

• Trees are easily converted to other forms of
intermediate code.

The only disadvantage of trees is that they may take more
storage; but modern computers have plenty of storage for
compilation.

159

Quadruples

A quadruple is a “mini assignment statement” with at
most one operator. X := A + B * C can be represented
as:

T1 := B * C

T2 := A + T1

X := T2

T1 B * C

T2 A + T1

X T2

The four components of a quadruple are:

1. Result

2. Operand 1

3. Operation

4. Operand 2

This is sometimes called three-address code since each
quadruple involves three variables.

Advantages:

1. Flat: can be written to a linear file.

2. Easy to generate (rather poor) code.

3. Can perform peephole optimization.

160

Triples

A triple or triad is like a quadruple in which the result
component is implicitly given by the triple number.
X := A + B * C might be represented as:

(0) B * C

(1) A + (0)

(2) X := (1)

The three components of a triple are:

1. Operand 1

2. Operation

3. Operand 2

161

Reverse Polish Notation

Reverse Polish Notation (RPN) is an unambiguous,
parenthesis-free notation for arithmetic expressions. 32

Operands precede the operators that apply to them:

A + (B * C) --> A B C * +

(A + B) * C --> A B + C *

It is easy to produce RPN as output of an operator
precedence parser:

1. Operands go directly to the output; no operand stack
is used.

2. When an operator is reduced, it is removed from the
operator stack and put into the output.

32The description ”Polish” refers to the nationality of logician Jan Lukasiewicz, who invented (prefix)
Polish notation in the 1920s. – Wikipedia

162

Trees and Reverse Polish

It is easy to convert a tree representation to RPN by a
postorder recursive algorithm:

1. If the expression to be converted is an operand (leaf
node), put it into the output.

2. Otherwise, the expression is a subtree. Convert
the left-hand operand, then convert the right-hand
operand, then put the operator into the output.

163

Converting a Tree to RPN

(defun tree-to-polish (exp)

(nreverse (tree-to-p exp nil)))

(defun tree-to-p (exp result)

(if (atom exp)

(cons exp result)

(progn

(mapc #’(lambda (opnd)

(setq result

(tree-to-p opnd

result)))

(rest exp))

(cons (first exp) result))))

(tree-to-polish ’(+ (* a b) c)) = (A B * C +)

(setq testx ’(/ (+ (minus b)

(sqrt (- (expt b 2)

(* 4 (* a c)))))

(* 2 a)))

(tree-to-polish testx)

= (B MINUS B 2 EXPT 4 A C * * - SQRT + 2 A * /)

164

Executing Reverse Polish

RPN is easily executed by a stack machine:

1. Operands are pushed onto the stack.

2. When an operator is encountered, the appropriate
number of operands is popped from the stack and
the operator is applied to them. The result is pushed
onto the stack.

3. When the end of the input expression is reached, the
result is the top of the stack.

HP makes a line of pocket calculators that use RPN.

165

Executing RPN

(defun execute-rpn (rpn)

(let (stack rhs)

(dolist (item rpn)

(if (numberp item)

(push item stack)

(progn (setq rhs (pop stack))

(push (if (unaryp item)

(funcall item rhs)

(funcall item

(pop stack)

rhs))

stack))))

(pop stack)))

(defun unaryp (x) (member x ’(minus sqrt)))

(execute-rpn ’(3 4 + 5 *)) = 35

(execute-rpn (sublis ’((a . 1)

(b . -3)

(c . 2))

(tree-to-polish testx)))

= 2.0

166

RPN as Intermediate Code

An entire program can be expressed in Reverse Polish
intermediate code. For example, by reading the pretty-
printed intermediate code from graph1.pas into Lisp
and converting it to RPN, the following is obtained:

(I 0 := 1 LABEL I 32 <= X 0.0625 I FLOAT * :=

Y EXP X - FUNCALL SIN 6.28318 X * FUNCALL * :=

N ROUND 32.0 Y * FUNCALL 34 + := 0 LABEL

WRITE " " FUNCALL N N 1 - := N 0 = PROGN

0 GOTO IF PROGN WRITELN "*" FUNCALL

I I 1 + := 1 GOTO PROGN IF PROGN)

It must be clear how many operands each operator takes,
so a construct such as progn must be replaced by prog2,
prog3, etc.

167

Code Generation

The Code Generator is the final stage of the compiler. It
accepts intermediate code from the Parser and produces
machine code for a particular target machine.

Output code may be:

• Absolute code with fixed memory addresses, either to
a file or directly into memory.

• Relocatable code that is converted to absolute code
by a link editor.

168

Loading Process

An absolute file is loaded and executed by the loader
(part of the operating system) in the following way:

1. Allocate memory for each program segment.

2. Read the memory image into main memory from the
absolute file on disk.

3. Set the base register to the initial address of the
segment and set the bounds register to the size of
the segment.

4. Jump to the starting address of the program, using a
special jump instruction that switches the processor
state from system mode to user mode during the
jump.

169

Absolute File

An absolute file is a file of program code and data that
is ready for loading and execution. It is absolute in the
sense that every address is an absolute (numeric) address.

An absolute file consists of:

• A size and starting address

• A memory image for the code segment, and perhaps
a memory image for the data segment.

• A list of BSS (Block Starting with Symbol) elements:

– Starting address

– Size

– Initial data value

170

Initializing BSS Storage

A block of data can be declared in assembly language
with a BSS (Block Starting with Symbol) pseudo-op:

BIGARRAY: BSS 8000000

Similar data can be declared in high-level languages:

DOUBLE PRECISION BIGARRAY(1000,1000)

Instead of representing such a large block as a memory
image, the block is represented in the absolute file by
giving its starting address, size, and the initial value. The
loader will fill the memory area with the initial value.

Although the loader might not have to initialize BSS

areas, there are several advantages to doing so:

• It prevents security problems: otherwise, a program
can see the previous program’s data.

• It makes a program run the same way each time.
Otherwise, a program might work if the initial value
is “lucky”, but not work for other values.

• It allows detection of use of uninitialized data if
the array is filled with the SNaN (Signaling Not a
Number) value.

171

Banked Memory

Some CPU architectures employ a banked memory in
which memory is divided into two banks that can be
accessed independently. This allows instruction fetching
(from the instruction bank) to be overlapped with data
access (from the data bank).

I1: LDA X

I2: STA Y

With banked memory, the CPU can run twice as fast. On
such a machine, the compiler and link editor will have to
put code and data in separate banks.

172

Location Counter

As code is generated, it will be put into the next available
location in a static data area. A location counter keeps
track of the next available location in the data area.

1. Initially, the LC is set to 0 .

2. After each instruction is generated, the LC is
incremented by the length of the instruction.

3. When a label is encountered, the relative address of
the label is set to the value of the LC.

4. At the end, the length of the code segment is the value
of the LC.

There may be multiple location counters, e.g., one for
code and one for static data.

173

Example of Assembly Listing

1 0000 #9

2 0000 global _GRAPH1

3 0000 _GRAPH1:

4 0000 480E FFFF FFE8 link.l %a6,&LF1

5 0006 48D7 0000 movm.l &LS1,(%sp)

6 000A F236 F000 0170 FFFF fmovm.x &LSF1,LFF1(%a6)

FFE8

7 0014 7000 movq.l &0,%d0

8 0016 2D40 FFF8 mov.l %d0,-8(%a6)

9 001A L1:

10 001A 202E FFF8 mov.l -8(%a6),%d0

11 001E 7220 movq.l &32,%d1

12 0020 B280 cmp.l %d1,%d0

13 0022 6DFF 0000 00A2 blt.l L3

14 0028 F239 5400 0000 00CC fmov.d L4,%fp0

15 0030 F200 4080 fmov.l %d0,%fp1

16 0034 F200 0423 fmul %fp1,%fp0

17 0038 F22E 7400 FFE8 fmov.d %fp0,-24(%a6)

18 003E F200 001A fneg %fp0

19 0042 F200 0010 fetox %fp0

20 0046 F239 5480 0000 00D4 fmov.d L5,%fp1

21 004E F22E 5500 FFE8 fmov.d -24(%a6),%fp2

22 0054 F200 08A3 fmul %fp2,%fp1

...

50 00BC 2D40 FFF8 mov.l %d0,-8(%a6)

51 00C0 60FF FFFF FF58 bra.l L1

52 00C6 L3:

53 00C6 4E5E unlk %a6

54 00C8 4E75 rts

55 00CA set LF1,-24

56 00CA set LS1,0

57 00CA set LFF1,-24

58 00CA set LSF1,0

59 00CC data

60 00CC lalign 4

61 00CC 3FB0 0000 0000 0000 L4: long 0x3fb00000,0x0 # 6.25e-02

62 00D4 4019 21FA 0000 0000 L5: long 0x401921fa,0x0

63 00DC 4040 0000 0000 0000 L6: long 0x40400000,0x0

64 00E4 2000 L7: byte 32,0

65 00E6 2A00 L8: byte 42,0

66 00E8 version 2

174

Backpatching

In order to compile code for branch instructions, it is
necessary to know the address in memory (relative to
the location counter) of the destination of the branch.
Branch instructions may be PC-relative or have absolute
addresses. For forward branches the destination address
will not be known when the branch is encountered. There
are two approaches to this problem:

1. Two passes. The first pass through the code generator
computes addresses but does not generate code. The
second pass generates code and uses the addresses
determined in the first pass. This approach takes
longer.

2. Backpatching. The generated code itself is used to
hold a linked list of places where forward reference
addresses are needed. When the address is found, it
is patched back into the generated code.

175

Link Editing Process

The task of the link editor is to convert a set of
relocatable files into an absolute file that can be executed.
The link editor is called ld in Unix; it is called
automatically by compilers in most cases.

Link editing involves several steps:

1. Determine the relocatable code modules that are
needed.

2. Allocate memory and assign absolute addresses for
each module.

3. Determine absolute addresses of external symbols.

4. Relocate the code to produce an absolute code file.

176

Relocatable Code

A relocatable code file contains the following items:

1. Size of each static data area; each data area
corresponds to a location counter. There may be
one data area, two for code and for data, or many.

LC Size

0 200

1 400

2. Table of imported symbols: external symbols (not
defined in that module) that are referenced by the
code.

N Name

0 SIN

1 EXP

3. Table of exported symbols or entry points; for each, its
location counter number and offset from that location
counter.

Name LC Offset

GRAPH1 0 40

4. Data or code for each data area.

177

Finding Relocatable Modules

The link editor is given the name of one or more program
modules that should be included. These form the initial
module set.

1. For each module, the exported symbols and imported
symbols are collected.

2. If there is some imported symbol that it not defined,
it is necessary to find a relocatable module that
defines it. This is done by searching through one
or more libraries, which are collections of relocatable
files. This process typically occurs for system library
routines such as sin or writeln.

3. The above processes are repeated until no undefined
symbols remain. If a symbol cannot be found, an
unsatisfied external reference error is reported.

4. If any external symbol is defined more than once, a
multiply defined external symbol error is reported.

178

Assigning Absolute Addresses

Absolute addresses are assigned using the storage
allocation algorithm for each module. If the CPU has
a banked memory, the instruction and data segments will
be allocated in separate banks.

Suppose that the set of relocatable modules to be loaded
is A, B, and C, with sizes and addresses as shown below:

179

Absolute Addresses

Once absolute addresses have been assigned to each
storage block (location counter) of each module, the
absolute address of each entry point can be determined.

180

Link Editor

At this point, the link editor has constructed a set of
tables:

1. An absolute memory address for each data area. This
address is used to relocate references to data in this
area.
File LC Address

A 0 0000

A 1 1000

B 0 0300

B 1 1200

C 0 0500

C 1 1600

2. External symbols and their addresses:

Name Address

MAIN 0024

GRAPH1 0340

SIN 0520

EXP 0620

The next step is to convert the code and data to absolute
form.

181

Form of Relocatable Code

Program code consists of instructions; each instruction
may have an address field that contains the offset of a
variable or label from its data area. In addition, the
instruction will have a relocation bit or field that indicates
whether the address should be relocated. If the relocation
bit is set, the corresponding location counter is added to
the address.

R is a relocation code; it could be:

1. Do not modify the word.

2. Relocate the address field by adding the value of
location counter LC to it.

3. Replace the address field by the address of the external
symbol whose number is given in the address field.

Relocatable code may contain other kinds of code items,
e.g., BSS codes to specify blocks to be filled with a
specified value such as 0.

182

Static Allocation

For a static language, such as Fortran, all program code
and data are allocated at fixed addresses in memory.

COMMON storage is data storage that is accessible from
multiple programs. The name of a COMMON block is an
external symbol that names a set of data that is accessible
from multiple programs.

COMMON /ARRAYS/ X(1000), Y(1000)

183

Dynamically Linked Library

A dynamically linked library (DLL) is not part of an
absolute file, but is linked in at load time or runtime.
The primary motivation of a DLL is to allow multiple
programs to share a single copy of a large library, such
as X Windows. DLLs also allow a library update (e.g.
security patch) to be effective for all programs without
re-linking.

Ways to link in the DLL include:

• Let the loader do the linking at load time. The
absolute file contains information on what external
symbols are needed and where they go.

• Let the program make calls to initialize itself on first
call.

• Leave the calls undefined, so that they generate error
traps at runtime. The OS figures out what the calls
should be and fixes the code at the point of call.

184

Run-Time Support

Run-time support includes:

1. Library routines (math functions, I/O formatting)

2. Interface with operating system (I/O, termination)

3. Memory management (new, garbage collection)

4. Debugging support

5. Procedure call support (often compiled as part of a
procedure)

185

Operations by Subroutine

Functions may be specified in source code either as
operators or as function calls; the compiler may generate
either form as instructions or as a subroutine call.

A function can be compiled inline if the code is short:

abs(x) --> (if (>= x 0) x (- x))

or the code generator can generate a special instruction
sequence, e.g. to float an integer.

An operator can be compiled as a subroutine call if the
code is longer.

X**Y --> qq8rtor(x,y)

cout << "Hello\n"

On small machines without floating point hardware, all
floating ops may be done by subroutine calls.

186

Special Subroutines

In C, printf is an ordinary subroutine.

However, in Pascal write cannot be just an ordinary
subroutine because write must know the types of its
arguments in order to convert them correctly. This can
be done in two ways:

• The compiler can add a type argument to the call to
the library routine:
write(x) → write(x, REAL)

• The compiler can call different library routines
depending on the argument type:
write(x) → writef(x)

We will assume the second convention for our
assignments; we will use write and writeln for strings,
writei and writelni for integers, and writef and
writelnf for floats.

187

Memory Management

Many languages can allocate heap storage at runtime.

type person = record ... end;

var p: ^person;

...

new(p);

The compiler must insert the size of the person record
into the call to new. If type safety is to be guaranteed, it
may be necessary to initialize the new record.

For our assignments, we will assume the following
conversion:

new(p) → p := new(sizeof(p^))

For example, source code new(p) would be converted
to intermediate code (:= p (funcall new 40)),
where 40 is the size of the record type p points to.

Pascal uses the form new(p) and prohibits expressions
involving pointers in order to prohibit pointer arithmetic
(which destroys type safety). C allows pointer arithmetic;
in C, malloc is called with the record size as a parameter,
and a type cast is used to set the result type.

188

Returning Memory

Some languages allow requested storage to be freed or
returned to the heap. This is an efficient method of
storage management, but it allows two kinds of errors:

• Forgetting to return memory: a storage leak.

• Returning the same memory more than once. This
can produce errors that are very difficult to find.

Released storage can be held in linked lists that are
pointed to by an array of pointers, where the array is
indexed by block size.

Potential problem: mismatch of block sizes. The user
requests and releases many blocks of size 7, then needs
blocks of size 5.

Larger blocks can be subdivided, but this leads to
fragmentation (many small blocks that cannot be used).
The buddy system (see Knuth) is one way of combining
smaller blocks into larger ones when possible.

malloc puts the size of a block behind the block (just
before the pointer value that is returned). This makes it
easy to check whether adjacent blocks have been returned,
so that they can be combined. However, a misbehaving
program can overwrite the size and crash the system.

189

Heap Memory Management

void * new(size)

long size;

{ CONS * tmp;

if (free[size])

{ tmp = (CONS *) free[size];

free[size] = tmp->car;

return (tmp); }

else if ((void *) ((int) nextfree + size)

< maxfree)

{ tmp = nextfree;

nextfree = (void *)

((int) nextfree + size);

return (tmp); }

else error("Out of Memory");

}

release(block, size)

void * block; long size;

{ ((CONS *) block)->car = free[size];

free[size] = block;

}

190

Garbage Collection

Garbage collection is a method of automatically recycling
storage that is no longer in use:

• If heap storage is available, return the next item of
heap storage.

• Otherwise, perform a garbage collection to reclaim
unused storage. If enough was collected, allocate the
requested item and continue.

• Otherwise, request more memory from the operating
system.

• Otherwise, fail due to lack of memory.

Garbage collection requires that the type of every
piece of runtime memory be identifiable by the garbage
collector, and that there are no possible errors in type
determination. This may difficult for some languages,
especially if the language allows variant records or pointer
arithmetic. Garbage collection has been used in Lisp since
about 1960; it is also used in Java.

191

Garbage Collection

Garbage collection identifies the cells of
memory that are in use; the remaining cells, which
are not used for anything, are collected and added
to the Free List. This automatic recycling of
unused memory is a major advantage of Lisp; it
makes it possible for programs to create (“cons up”)
new structures at will without having to worry about
explicitly returning unused storage.

Identification of “in use” memory starts from sym-
bols, which are always “in use”. Symbols, in
turn, may have several pointers to other data
structures:

1. Binding (value) of the symbol.

2. Function Definition.

3. Property List.

Each of these structures, if present, must also be marked
as being “in use”.

192

Mark-And-Sweep Garbage Collection

Mark-and-sweep garbage collection first marks all
storage cells that are in use, then sweeps up all unmarked
cells. Symbol cells are marked, and all pointers from
the symbols are followed using the following recursive
algorithm:

1. If the pointer points to a Symbol or to a marked cell,
do nothing.

2. Otherwise (pointer points to a cons Cell),

(a) Mark the cell itself.

(b) Apply the marking algorithm to the car of the
cell.

(c) Apply the marking algorithm to the cdr of the
cell.

193

Mark-and-Sweep ...

After all cells that are in use have been marked,
the Sweep phase is run. All memory cells are
examined, in order of increasing address. Those cells that
are not marked are pushed onto the Free List.

“Marking” a cell may use an available bit within the cell,
or it may use a separate bit table that uses one bit to
represent each word.

Mark-and-Sweep garbage collection is
conceptually simple. However, it requires time that
is proportional to the total size of the address
space, independent of how much garbage is
collected. This is a disadvantage for large address
spaces.

Another disadvantage of this algorithm is that all
computation stops for several seconds while garbage is
collected. This is not good for real-time applications, e.g.,
a robot walking down stairs.

194

Copying Garbage Collection

Another method of garbage collection is to
divide the total address space of the machine into
two halves. When storage is exhausted in one half,
garbage collection occurs by copying all storage that is
in use to the other half. Unused storage, by definition,
doesn’t get copied.

A copying collector uses time proportional to the
amount of storage that is in use, rather than
proportional to the address space. This is
advantageous for programs that generate lots of garbage.
Copying also tends to put list structures in nearby
addresses, improving memory locality.

A copying collector has two disadvantages:

1. Half the address space of the machine may
be lost to Lisp use, depending on the
implementation.

2. There is a long period during which
computation stops for garbage collection.

195

Reference Counting

Another method of managing Lisp storage
involves reference counting. Conceptually, within
each cons cell there is room for a small counter that
counts the number of pointers which point to that cell.
Each time another pointer to the cell is constructed, the
counter is incremented by one. Each time a pointer is
moved away from the cell, the counter is decremented by
one.

Whenever the reference count of a cell becomes
zero, the cell is garbage and may be added to
the Free List. In addition, the reference counts
of whatever its pointers point to must also be
decremented, possibly resulting in additional
garbage.

196

Reference Counting...

Advantages:

1. Garbage collection can be incremental, rather than
being done all at once. Garbage collection can occur
in short pauses at frequent time intervals, rather than
in one long pause.

2. Time spent in collection is proportional to amount
collected rather than to address space.

Disadvantages:

1. More complexity in system functions (cons, setq,
rplaca, etc.).

2. Requires storage bits within each cons cell, or other
clever ways of representing counts.

3. Cannot garbage-collect circular structures (since
reference count never becomes zero).

197

Garbage Collection Is Expensive

Garbage collection is safer and more convenient for the
programmer than explicit releasing of storage.

However, whatever the implementation, garbage collec-
tion is usually computationally expensive. As a rough
rule of thumb, one can think of a cons as taking 100
times as much CPU time as a basic instruction.

The moral: avoid unnecessary conses.

198

Compiled Procedure

Prologue

Procedure Code

Epilogue

Prologue: (or preamble) Save registers and return
address; transfer parameters.

Epilogue: (or postamble) Restore registers; transfer
returned value; return.

A return statement in a procedure is compiled to:

1. Load the returned value into a register.

2. goto the Epilogue.

199

Subroutine Call Is Expensive

The prologue and epilogue associated with each procedure
are “overhead” that is necessary but does not do user
computation.

• Even in scientific Fortran, procedure call overhead
may account for 20% of execution time.

• Fancier languages have higher procedure call
overhead.

• Relative overhead is higher for small procedures.

• Breaking a program into many small procedures
increases execution time.

• A GOTO is much faster than a procedure call.

• Modern hardware architecture can help:

– Parameter transfer

– Stack addressing

– Register file pointer moved with subroutine call

200

Activations and Control Stack

An activation is one execution of a procedure; its lifetime
is the period during which the procedure is active,
including time spent in its subroutines.

In a recursive language, information about procedure
activations is kept on a control stack. An activation
record or stack frame corresponds to each activation.

The sequence of procedure calls during execution of a
program can be thought of as a tree. The execution of
the program is the traversal of this tree, with the control
stack holding information about the active branches from
the currently executing procedure up to the root.

201

Environment

The environment of a procedure is the complete set of
variables it can access; the state of the procedure is the
set of values of these variables.

A binding is an association of a name with a storage
location; we use the verb bind for the creation of a binding
and say a variable is bound to a location. An environment
provides a set of bindings for all variables.

An assignment, e.g. pi := 3.14 , changes the state of
a procedure but not its environment.

202

Run-time Memory Organization

[Aho, Sethi, and Ullman, Compilers, Fig. 7.7.]

203

Code Generation

We assume that the input is error-free and complete, for
example that any type conversion operators have already
been inserted.33

Can generate:

• Binary

– absolute

– relocatable

• Assembly

• Interpreted code (e.g. Java byte codes)

Problems include:

• Instruction selection

• Register management

• Local optimization

33This slide was written by John Werth.

204

Code Generation

Code generation can be broken into several steps:

1. Generate the prologue

2. Generate the program code

3. Generate the epilogue

Subroutines are provided to generate the prologue and
epilogue.

The arguments to the code generator are:

gencode(parseresult, blockoffs[blocknumber],

labelnumber);

parseresult = pointer to code:

(program foo (progn output)

(progn ...))

blockoffs[blocknumber]

= size of local storage in bytes

labelnumber = max label number used so far

205

Code Generation

A starter program codgen.c is furnished. A very simple
program, triv.pas, can be compiled by codgen.c:

program graph1(output);

var i:integer;

begin i := 3 end.

The result is triv.s:

.globl graph1

.type graph1, @function

graph1:

...

subq $32, %rsp # space for stack frame

--------- begin Your code -------

movl $3,%eax # 3 -> %eax

movl %eax,-32(%rbp) # i := %eax

--------- begin Epilogue code ---

leave

ret

206

Running Generated Code

Programs can be run using driver.c as the runtime
library:

% cc driver.c triv.s -lm

% a.out

calling graph1

exit from graph1

driver.c is quite simple:

void main()

{ printf("calling graph1\n");

graph1();

printf("exit from graph1\n");

}

void write(char str[])

{ printf("%s", str); }

void writeln(char str[])

{ printf("%s\n", str); }

int round(double x)

...

207

Overview of Code Generation

We will take a hierarchical approach to code generation:

• genc(code) generates code for a statement. There
are only a few kinds of statements. genc is easy to
do given genarith.

• genarith(expr) generates code for an arithmetic
expression. genarith is a classical postorder tree-
recursive program, with a simple basic form (but
many special cases). genarith is not hard given
getreg.

• getreg gets a register from a pool of available
registers. It also handles returning unused registers.

•While register management can be complex, a simple
implementation works pretty well. We will discuss
some improvements.

208

Code Generation for Statements

The function genc(code) generates code for a
statement. There are only a few kinds of statements:

1. PROGN
For each argument statement, generate code.

2. :=
Generate the right-hand side into a register using
genarith. Then store the register into the location
specified by the left-hand side.

3. GOTO
Generate a Jump (branch) to the label number.

4. LABEL
Generate a Label with the label number.

5. IF
(IF c p1 p2) can be compiled as:
IF c GOTO L1;

p2; GOTO L2; L1: p1; L2:

Optimizations are discussed later.

6. FUNCALL
Compile short intrinsic functions in-line. For others,
generate subroutine calls.

209

Arithmetic Expressions

Code for arithmetic expressions on a multi-register
machine can be generated from trees using a simple
recursive algorithm.

The specifications of the recursive algorithm are:

• Input: an arithmetic expression tree

• Side Effect: outputs instructions to the output file

• Output: returns the number of a register that
contains the result.

210

Basic Expression Algorithm

The basic algorithm for expressions is easy: postorder.

• Operand (leaf node): get a register; generate a load;
return the register.

• Operator (interior node): generate operand subtrees;
generate op; free operand register; return result
register.

(defun genarith (x)

(if (atom x) ; if leaf,

(genload x (getreg)) ; load

(genop (op x) ; else op

(genarith (lhs x))

(genarith (rhs x)))))

>(genarith ’(* (+ a b) 3))

LOAD A,R1

LOAD B,R2

ADD R1,R2

LOAD 3,R3

MUL R2,R3

R3

211

Trace of Expression Algorithm

>(genarith ’(* (+ a b) 3))

1> (GENARITH (* (+ A B) 3))

2> (GENARITH (+ A B))

3> (GENARITH A)

4> (GENLOAD A R1)

LOAD A,R1

<4 (GENLOAD R1)

<3 (GENARITH R1)

3> (GENARITH B)

4> (GENLOAD B R2)

LOAD B,R2

<4 (GENLOAD R2)

<3 (GENARITH R2)

3> (GENOP + R1 R2)

ADD R1,R2

<3 (GENOP R2)

<2 (GENARITH R2)

2> (GENARITH 3)

3> (GENLOAD 3 R3)

LOAD 3,R3

<3 (GENLOAD R3)

<2 (GENARITH R3)

2> (GENOP * R2 R3)

MUL R2,R3

<2 (GENOP R3)

<1 (GENARITH R3)

R3

212

Arithmetic Expression Algorithm

The genarith input is a tree (operand or operator):

• Operand (leaf node):

1. Get a register.

2. An operand may be a variable or constant:

(a) Variable: Generate an instruction to load the
variable into the register.

(b) Constant:

i. Small constant: Generate an immediate
instruction to load it into the register directly.

ii. Otherwise, make a literal for the value of the
constant. Generate an instruction to load the
literal into the register.

3. Return the register number.

• Operator (interior node):

1. Recursively generate code to put each operand into
a register.

2. Generate the operation on these registers,
producing a result in one of the source registers.

3. Mark the other source register unused.

4. Return the result register number.

213

Register Management

Issues are:34

• register allocation: which variables will reside in
registers?

• register assignment: which specific register will a
variable be placed in?

Registers may be:

• general purpose (usually means integer)

• float

• special purpose (condition code, processor state)

• paired in various ways

34This slide was written by John Werth.

214

Simple Register Allocation

Note that there may be several classes of registers,
e.g., integer data registers, index registers, floating point
registers.

A very simple register allocation algorithm is:

1. At the beginning of a statement, mark all registers as
not used.

2. When a register is requested,

(a) If there is an unused register, mark it used and
return the register number.

(b) Otherwise, punt.

On a machine with 8 or more registers, this algorithm
will almost always work. However, we need to handle the
case of running out of registers.

215

Heuristic for Expressions

The likelihood of running out of registers can be reduced
by using a heuristic in generating code for expressions:

Generate code for the most complicated operand
first.

The “most complicated” operand can be found by
determining the size of each subtree. However, simply
generating code for a subtree that is an operation before
a subtree that is a simple operand is usually sufficient.

With this simple heuristic, on a machine with 8 or more
registers, the compiler will never35 run out.

If a machine allows arithmetic instructions to be used
with a full address, the operation may be combined with
the last load.

35Well, hardly ever.

216

Improving Register Allocation

The simple register allocation algorithm can be improved
in two ways:

• Handle the case of running out of available registers.
This can be done by storing some register into a
temporary variable in memory.

• Remember what is contained in registers and reuse
it when appropriate. This can save some load
instructions.

217

Register Allocation

Used Use Number Token

An improved register allocation algorithm, which handles
the case of running out of registers, is:

1. At the beginning of a statement, mark all registers as
not used; set use number to 0.

2. When an operand is loaded into a register, record a
pointer to its token in the register table.

3. When a register is requested,

(a) If there is an unused register: mark it used, set its
use number to the current use number, increment
the use number, and return the register number.

(b) Otherwise, find the register with the smallest use
number. Get a temporary data cell. Generate a
Store instruction (spill code) to save the register
contents into the temporary. Change the token to
indicate the temporary.

Now, it will be necessary to test whether an operand is a
temporary before doing an operation, and if so, to reload
it. Note that temporaries must be part of the stack frame.

218

Example of Code Generation

219

Example (2)

220

Example (3)

221

Example (4)

222

Reusing Register Contents

Used Contents

Many instructions can be eliminated by reusing variable
values that are already in registers:36

1. Initially, set the contents of each register to NULL.

2. When a simple variable is loaded, set the contents

of the register to point to its symbol table entry.

3. When a register is requested, if possible choose an
unused register that has no contents marked.

4. When a variable is to be loaded, if it is contained in
an unused register, just mark the register used. This
saves a Load instruction.

5. When a register is changed by an operation, set its
contents to NULL.

6. When a value is stored into a variable, set the contents
of any register whose contents is that variable to NULL.
Then mark the register from which it was stored as
containing that variable.

7. When a Label is encountered, set the contents of all
registers to NULL.

8. The condition code contents can be reused also.
36We assume that there are no aliases for variables.

223

Register Targeting

On some machines, it is useful to be able to tell
genarith, top-down, that its result should be produced
in a certain register if possible.

Example: Suppose that a function argument should
be transmitted in register %xmm0. If the argument can
be generated in %xmm0 directly, it will save a move
instruction.

224

x86 Processor

We will assume an x86-64 processor. This processor
has a vast number of instructions (some undocumented)
and two major families of assembler syntax and calling
sequence conventions. We will use the AT&T/Unix
syntax and gcc calling conventions.

Integer registers can be used in several sizes, e.g. %eax (32
bits) and %rax (64 bits) are the same register in different
sizes. We will assume that integer will use the 32-bit
size, while memory addresses must use the 64-bit size.

General-purpose (Integer) Registers:
32/64 bits, numbered 0 - 15 in genasm. We will use
them in the order %eax, %ecx, %edx, %ebx since %ebx is
callee-saved. RBASE to RMAX is the local integer register
range.

Floating Point Registers:
64 bits, numbered 16 - 31 in genasm. FBASE to FMAX

is the floating register range. These are called %xmm0

through %xmm7.

225

Move (Load/Store) Instructions

Most of the instructions used in a computer program
are instructions that move data. The x86 processor
uses variable-length instructions and offers very flexible
addressing options.

The Unix syntax of x86 instructions shows data
movement from left to right:

movl $0,%eax # 0 -> %eax

movl %eax,-32(%rbp) # %eax -> i

There are three data formats that we will use:

Instruction Terminology Bits Use For
MOVL long 32 Integer
MOVQ quad-word 64 Pointer
MOVSD signed double 64 Float

226

Kinds of Move Addressing

There are several addressing styles that are used with
move instructions:

Constants or immediate values are specified with a $.
x86 allows even very large integer constants.

movl $0,%eax # 0 -> %eax

Stack Variables have negative offsets relative to %rbp.
The offset is the offset from the symbol table minus the
stack frame size.

movl %eax,-32(%rbp) # %eax -> i

In this case, i has an offset of 16 and the stack frame size
is 48.

Literals have offsets relative to %rip.

movsd .LC5(%rip),%xmm0 # 0.0625 -> %xmm0

Record References have offsets relative to a register
containing a pointer to the record.

movl %eax,32(%rcx) # ^. []

227

Move with Calculated Address

x86 allows very flexible addressing:

Offset from Register

movl %eax,-32(%rbp) # %eax -> i

Offset from Two Registers

movsd %xmm0,-1296(%rbp,%rax) # ac[]

The offset and contents of the two registers are added to
form the effective address.

Offset from Two Registers with Multiplier

movsd %xmm0,-1296(%rbp,%rax,8) # x[]

In this case, the second register is multiplied by 2, 4, or 8
before being added. This can allow many aref expressions
to be done in a single instruction.

228

Literals

A literal is constant data that is assembled as part of
the compiled program. Literals must be made for large
integers, all floats, and most strings.

There are three programs that make literals; each is called
with a literal value and a label number:

• first do label = labelnumber++;

• makeilit(i,label) : integer (not needed for x86)

• makeflit(f,label) : float

• makeblit(s,label) : byte (string)

A literal is accessed relative to the Instruction Pointer:

movsd .LC4(%rip),%xmml

Literals are saved in tables and output at the end of the
program.

.align 8

.LC4:

.long 0

.long 1078001664

229

Integer Arithmetic Instructions

These instructions operate on registers or memory. S,D

represent source and destination.37 Usually, S is the rhs
and D is the lhs.

addl S,D D + S → D
subl S,D D − S → D
imull S,D D ∗ S → D
ldiv S,D D/S → D
cmpl S,D compare D − S, set condition
andl S,D D ∧ S → D
orl S,D D ∨ S → D
notl D ¬D → D
negl D −D → D

Note that arithmetic can be done directly on memory:
i := i + 1 can be one instruction:

addl $1,-32(%rbp)

37for ldiv, D must be %eax, and cdq must be used before the divide to sign-extend %eax into %edx, which
of course changes %edx.

230

Compare and Jump

A compare is a subtract that does not store its results;
however, the results set the condition code, which can be
tested by jump instructions.

cmpl S,D compare D − S, set condition, integer
cmpq S,D compare D − S, set condition, pointer
comisd S,D compare D − S, set condition, float

The jump instructions test the condition code:

jmp Jump always.
jle Jump if D ≤ S
je Jump if D = S
jne Jump if D 6= S
jge Jump if D ≥ S
jl Jump if D < S
jg Jump if D > S

231

Floating Point

These instructions operate on registers or memory. S,D

represent source and destination.

addsd S,D D + S → D
subsd S,D D − S → D
mulsd S,D D ∗ S → D
divsd S,D D/S → D
cmpsd S,D compare D − S, set condition

Routines are provided to generate the instruction
sequences for fix, float and negate operations.

232

Intrinsic Functions

Some things that are specified as functions in source code
should be compiled in-line. These include:

1. Type-change functions that act as the identity
function: boole, ord, chr.

2. Functions that are only a few instructions:
pred (- 1), succ (+ 1), abs.

3. Functions that are implemented in hardware:
sqrt may be an instruction.

233

Function Calls

For external functions, it is necessary to:

1. Set up the arguments for the function call.

2. Call the function.

3. Retrieve the result and do any necessary final actions.

A function call involves the following:

1. Load arguments into registers:

• First integer argument in %edi

• For string literal, address in %edi:

movl $.LC12,%edi # addr of literal .LC12

• First floating argument in %xmm0

2. Execute a call instruction:

call sin

3. Floating results are returned in %xmm0. Integer results
are returned in %eax or %rax.

234

Volatile Registers

By convention, some registers may be designated:

• volatile or caller-saved: assumed to be destroyed
by a subroutine call.

• non-volatile or callee-saved: preserved (or not
used) by a subroutine.

We will try to use only the registers %eax, %ecx, and
%edx, since %ebx is callee-saved.

Any floating values that need to be preserved across a call
must be saved on the stack prior to the call and restored
afterwards. Routines are provided to save one floating
register on the stack and restore it.

235

Details of Function Call

1. For each argument, use genarith to compute the
argument. If needed, move the result from the
register returned by genarith to %xmm0 and mark
the genarith register unused.

2. For each volatile register that is in use, save it

3. Call the function

4. For each volatile register that is in use, restore it

5. Return the function result register (%xmm0, %eax or
%rax) as the result of genarith.

236

IF Statement Generation

Code for an intermediate code statement of the form
(if c p1 p2) can be generated as follows:

1. Generate code for the condition c using the arithmetic
expression code generator. Note that a cmp

instruction should be generated for all comparison
operators, regardless of which comparison is used.

2. Generate the appropriate jump-on-condition in-
struction, denoted jmp c below, by table lookup
depending on the comparison operator.

genarith(c) # always generates cmp

jmp c .L1

genc(p2) # "else"

jmp .L2

.L1:

genc(p1) # "then"

.L2:

The following jump table can be used:

op = 6= < ≤ ≥ >
c je jne jl jle jge jg

-c jne je jge jg jl jle

237

IF Statement Optimization

Special cases of IF statements are common; these can
be compiled as shown below, where jmp c represents a
jump on condition and jmp -c represents a jump on the
opposite of a condition.

(if c (goto l)) jmp c l

(if c (progn) (goto l)) jmp -c l

(if c p1 (goto l)) jmp -c l

p1

(if c (goto l) p2) jmp c l

p2

(if c p1) jmp -c L1

p1

L1:

(if c (progn) p2) jmp c L1

p2

L1:

238

Array References

Suppose the following declarations have been made:

var i: integer; x: array[1..100] of real;

Assume that i has an offset of 4 and x has an offset of
8 (since x is double, its offset must be 8-aligned.). The
total storage is 808. A reference x[i] would generate
the code:

(AREF X (+ -8 (* 8 I)))

The effective address is: %rbp, minus stack frame size,
plus the offset of x, plus the expression (+ -8 (* 8 I)).

239

Easy Array References

(AREF X (+ -8 (* 8 I)))

One way to generate code for the array reference is to:

• use genarith to generate (+ -8 (* 8 I)) in
register (%eax) (move the result to %eax if necessary).

• Issue the instruction CLTQ (Convert Long To Quad),
which sign-extends %eax to %rax.

• access memory from the offset and sum of the
registers.

movsd %xmm0,-1296(%rbp,%rax) # ac[]

This is easy from the viewpoint of the compiler writer,
but it generates many instructions, including a possibly
expensive multiply.

240

Better Array References

(AREF X (+ -8 (* 8 I)))

A better way generate the array reference is to:

1. combine as many constants as possible

2. replace the multiply with a shift

Note that in the expression (+ -8 (* 8 I)) there is an
additive constant of -8 and that the multiply by 8 can
be done in the x86 processor by a shift of 3 bits, which
can be done for free by the instruction.

This form of code can be generated as one instruction on
x86, assuming that i is in %rax:

movsd %xmm0,-208(%rbp,%rax,8)

241

Pointer References

A pointer operator specifies indirect addressing. For
example, in the test program, the code john^.favorite
produces the intermediate code:

(aref (^ john) 32)

Note that a pointer operator can occur in Pascal only as
the first operand of an aref, and in this case the offset is
usually a constant. Compiling code for it is simple: the
address is the sum of the pointer value and the offset:

movq -1016(%rbp),%rcx # john -> %rcx

movl %eax,32(%rcx) # ^. []

This example shows a store of %eax into memory at a
location 32 bytes past the pointer value in the variable
john.

242

switch Statement

The switch statement is usually evil:

• generates lots of code (lots of if statements)

• takes time to execute

• poor software engineering.

int vowel(ch)

int ch;

{ int sw;

switch (ch)

{ case ’A’: case ’E’: case ’I’:

case ’O’: case ’U’: case ’Y’:

sw = 1; break;

default: sw = 0; break;

}

return (sw);

}

243

switch Statement Compiled

vowel:

save %sp,-104,%sp

st %i0,[%fp+68]

.L14:

ba .L16

nop

.L17:

.L18:

.L19:

.L20:

.L21:

.L22:

mov 1,%o0

ba .L15

st %o0,[%fp-8]

.L23: ! default: sw = 0; break;

ba .L15

st %g0,[%fp-8]

.L16:

ld [%fp+68],%o0

cmp %o0,79

bge .L_y0

nop

cmp %o0,69

bge .L_y1

nop

cmp %o0,65

be .L17

nop

ba .L23

nop

.L_y1:

be .L18

nop

... 20 more instructions

.L24:

.L15:

ld [%fp-8],%i0

jmp %i7+8

restore

244

switch Statement Compiled -O

[... big table constructed by the compiler ...]

vowel:

sub %o0,65,%g1

cmp %g1,24

bgu .L77000008

sethi %hi(.L_const_seg_900000102),%g2

.L900000107:

sll %g1,2,%g1

add %g2,%lo(.L_const_seg_900000102),%g2

ld [%g1+%g2],%g1

jmpl %g1+%g2,%g0

nop

.L77000007:

or %g0,1,%g1

retl ! Result = %o0

or %g0,%g1,%o0

.L77000008:

or %g0,0,%g1

retl ! Result = %o0

or %g0,%g1,%o0

245

Table Lookup

static int vowels[]

= {1,0,0,0,1,0,0,0,1,0,0,0,0,

0,1,0,0,0,0,0,1,0,0,0,1,0};

int vowel(ch)

int ch;

{ int sw;

sw = vowels[ch - ’A’];

return (sw);

}

246

Table Lookup Compiled

vowel:

save %sp,-104,%sp

st %i0,[%fp+68]

.L15:

ld [%fp+68],%o0

sll %o0,2,%o1

sethi %hi(vowels-260),%o0

or %o0,%lo(vowels-260),%o0

ld [%o1+%o0],%i0

st %i0,[%fp-8]

jmp %i7+8

restore

247

Table Lookup Compiled -O

vowel:

sll %o0,2,%g1

sethi %hi(vowels-260),%g2

add %g2,%lo(vowels-260),%g2

retl ! Result = %o0

ld [%g1+%g2],%o0 ! volatile

Bottom Line:

switch 46
switch -O 15
Table Lookup 10
Table Lookup -O 5

Table Lookup beats the switch statement in code size
and performance; it is also better Software Engineering.

248

Parameter Passing

Several methods of passing parameters between calling
program and subroutine are used:

1. Call by Reference: The address of the parameter
is passed. The storage in the calling program is used
(and possibly modified). Used by Fortran, Pascal for
var parameters, C for arrays.

2. Call by Value: The value of the parameter is
copied into the subroutine. Modifications are not seen
by the caller. Expensive for large data, e.g. arrays.
Used in Pascal, Java, C for basic types.

3. Call by Value - Result: The value of the
parameter is copied into the subroutine, and the result
is copied back upon exit.

4. Call by Name: The effect is that of a textual
substitution or macro-expansion of the subroutine
into the caller’s environment. Trouble-prone, hard to
implement, slow. Used in Algol.

5. Call by Pointer: A pointer to the parameter value
is passed. Used in Lisp, in Java for reference types.
The object pointed to can be changed.

249

Macros

A macro is a function from code to code, usually turning
a short piece of code into a longer code sequence.

Lisp macros produce Lisp code as output; this code is
executed or compiled.

(defun neq (x y) (not (eq x y)))

(defmacro neq (x y) (list ’not (list ’eq x y)))

(defmacro neq (x y) ‘(not (eq ,x ,y)))

In C, #define name pattern specifies a textual
substitution. If pattern contains an operation, it should
be parenthesized.

#define sum x + y /* needs parens */

z = sum * sum;

250

In-line Compilation

In-line or open compilation refers to compile-time
expansion of a subprogram, with substitution of
arguments, in-line at the point of each call.

Advantages:

• Eliminates overhead of procedure call

• Can eliminate method lookup in an object-oriented
system

• Can expose opportunities for optimization across the
procedure call, especially with OOP: more specific
types become exposed.

• Relative saving is high for small procedures

Disadvantages:

• May increase code size

251

Optimization

Program optimization can be defined as follows:

Given a program P, produce a program P’ that
produces the same output values as P for a given
input, but has a lower cost.

Typical costs are execution time and program space.
Most optimizations target time; fortunately, the two
usually go together.

Optimization is an economic activity:

• Cost: a larger and sometimes slower compiler.

• Benefit:
Amount saved by the code improvement

* number of occurrences in code

* number of repetitions in execution

* number of uses of the compiled code

It is not possible to optimize everything. The goal is to
find leverage: cases where there is a large expected payoff
for a small cost.

252

Correctness of Optimization

Optimization must never introduce compiler-generated
errors! A program that runs faster but produces incorrect
results is not an improvement.

There are often cases where an optimization will nearly
always be correct.

if (x * n == y * n) ...

might be optimized to:

if (x == y) ...

Is this correct?

In general, one must be able to prove that an optimized
program will always produce the same result.

253

Optional Optimization

Some compilers either allow the optimizer to be turned
off, or require that optimization be requested explicitly.

Reasons for turning optimization off:

• Compilation may be faster.

• If the optimizer produces errors, the errors can be
avoided.

With some sophisticated compilers, the users normally
turn the optimizer off! This is because the optimizer has
the reputation of generating incorrect code.

Optimizations that don’t take much compilation time and
are guaranteed to be correct should probably be done
every time. A slightly longer compilation time is almost
always compensated by faster execution.

254

Local and Global Optimization

Local optimization is that which can be done correctly
based on analysis of a small part of the program.
Examples:

• Constant folding: 2 ∗ 3.14→ 6.28

• Reduction in strength: x ∗ 2→ x + x

• Removing branches to branches:

L1: Goto L2

Global optimization requires information about the
whole program to be done correctly.
Example:

I * 8 ==> R1 = I * 8

... ...

I * 8 ==> R1

This is correct only if I is not redefined between
the two points. Doing optimization correctly requires
program analysis: a special-purpose proof that program
P’ produces the same output values as P.

255

Easy Optimization Techniques

Some good optimization techniques include:

1. Generation of good code for common special cases,
such as i = 0. These occur frequently enough to
provide a good savings, and testing for them is easy.

2. Generation of good code for subscript expressions.

• Code can be substantially shortened.

• Subscript expressions occur frequently.

• Subscript expressions occur inside loops.

3. Assigning variables to registers.

• Much of code is loads and stores. A variable that is
in a register does not have to be loaded or stored.

• Easy case: assign a loop index variable to a register
inside the loop.

• General case: graph coloring for register
assignment.

4. Reduction in strength: x * 8 → x << 3

256

Constant Folding

Constant folding is performing operations on constants
at compile time:

x = angle * 3.1415926 / 180.0

y = sqrt(2.0)

z = a[3]

The savings from doing this on programmer expressions
is minor. However, there can be major savings by
optimizing:

1. Subscript expressions generated by the compiler.

2. Messages in an object-oriented language.

Constant folding should not allow the programmer to
“break” the compiler by writing a bad expression:
sqrt(-1.0).

257

Peephole Optimization

Certain kinds of redundancies in generated code can be
corrected by making a linear pass over the output code
and transforming patterns seen within a small local area
(called the peephole):

STA X

LDA X

JMP L17

L17:

However,

It is more blessed to generate good code in
the first place than to generate bad code and
then try to fix it.

258

Loop Unrolling

Loop unrolling is the compile-time expansion of a loop
into repetitions of the code, with the loop index replaced
by its value in each instance.

for (i = 0; i < 3; i++) disp[i] = c2[i] - c1[i];

is expanded into:

disp[0] = c2[0] - c1[0];

disp[1] = c2[1] - c1[1];

disp[2] = c2[2] - c1[2];

Loop: Unrolled:
Instructions: 20 12
Executed: 57 12

The second form runs faster, and it may generate less
code. This is a useful optimization when the size of the
loop is known to be a small constant at compile time.

Modulo unrolling unrolls a loop modulo some chosen
constant. This can significantly reduce the loop overhead
without expanding code size too much.

259

Partial Evaluation

Partial evaluation is the technique of evaluating those
parts of a program that can be evaluated at compile time,
rather than waiting for execution time.

For example, the rotation of a point in homogeneous
coordinates by an angle θ around the x axis is
accomplished by multiplying by the matrix:

1 0 0 0
0 cosθ −sinθ 0
0 sinθ cosθ 0
0 0 0 1

Many of the cycles consumed in the matrix multiply
would be wasted because they would be trivial
computations (e.g., multiplying by 1 or adding 0).

By unrolling the loops of matrix multiply, substituting
the values from the coefficient matrix, and performing
partial evaluation on the result, a specialized version of
the matrix multiply can be obtained. This version saves
many operations:

Version: Load Store Add/Sub Mul Total
General 128 16 48 64 256
Specialized 24 16 8 16 64

260

Partial Evaluation38

Partial evaluation specializes a function with respect to
arguments that have known values. Given a program
P (x, y) where the values of variables x are constant, a
specializing function mix transforms P (x, y) → Px(y)
such that P (x, y) = Px(y) for all inputs y. Px(y) may
be shorter and faster than P (x, y). We call x static data
and y dynamic data.

Partial evaluation involves:

• precomputing constant expressions involving x,

• propagating constant values,

• unfolding or specializing recursive calls,

• reducing symbolic expressions such as x ∗ 1, x ∗ 0,
x + 0, (if true S1 S2).

A good rule of thumb is that an interpreted program takes
ten times as long to execute as the equivalent compiled
program. Partial evaluation removes interpretation
by increasing the binding between a program and its
execution environment.

38Neil D. Jones, Carsten K. Gomard, and Peter Sestoft, Partial Evaluation and Automatic Program
Generation, Prentice-Hall, 1993; ACM Computing Surveys, vol. 28, no. 3 (Sept. 1996), pp. 480-503.

261

Example

Suppose we have the following definition of a function
power(x,n) that computes xn :

(defun power (x n)

(if (= n 0)

1

(if (evenp n)

(square (power x (/ n 2)))

(* x (power x (- n 1))))))

If this is used with a constant argument n, as is often the
case, the function can be partially evaluated into more
efficient code:

(gldefun t3 ((x real)) (power x 5))

(glcp ’t3)

result type: REAL

(LAMBDA (X) (* X (SQUARE (SQUARE X))))

The recursive function calls and interpretation (if
statements) have been completely removed; only
computation remains. Note that the constant argument
5 is gone and has been converted into control.

262

Simple Partial Evaluator

(defun mix (code env)

(let (args test fn)

(if (constantp code) ; a constant

code ; evaluates to itself

(if (symbolp code) ; a variable

(if (assoc code env) ; bound to a constant

(cdr (assoc code env)) ; evals to that constant

code) ; else to itself

(if (consp code)

(progn

(setq fn (car code))

(if (eq fn ’if) ; if is handled

(progn ; specially

(setq test (mix (cadr code) env))

(if (eq test t) ; if true

(mix (caddr code) env) ; then part

(if (eq test nil) ; if false

(mix (cadddr code) env) ; else

(cons ’if

(cons test

(mapcar #’(lambda (x)

(mix x env))

(cddr code)))))))

263

Simple Partial Evaluator...

(progn ; (fn args)

(setq args (mapcar #’(lambda (x)

(mix x env)) ; mix the args

(cdr code)))

(if (and (every #’constantp args) ; if all constant args

(not (member fn ’(print ; and no

prin1 princ error ; compile-time

format)))) ; side-effects

(kwote (eval (cons fn args))) ; eval it now

(if (and (some #’constantp args); if some constant

(fndef fn)) ; & symbolic fn

(fnmix fn args) ; unfold the fn

(fnopt (cons fn args))))))) ; optimize result

(cons ’bad-code code))))))

264

Examples

>(load "/u/novak/cs394p/mix.lsp")

>(mix ’x ’((x . 4)))

4

>(mix ’(if (> x 2) ’more ’less) ’((x . 4)))

’MORE

(defun power (x n)

(if (= n 0)

1

(if (evenp n)

(square (power x (/ n 2)))

(* x (power x (- n 1))))))

>(fnmix ’power ’(x 3))

(* X (SQUARE X))

>(specialize ’power ’(x 3) ’cube)

>(fndef ’cube)

(LAMBDA (X) (* X (SQUARE X)))

> (cube 4)

64

>(fnmix ’power ’(x 22))

(SQUARE (* X (SQUARE (* X (SQUARE (SQUARE X))))))

265

Examples

; append two lists

(defun append1 (l m)

(if (null l)

m

(cons (car l) (append1 (cdr l) m))))

>(fnmix ’append1 ’(’(1 2 3) m))

(CONS 1 (CONS 2 (CONS 3 M)))

266

Binding-Time Analysis

Binding-time analysis determines whether each variable
is static (S) or dynamic (D).

• Static inputs are S and dynamic inputs are D.

• Local variables are initialized to S.

• Dynamic is contagious: if there is a statement
v = f (...D...)
then v becomes D.

• Repeat until no more changes occur.

Binding-time analysis can be online (done while
specialization proceeds) or offline (done as a separate
preprocessing phase). Offline processing can annotate
the code by changing function names to reflect whether
they are static or dynamic, e.g. if becomes ifs or ifd.

267

Futamura Projections39

Partial evaluation is a powerful unifying technique that
describes many operations in computer science.

We use the notation [[P]]L to denote running a program P

in language L. Suppose that int is an interpreter for a
language S and source is a program written in S. Then:

•

output = [[source]]s[input]
= [[int]][source, input]
= [[[[mix]][int, source]]][input]
= [[target]][input]

Therefore, target = [[mix]][int, source].

•
target = [[mix]][int, source]

= [[[[mix]][mix, int]]][source]
= [[compiler]][source]

Thus, compiler = [[mix]][mix, int] = [[cogen]][int]

• Finally, cogen = [[mix]][mix, mix] = [[cogen]][mix]
is a compiler generator, i.e., a program that
transforms interpreters into compilers.

39Y. Futamura, “Partial Evaluation of Computation Process – An Approach to a Compiler-Compiler”,
Systems, Computers, Controls, 2(5):45-50, 1971. The presentation here follows Jones et al.

268

Interpreter

This program is an interpreter for arithmetic expressions
using a simulated stack machine.

(defun topinterp (exp) ; interpret, pop result

(progn (interp exp)

(pop *stack*)))

(defun interp (exp)

(if (consp exp) ; if op

(if (eq (car exp) ’+)

(progn (interp (cadr exp)) ; lhs

(interp (caddr exp)) ; rhs

(plus)) ; add

(if ...)) ; other ops

(pushopnd exp))) ; operand

(defun pushopnd (arg) (push arg *stack*))

(defun plus ()

(let ((rhs (pop *stack*)))

(pushopnd (+ (pop *stack*) rhs))))

>(topinterp ’(+ (* 3 4) 5))

17

269

Specialization

The interpreter can be specialized for a given input
expression, which has the effect of compiling that
expression.

>(topinterp ’(+ (* 3 4) 5))

17

>(specialize ’topinterp

’(’(+ (* a b) c))

’expr1 ’(a b c))

>(pp expr1)

(LAMBDA-BLOCK EXPR1 (A B C)

(PROGN

(PUSH A *STACK*)

(PUSH B *STACK*)

(TIMES)

(PUSH C *STACK*)

(PLUS)

(POP *STACK*)))

>(expr1 3 4 5)

17

270

Parameterized Programs

A highly parameterized program is easier to write and
maintain than many specialized versions for different
applications, but may be inefficient.

Example: Draw a line: (x1, y1) to (x2, y2).
Options include:

•Width of line (usually 1)

• Color

• Style (solid, dashed, etc.)

• Ends (square, beveled)

If all of these options are expressed as parameters, it
makes code longer, makes calling sequences longer, and
requires interpretation at runtime. Partial evaluation can
produce efficient specialized versions automatically.

271

Pitfalls of Partial Evaluation

There are practical difficulties with partial evaluation:

• To be successfully partially evaluated, a program must
be written in the right way. There should be good
binding time separation: avoid mixing static and
dynamic data (which makes the result dynamic).

(lambda (x y z) (lambda (x y z)

(+ (+ x y) z)) (+ x (+ y z)))

• The user may have to give advice on when to unfold
recursive calls. Otherwise, it is possible to generate
large or infinite programs.

One way to avoid this is to require that recursively
unfolding a function call must make a constant
argument smaller according to a well-founded
ordering. Branches of dynamic if statements should
not be unfolded.

272

Pitfalls ...

• Repeating arguments can cause exponential compu-
tation duplication: 40

(defun f (n)

(if (= n 0)

1

(g (f (- n 1)))))

(defun g (m) (+ m m))

• The user should not have to understand the logic of
the output program, nor understand how the partial
evaluator works.

• Speedup of partial evaluation should be predictable.

• Partial evaluation should deal with typed languages
and with symbolic facts, not just constants.

40Jones et al., p. 119.

273

Program Analysis

To correctly perform optimizations such as moving
invariant code out of loops or reusing common
subexpressions, it is necessary to have global information
about the program.41

Control flow analysis provides information about the
potential control flow:

• Can control pass from one point in the program to
another?

• From where can control pass to a given point?

•Where are the loops in the program?

Data flow analysis provides information about the
definition and use of variables and expressions. It can
also detect certain types of programmer errors.

•Where is the value of a variable assigned?

•Where is a given assignment used?

• Does an expression have the same value at a later
point that it had at an earlier point?

41This treatment follows Marvin Schaefer, A Mathematical Theory of Global Program Optimization,
Prentice-Hall, 1973.

274

Basic Block

A basic block (or block for short) is a sequence of
instructions such that if any of them is executed, all of
them are. That is, there are no branches in except at the
beginning and no branches out except at the end.

begin

i := j;

if i > k

then begin k := k + 1; i := i - 1 end

else i := i + 1;

writeln(i)

end

275

Finding Basic Blocks

Basic blocks are easily found by a compiler while
processing a program.

A leader is the first statement of a basic block:

1. the first statement of a program

2. any statement that has a label or is the target of a
branch

3. any statement following a branch

A basic block is a leader and successive statements up to
the next leader.

Note that branch statements themselves do not appear in
basic blocks, although the computation of the condition
part of a conditional branch will be included.

In a graph representation of a program, basic blocks are
the nodes of the graph, and branches are the arcs between
nodes.

276

Relations and Graphs

The cartesian product of two sets A and B , denoted
A×B , is the set of all ordered pairs (a, b) where a ∈ A
and b ∈ B .

A relation between two sets is a subset of their cartesian
product.

A graph is a pair (S,Γ) where S is a set of nodes and
Γ ⊆ S × S .

Properties of relations:

Property: Definition:
Reflexive ∀a (a, a) ∈ R
Symmetric ∀a, b (a, b) ∈ R→ (b, a) ∈ R
Transitive ∀a, b, c (a, b) ∈ R ∧ (b, c) ∈ R

→ (a, c) ∈ R
Antisymmetric ∀a, b (a, b) ∈ R ∧ (b, a) ∈ R→ a = b

A relation that is reflexive, symmetric, and transitive is an
equivalence relation, which corresponds to a partition of
the set (a set of disjoint subsets whose union is the set).

A relation that is reflexive, antisymmetric, and transitive
is a partial order. Example: ≤ .

277

Graph Notations

Let (S,Γ) be a graph and b ∈ S be a node.

Γb = {x ∈ S | (b, x) ∈ Γ}
are the nodes that are immediate successors of b .

Γ+b = {x ∈ S | (b, x) ∈ Γ+}
are the nodes that are successors of b .

Γ−1b = {x ∈ S | (x, b) ∈ Γ}
are the nodes that are immediate predecessors of b .

Let A ⊂ S be a subset of the set of nodes S.

ΓA = {y ∈ S | (x, y) ∈ Γ ∧ x ∈ A}
is the set of nodes that are immediate successors of nodes
in A .

Γ−1A = {x ∈ S | (x, y) ∈ Γ ∧ y ∈ A}
is the set of nodes that are immediate predecessors of
nodes in A .

We say (A,ΓA) is a subgraph of (S,Γ) , where
ΓAx = Γx ∩ A
is the set of transitions within the subgraph.

278

Bit Vector Representations

Subsets of a finite set can be efficiently represented
as bit vectors, in which a given bit position is a 1

if the corresponding item is an element of the subset.
Representing a 128-element set takes only 4 32-bit words
of memory.

Operations on sets can be done on whole words.

Set operation: Bit vector operation:
∈ ∧ with vector for element

or test bit
∩ ∧
∪ ∨
set complement of A ¬A
set difference, A−B A ∧ ¬B

Operations on the bit vector representation are O(n/32),
compared to O(n ·m) with other methods.

Example: assign a bit for each program variable or
subexpression.

279

Boolean Matrix Representation of Graph

A relation R or graph on a finite set can be expressed as
a boolean matrix M where:

M [i, j] = 1 iff (i, j) ∈ R .

Multiplication of boolean matrices is done in the same
way as ordinary matrix multiplication, but using ∧ for ·
and ∨ for + .

Property: Matrix:
Identity, R0 In (identity matrix)
Inverse, R−1 or Γ−1 MT

Reflexive I ⊆M
Symmetric M = MT

Transitive M 2 ⊆M
Antisymmetric M ∩MT ⊆ In
Paths of length n Mn

Transitive closure Γ+ ∪ni=1M
i

Reflexive transitive closure Γ∗ ∪ni=0M
i

Example: Let the set S be basic blocks of a program and
Γ be transfers of control between blocks.

280

Dominators

Let e denote the first block of a program. A node d
dominates a node n iff every simple path from e to n
passes through d .

For a given node n, its immediate dominator is the
dominator closest to it. A tree structure is formed by
immediate dominators, with e being the root of the tree.

A loop header h dominates all the nodes in the loop. A
back edge is an edge n→ h where h dominates n.

281

Intervals

An interval is a subgraph that basically corresponds to
a program loop.

An interval I with initial node h is the maximal subgraph
(I,ΓI) of (S,Γ) such that:

1. h ∈ I
2. x ∈ I → x ∈ Γ∗h

3. I − {h} is cycle-free

4. if x ∈ I − {h} , then Γ−1x ⊂ I .

To construct an interval starting with node h:

1. initially, set I := {h}
2. repeat I := I ∪ {x ∈ ΓI | Γ−1x ⊆ I}

until there are no more additions.

Members of ΓI − I must be the heads of other intervals.

282

Data Flow Analysis:
Definition and Reference of Variables

We assume that each variable is assigned a unique bit
number so that it can be used in bit vectors. Likewise,
each compiler variable or subexpression α ← a ◦ b is
assigned a bit number.

A variable is defined each time it is assigned a value. A
variable is referenced (used) whenever its value is read.

The statement x := a * b first references a and b and
then defines x.

The statement x := x + 1 references x and then defines
x.

A computation a ◦ b is redundant if its value is available
in some variable α.

A subexpression is computed whenever it appears in
an expression. A subexpression is killed if any of its
components is defined or killed.

The statement x[i*3] := a * b computes a * b and
i * 3 and kills x[anything] .

283

Data Flow Analysis for a Block

Computed and killed vectors for a basic block can be
found as follows:

• initially, comp := ∅ and kill := ∅ .

• for each statement v := a ◦ b where α← a ◦ b
1. comp := comp ∪ {α}
2. kill := kill ∪ killv
3. comp := (comp− killv) ∪ {v}

where killv is the set of all expressions involving
v directly or indirectly and (comp − killv) is set
difference.

Example: I := I + 1

This statement first computes the expression I + 1, but
then it kills it because it redefines I.

284

Availability of Expressions

The expression α← a ◦ b is available at a point p if the
value of the variable α is the same as the value of a ◦ b
computed at the point p.

The expression α is available on entry to block b iff α is
available on exit from all immediate predecessors of b.

availentry(b) = ∩x∈Γ−1b availexit(x)

The expression α is available on exit from block b iff α
is available at the last point of b.

availexit(b) = (availentry(b)− kill(b)) ∪ comp(b)

In general, a system of simultaneous boolean equations
may have multiple consistent solutions. It is necessary
to compute the maximal solution of the set of boolean
equations for intervals at all levels of the derived graph.

285

Data Flow Analysis for an Interval

If the expressions that are available on entry to the head
of the interval are known, the values for all blocks in the
interval can be computed.

For each block b whose predecessors have had their values
computed,

availentry(b) = ∏
x∈Γ−1b availexit(x)

availexit(b) = availentry(b) · not(kill(b)) + comp(b)

No expressions are available on entry to the first block of
a program.

286

Busy Variables

A dual notion to available is busy.

A variable is busy or live if it will be used before being
defined again; otherwise, it is dead.

A variable is busy on entrance to a block b if it is used
in block b before being defined, or if it is not defined or
killed in block b and is busy on exit from b .

A variable is busy on exit from a block b if it is busy on
entry to any successor of b .

We can define a bit vector referenced, meaning that an
expression is referenced in a block before being computed
or killed, and solve equations for busy on entrance and
busy on exit in a manner analogous to that for the
available equations.

287

Variable Uses and Register Assignment

A def-use chain is the connection between a definition of
a variable and the subsequent use of that variable. When
an expression is computed and is busy, the compiler
can save its value. When an expression is needed and
is available, the compiler can substitute the compiler
variable representing its previously computed value.

Register allocation can be performed by graph coloring.
A graph is formed in which nodes are def-use chains and
(undirected) links are placed between nodes that share
parts of the program flow graph.

A graph is colored by assigning “colors” to nodes such
that no two nodes that are linked have the same color.
Colors correspond to registers.

288

Register Allocation by Graph Coloring

An undirected graph is colored by assigning a “color” to
each node, such that no two nodes that are connected
have the same color.

Graph coloring is applied to register assignment in the
following way:

• Nodes of this graph correspond to variables or
subexpressions.

• Nodes are connected by arcs if the variables are busy
at the same time.

• Colors correspond to registers.

A heuristic algorithm is applied to find approximately the
minimum number of colors needed to color the graph. If
this is more than the number of available registers, spill
code is added to reduce the number of colors needed.

By keeping as many variables as possible in registers, the
code can be significantly improved.

289

Overview of Global Optimization

A globally optimizing compiler will perform the following
operations:

1. Perform interval analysis and compute the derived
graphs.

2. Order nodes using an ordering algorithm to find
dominators.

3. Find basic available and busy information for blocks.

4. Solve boolean equations to get available and busy
information for each block.

5. Replace common subexpressions by corresponding
compiler variables.

6. Assign registers using graph coloring.

The information provided by data flow analysis provides
a special-purpose proof that the optimized program is
correct (produces the same answers).

290

gcc Compiler Optimization Options 42

• -O Optimize. Optimizing compilation takes somewhat more time, and a
lot more memory for a large function.

Without ‘-O’, the compiler’s goal is to reduce the cost of compilation
and to make debugging produce the expected results. Statements
are independent: if you stop the program with a breakpoint between
statements, you can then assign a new value to any variable or change
the program counter to any other statement in the function and get
exactly the results you would expect from the source code.

Without ‘-O’, only variables declared register are allocated in registers.

With ‘-O’, the compiler tries to reduce code size and execution time.

• -fforce-mem Force memory operands to be copied into registers before
doing arithmetic on them. This may produce better code by making all
memory references potential common subexpressions. When they are
not common subexpressions, instruction combination should eliminate
the separate register-load.

• -fforce-addr Force memory address constants to be copied into
registers before doing arithmetic on them. This may produce better
code just as ‘-fforce-mem’ may.

• -finline Pay attention the inline keyword. Normally the negation of
this option ‘-fno-inline’ is used to keep the compiler from expanding any
functions inline.

• -finline-functions Integrate all simple functions into their callers.
The compiler heuristically decides which functions are simple enough to
be worth integrating in this way.

• -fcaller-saves Enable values to be allocated in registers that will be
clobbered by function calls, by emitting extra instructions to save and
restore the registers around such calls. Such allocation is done only when
it seems to result in better code than would otherwise be produced.

42From the man gcc page.

291

gcc Optimizations

• -fstrength-reduce Perform the optimizations of loop strength
reduction and elimination of iteration variables.

• -fthread-jumps Perform optimizations where we check to see if a jump
branches to a location where another comparison subsumed by the first
is found. If so, the first branch is redirected to either the destination
of the second branch or a point immediately following it, depending on
whether the condition is known to be true or false.

• -funroll-loops Perform the optimization of loop unrolling. This is
only done for loops whose number of iterations can be determined at
compile time or run time.

• -fcse-follow-jumps In common subexpression elimination, scan
through jump instructions in certain cases. This is not as powerful as
completely global CSE, but not as slow either.

• -frerun-cse-after-loop Re-run common subexpression elimination
after loop optimizations has been performed.

• -fexpensive-optimizations Perform a number of minor optimizations
that are relatively expensive.

• -fdelayed-branch If supported for the target machine, attempt to
reorder instructions to exploit instruction slots available after delayed
branch instructions.

• -fschedule-insns If supported for the target machine, attempt to
reorder instructions to eliminate execution stalls due to required data
being unavailable. This helps machines that have slow floating point
or memory load instructions by allowing other instructions to be issued
until the result of the load or floating point instruction is required.

292

Loop Transformations

Sometimes loops can be transformed to different forms
that are faster.

for i := 1 to 1000 do

for j := 1 to 1000 do

x[i,j] := y[i,j];

This might be transformed to a single, linear loop:

for i := 1 to 1000000 do x[i] := y[i];

Then it might be generated as a block-move instruction.
This is sometimes called loop fusion.

Code motion is moving code to a more favorable location,
e.g., moving (hoisting) invariant code out of loops:

for i := 1 to 1000 do

x[i] := y[i] * sqrt(a);

The code sqrt(a) does not change within the loop, so it
could be moved above the loop and its value reused.

293

Strip Mining

Getting effective performance from a multi-processor
machine (i.e., getting speedup close to n from n
processors) is a difficult problem.

For some matrix computations, analysis of loops and
array indexes may allow “strips” of the array to be sent
to different processors, so that each processor can work
on its strip in parallel.

This technique is effective for a significant minority
(perhaps 25%) of important matrix computations.

294

Induction Variable Transformation

Some compilers transform the induction variable (loop
index) to allow simplified subscripting expressions:

(:= I 1)

(LABEL 1)

(IF (<= I 1000)

(PROGN ... (AREF X (+ -8 (* 8 I)))

(:= I (+ I 1))

(GOTO L1)))

might be transformed to:

(:= I’ 0)

(LABEL 1)

(IF (<= I’ 7992)

(PROGN ... (AREF X I’)

(:= I’ (+ I’ 8))

(GOTO L1)))

Note that the loop index has no meaning outside the loop
and may not have storage assigned to it. Some machines
can automatically increment an index register after it is
used (called postincrement).

295

Finite Differencing

Finite differencing43 is a general technique for
optimizing expensive computations f (i) that occur in a
loop:

• Maintain local variables that hold previous values of
the expensive computation f (i) and perhaps some
auxiliary values.

• Incrementally compute a new value f (i + δ) using:

– the previous value f (i)

– a difference from f (i).

Example: f (i) = i2

i 0 1 2 3 4 5
i2 0 1 4 9 16 25
first difference: 1 3 5 7 9
second difference: 2 2 2 2

43Paige, R. and Koenig, S., “Finite Differencing of Computable Expressions”, ACM Transactions on
Programming Languages and Systems, vol. 4, no. 3 (July 1982), pp. 402-454

296

Example: Computing Squares

Assume that multiplication is expensive. Consider the
problem of computing squares of succesive integers.

for i := 0 to 99 do

x[i] := i*i;

versus

next := 0;

delta := 1;

for i := 0 to 99 do

begin

x[i] := next;

next := next + delta;

delta := delta + 2

end;

The second version has more code, but does no
multiplication.

This form of computation has a long history; it was the
basis of Babbage’s Difference Engine.

297

General Case

Given an expression f (x1, ..., xn), create a variable E to
hold its value.

• Initialize: Create code

E = f (x10, ..., xn0)

to establish E for the initial values of its arguments.

• Derivative: Replace each statement dxi that
modifies some variable xi of E by the statements:

∂−E〈dxi〉

dxi

∂+E〈dxi〉

• Redundant Code Elimination: replace each
occurrence of f (x1, ..., xn) by E.

• Dead Code Elimination: remove any code that
is now unused.

298

Finite Differencing for Set Operations

Finite differencing can be especially useful in optimizing
set operations. Consider the following expression that is
used in solving the “k queens” problem:44

i 6∈ range(part sol) ∧ i ∈ {1..k}

This can be transformed to:

i ∈ setdiff ({1..k}, part sol)

A variable unoccupied rows can be introduced for this
expression. Its initial value is the set {1..k}.

An update to part sol (by recursive call),

part sol = append(part sol, i)

leads to a corresponding change to unoccupied rows

unoccupied rows = unoccupied rows− {i}

This incremental update may be much cheaper than
doing the original range computation or set difference
every time.

44D.R. Smith, KIDS: A Semiautomatic Program Development System, IEEE Trans. Software Engineering,
vol. 16, no. 9, Sept. 1990, pp. 1024-1043.

299

Memoization

Memoization (or memorization) is the technique of
saving previously calculated values of an expensive
function f (x). If a new request to compute f (x) uses a
value x that was used previously, the value of f (x) can be
retrieved from a table faster than it could be recomputed.

Compare:

• caching

• common subexpression elimination

Advanced CPU’s may implement some memoization in
hardware: if the CPU can determine that a computation
has already been done and exists in a register, it can reuse
the result.

300

Hardware Assistance

Hardly anyone writes programs in assembly language
now. The performance of a computer depends on both
the hardware and the compiler.

Hardware assistance can greatly improve performance for
some expensive program operations:

• subroutine call

• array references

• matrix operations, graphics

Hardware designers increasingly rely on compilers to
handle things that used to be done by hardware (e.g.
delaying use of a result until it is ready), allowing CPU’s
to run faster.

301

PowerPC Features

The PowerPC has several features that the compiler can
use to improve the performance of generated code:

• Store-multiple instruction: makes saving registers
faster, speeding up subroutine call.

• Multiple condition-code registers: better code can be
generated for compound tests.

• Cache prefetch instruction: allows the CPU to start
fetching memory before it is needed, avoiding cache
miss delays.

• Superscalar architecture: 3 units (integer, float,
branch) can execute simultaneously.

• Out-of-order execution: the processor can look ahead
in the instruction stream for an instruction to execute.
The compiler may move instructions to maximize this
effect.

• Conditional branch instructions can indicate the
“expected” outcome (branch or not branch). The
processor can speculatively execute instructions in the
expected path.

302

SPARC Features

The SPARC architecture has features that improve the
performance of generated code:

• Register windows on an integer register stack greatly
improve the speed of subroutine call:

– Parameter transmission is easy

– No need to save and restore integer registers

303

Hardware Trends

Trends in modern CPU architecture present new demands
and opportunities for the compiler writer:

• Larger memories: expansion of code size is not as
costly as before; might trade code size for speed.

• The compiler can coexist with the running program,
for just-in-time compilation.

• High cost for cache misses: a cache miss can cause the
CPU to stall (wait) for many execution cycles. Code
may be reordered to avoid cache misses.

• Multiple processors: using the processors effectively
(getting a speedup of n from n processors) is a difficult
challenge. Strip mining may be used to send parts of
loops (and memory) to different processors.

• Superscalar architecture: code may be re-ordered
to take advantage of out-of-order and speculative
execution.

• As number of transistors on chip increases, things that
were software become hardware: math subroutines,
message passing, memoization, dynamic optimization.

304

Object-oriented Programming

Object-oriented programming (OOP) originated in the
SIMULA language (1967) for discrete event simulation.
The desire was to simulate large numbers of similar
objects in an efficient manner. A class/instance
representation achieves this goal.

• Class: represents the behaviors that are shared by
all of its instances. Behaviors are implemented by
methods.

• Instance: represents the data for a particular
individual.

Classes are arranged in a hierarchy or ontology, with
inheritance of methods from higher classes.

305

Access to Objects

Access to objects is accomplished by sending messages
to them.

• Retrieving data values: (send obj x) obj.x()

• Setting data values: (send obj x: 3)

obj.setx(3)

• Requesting actions: (send obj print)

obj.print()

306

Domain Analysis

A domain analysis in English suggests an object
decomposition:

• nouns correspond to objects or variables

• verbs correspond to methods

• adjectives correspond to attributes

An ontology, the set of things that exist, is represented
by the class hierarchy.

Some have contrasted imperative programming (subject
oriented) with OOP.

307

Internal Implementation is Hidden

Messages define a standard interface to objects. Objects
may have different internal implementations as long
as the message interface is maintained. If access is
controlled via messages, OOP facilitates information
hiding: application programs do not know and cannot
depend on the internal implementation of the object.

Example: Vector (send v x)

• Vector type 1: x is stored.

• Vector type 2: r and theta are stored. x is computed
as r * cos(theta)

The two kinds of vectors appear the same to the outside
world.

308

Encapsulation with OOP

Object-oriented programming provides encapsulation:
an external interface to an object in terms of messages
is defined, but the internal implementation of the object
is hidden.

Modularity: Objects are often a good way to think
about the application domain.

Modifiability: The internal implementation of an
object can be changed without modifying any other
programs, as long as the external interface is maintained.

Expandability: New kinds of objects can be added
to an existing system, as long as they present the same
interface as existing objects.

To maintain encapsulation, it is good to make all accesses
into messages, avoiding all direct accesses to instance
variables: obj.x() instead of obj.x

• Hides distinction between what is computed and what
is stored.

• Improves reusability and maintainability.

• May hurt performance.

309

Object-oriented Programming Terminology

• Object: typically refers to an instance (although
classes may be objects too).

• Class: a description of a set of similar objects, the
instances. This description typically includes:

– Instance variable descriptions: the names and
types of variables that are assumed to be defined
for every subclass or instance of the class.

– Methods: definitions of messages to which
members of the class can respond.

• Instance: an individual member of a class. Typically
an instance is a member of exactly one class. An
instance is a data structure that:

– can be identified as being an object

– denotes the class to which the object belongs

– contains the instance variables

• Superclass: a class to which a given class belongs.
Sometimes a class may have more than one superclass.

310

Terminology ...

• Message: an indirect procedure call. A message is
sent to an instance object. The message contains
a selector and optional arguments. The selector is
looked up in the class of the object (or one of its
superclasses) to find the method that implements the
message. That method is called with the object to
which the message was sent as its first argument.

• Selector: the name of a message. A generic procedure
name, e.g. draw.

• Method: the procedure that implements a message.
Often the name of a method is the class name
hyphenated with the selector, e.g. square-draw.

311

Implementation of Objects

An object is basically just a record, with a bit of extra
information:

• A tag to identify the record as an object. It may be
more efficient to tag the class, eliminating the need
to tag each object; if the language is strongly typed,
runtime tags may not be needed.

• The class of the object: a pointer to the class data
structure.

• The instance variables of the object.

Thus, an object requires only slightly more storage than
an ordinary record.

Allocation of space in an object and access to instance
variables are the same as for records.

312

Are Basic Types Objects?

There is an advantage of consistency if basic types such
as integer and real are objects. However:

• A boxed number requires more storage. (16 bytes for
Java Integer vs. 4 bytes for int.)

• A statement i = i + 1 requires allocating a new
object (and garbage collecting the old one): a
significant performance penalty.

Lisp codes small integers as special pointer values,
eliminating the need to box small integers; reals are
boxed.

Java caches and reuses small Integer values from -128
to 127.

An alternative is to have both boxed and unboxed
numbers; this improves performance but results in an
inconsistent type system. Java uses this method; as a
result, a generic method that does comparison may have
to be recoded 6 times because of type inconsistencies.

313

Inheritance and Class Structure

OOP allows subclasses to extend a class, both in terms
of instance variables and methods.

A common practice it to let subclasses add instance
variables; the subclass inherits all instance variables of
its parent.

• Subclasses simply add variables to the end of the
record.

• Methods inherited from a superclass are guaranteed
to work, since all needed instance variables will
be available at the same constant offsets from the
beginning of the record.

• It is not possible to change an object from a superclass
to one of its subclasses, since that would increase its
size after it is allocated.

Multiple inheritance could cause problems of inconsis-
tent offsets or name conflicts.

314

Message Sending

Sending a message is just a function call. However,
the function (method) that is called is determined
dynamically by the runtime type of the object to which
the message is sent.

Sending a message to an object, (send obj draw x y)

or obj.draw(x, y) involves the following steps:

1. Find the method corresponding to the message
selector. If the runtime object is a circle, the draw
method would be looked up as circle-draw.

2. Assemble the arguments:

• The object to which the message was sent (the
self or this argument)

• Other arguments included in the message

3. Call the method function with the arguments.

4. Return the result returned by the method.

315

Dynamic Method Lookup

Each class associates a selector with the method that
implements the selector for that class:

((area circle-area)

(draw circle-draw) ...)

A typical dynamic method lookup procedure is:

• Look for the selector in the class of the object to which
the message was sent.

• If it is not found, look in superclasses of the class.

The first method found in this search up the class tree is
the one that is used. This provides:

• shadowing: a more specific subclass method over-
rides a superclass method with the same name.

• inheritance: methods of a superclass are inherited by
its subclasses.

316

Static Method Lookup

In a static language, all of the methods defined for each
class can be determined at compile time. Lookup of the
called routine can then be done efficiently:

• Selector names are converted to integer offsets.

• A class is implemented during execution as an array
of method addresses.

• A method call obj.sel(args) is executed by:

– Getting the class pointer from obj

– Adding the offset associated with sel

– Getting the method address from that address

– Calling the method.

This takes only a few instructions more than an ordinary
function call. This technique is used in C++.

317

Multiple Inheritance

Multiple inheritance means that a class can have
multiple superclasses and inherit from them.

Multiple inheritance can cause several problems:

• Name conflicts of instance variables.

• Methods with the same name from multiple parents.

• Instance variables no longer have simple constant
offsets.

Variations of inheritance include:

• Using types of all arguments (not just the first) to
determine the method (CLOS)

• Method Combination (Flavors): the methods of
multiple parents can be combined, e.g. a window with
border and title.

• SendSuper (Loops): a more specialized subclass
method can call the parent method. Useful e.g. to
assign serial numbers to manufactured objects.

318

Improving OOP Efficiency

• Use table lookup (array of method addresses) to make
method lookup fast (C++).

• Cache selector and method at lowest class level to
avoid search (Self).

• Compile specialized methods “just in time” when first
used:

– sends can be converted to function calls since the
class is known

– small methods can be compiled in-line

– partial evaluation may improve efficiency

319

Smalltalk

320

Smalltalk Code

| minLength i j |

minLength := self length.

100 timesRepeat:

[i := ((Float random * self size) truncate + 1)

asInteger.

j := ((Float random * self size) truncate + 1)

asInteger.

self exchange: i and: j.

self length < minLength

ifTrue: [minLength := self length]

ifFalse: [self exchange: i and: j]]

321

ThingLab

ThingLab45 is an interactive graphical simulation system
based on Smalltalk.

• Objects have ports that can be connected graphically.

• If an object is modified interactively, it propagates
changes to its ports, and thus to objects to which it
is connected.

• Features of objects can be “anchored” to prevent them
from changing.

• An object may do search by attempting to change
different port values to make itself consistent.

• Problems are solved by value propagation or by
relaxation.

45Borning, A., “The Programming Language Aspects of ThingLab, a Constraint-Oriented Simulation
Laboratory”, ACM Trans. on Programming Languages and Systems, vol. 3, no. 4 (Oct. 1981), pp. 353-387.

322

ThingLab Examples

323

Good Features of OOP

• Encapsulation: implementations of objects can be
modified without modifying clients. Data types and
related procedures are grouped.

• Polymorphism: some generic methods can be reused
effectively.

• Inheritance: methods can be inherited within a
hierarchy.

324

Unfortunate Features of OOP

• OOP tends to require that everything be objects.
Hard to use with existing systems.

• Reusing generic procedures is not easy:

– Programmer must know method name and
arguments.

– Arguments must respond appropriately to all
messages that may be sent to them by the method
or anything it calls.

– Methods may produce unexpected and unwanted
side-effects.

• Slow in execution.

– Method lookup overhead

– Opacity of objects prevents optimization across
messages.

– A layered object structure compounds the
problem.

Some OOP systems “succeed” but have to be
discarded and rewritten for efficiency.

• System structure becomes baroque and hard to
change (just the opposite of what is advertised).

325

Why OOP Is Not Enough

• OOP requires the programmer to know too many
details about object and method names and
implementations.

• OOP requires application data to conform to
conventions of the generic procedures:

– OOP requires an object to be a member of a class
rather than be viewable as a member.

– Some OOP systems automatically include slots of
supers in all their descendants. This inhibits use
of different representations.

– An object cannot be a member of a class in more
than one way. (A pipe is a circle in two ways.)

– No single definition of an object is likely to
encompass all possible uses (or if it did, it would
be too big for typical uses).

• Responsibility for a task may be split across many
classes.

• OOP is often slow in execution.

• OOP doesn’t play well with relational databases.

326

Top Ten Lies About OOP 46

10. Objects are good for everything.

9. Object-oriented software is simpler.

(No: everything is a server, and servers are harder to write.)

8. Subclassing is a good way to extend software or libraries.

7. Object-oriented toolkits produce interchangeable components.

(No: you get components the size of a nuclear aircraft carrier, with

internal interfaces that are too complex to duplicate.)

6. Using object-oriented programming languages helps build object-

oriented systems.

5. Object-oriented software is easier to evolve.

(No: jigsaw-puzzle modularity is a serious problem.)

4. Classes are good for modularity.

(No: most worthwhile modules have more than one class.)

3. Reuse happens.

(No: you have to work too hard to make it possible. He distinguished

between *use*, exploiting existing code, and *reuse*, building new

code by extending existing code.)

2. Object-oriented software has fewer bugs.

(No: it has different bugs.)

1. C++ is an object-oriented programming language.

46From a keynote talk at the June 1993 Usenix conference by Mike Powell of Sun Labs, who is working
on an object-oriented operating system in C++ (as recorded by Henry Spencer in the July 1993 issue of
”;login:” magazine, whose remarks are in parentheses.)

327

Aspect-Oriented Programming

Aspect-Oriented Programming47 is intended to facilitate
coding of cross-cutting aspects, i.e. those aspects that
cut across a typical decomposition of an application in
terms of object classes:

• Error handling

• Memory management

• Logging

In Aspect-Oriented Programming, an aspect weaver
combines program fragments from separate aspects of a
design at cut points or join points.

• Adv: Code for the aspect can be described in one
place, making it easy to change.

• Dis: Combination of source code from different places
violates modularity.

AspectJ is an aspect-oriented system for Java.

47Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes, Jean-Marc
Loingtier, John Irwin, “Aspect-Oriented Programming”, in ECOOP ’97, vol. 1241 of LNCS, Springer-Verlag,
June 1997.

328

Lisp

Lisp facilitates the manipulation of symbolic expressions
such as program code. Therefore, Lisp is ideal
for advanced compilation techniques that involve
transformation of code.

Greenspun’s Tenth Rule of Programming:

Any sufficiently complicated C or Fortran
program contains an ad hoc informally-specified
bug-ridden slow implementation of half of
Common Lisp.

Example:

Language: Lines: Time: Personnel: Cost
C++ 25,000 10 years Ph.D. $2,000,000
Lisp 150 1 week Freshman $200

329

History of Lisp

Lisp was invented in the late 1950’s and early 1960’s at
M.I.T. by John McCarthy. Lisp is based in part on the
Lambda Calculus, a mathematical formalism developed
by Alonzo Church (1903-1995).

Lisp is the second-oldest language still in widespread use
(the oldest is Fortran).

Lisp is especially used for work in Artificial Intelligence. It
is also an ideal language for advanced work in compilers.

Scheme is a small, simple dialect of Lisp. Common Lisp is
a larger, standardized dialect of Lisp with many features.

330

Advantages of Lisp

• Recursion: A program can call itself as a
subroutine.

• Dynamic Type Checking: types are tested at
runtime

– Allows short, elegant, powerful programs

– Incurs a performance penalty

• Garbage Collection: Data storage is recycled
automatically.

• Uniform Representation: Programs and data
have the same form.

– Programs can examine other programs.

– Programs can write programs.

– Programs can modify themselves (learn).

– Data structures can contain programs.

• Interaction: The user can combine program
writing, compilation, testing, debugging, running in
a single interactive session.

331

Lisp Interaction

The Lisp Interpreter interacts with the user:

1. Read an expression from the terminal.

2. Evaluate the expression to determine its value.

3. Print the value; go to step 1.

This is sometimes called the read-eval-print loop.

The interpreter prints a prompt, which is > in GCL 48.

% gcl

>57

57

>(+ 32 57)

89

>(+ (* 8 4) (- 60 3))

89

>(sqrt 2)

1.4142135623730951

48Gnu Common Lisp. Originally developed at the University of Kyoto as Kyoto Common Lisp or KCL, it
was enhanced by Prof. Bill Schelter at UT to become Austin Kyoto Common Lisp or AKCL, later renamed
GCL. To exit GCL, enter (bye). To get out of an error break, enter :q or :h for help.

332

Function Definition

Functions are defined using defun (define function):

>(defun myabs (x)

(if (>= x 0)

x

(- x)))

>(myabs 3)

3

>(myabs -7)

7

Local variables can be declared using let. Variables can
be assigned values using setq (set-quote):

(defun cylinder-volume (radius height)

(let (area)

(setq area (* pi (expt radius 2)))

(* area height)))

333

List Structure

cons: first rest

Lists are a basic data structure in Lisp; in fact, Lisp code
is made of lists. The external (printed) representation of
lists is a sequence of elements enclosed in parentheses.

(first ’(a b c)) = A

(rest ’(a b c)) = (B C)

(second ’(a b c)) = B

(cons ’new ’(a b c)) = (NEW A B C)

(list ’a ’b ’c) = (A B C)

first is also called car; rest is also called cdr.

The quote symbol ’ is a shorthand for the pseudo-
function quote. (quote x) = x, that is, quote returns
the argument itself rather than evaluating the argument.

334

Abstract Syntax Tree

We consider the fundamental form of a program to be the
abstract syntax tree (AST) – not source code.

Lisp code is already in AST form, and Lisp is ideal for
implementing program generation and transformation.
It is easy to generate code in ordinary programming
languages from Lisp.

335

Binding Lists

A binding is a correspondence of a name and a value.

A set of bindings is represented as a list, called an
association list, or alist for short. A new binding can
be added by:
(push (list name value) binding-list)

A name can be looked up using assoc:
(assoc name binding-list)

(assoc ’?y ’((?x 3) (?y 4) (?z 5)))

= (?Y 4)

The value of the binding can be gotten using second:

(second (assoc ’?y ’((?x 3) (?y 4) (?z 5))))

= 4

336

Substitution

(subst x y z) (“substitute x for y in z”) can be used
to make new code from a pattern.

>(subst pi ’pi ’(* pi (* r r)))

(* 3.14159265 (* R R))

>(subst 1 ’i ’(aref x (+ -8 (* 8 i))))

(AREF X (+ -8 (* 8 1)))

(sublis alist form) makes multiple substitutions:

>(sublis ’((rose . peach) (smell . taste))

’(a rose by any other name

would smell as sweet))

(A PEACH BY ANY OTHER NAME WOULD TASTE AS SWEET)

337

Copying and Substitution Functions 49

(defun copy-tree (z)

(if (consp z)

(cons (copy-tree (first z))

(copy-tree (rest z)))

z))

; substitute x for y in z

(defun subst (x y z)

(if (consp z)

(cons (subst x y (first z))

(subst x y (rest z)))

(if (eql z y) x z)))

; substitute in z with bindings in alist

(defun sublis (alist z)

(let (pair)

(if (consp z)

(cons (sublis alist (first z))

(sublis alist (rest z)))

(if (setq pair (assoc z alist))

(cdr pair)

z))))

49These are system functions in Common Lisp. The system functions subst and sublis copy only as
much structure as necessary.

338

Substitution in C

/* Substitute new for old in tree */

TOKEN subst (TOKEN new, TOKEN old, TOKEN tree)

{ TOKEN tok, last, opnd, ptr;

if (tree == NULL) return (tree);

if (tree->tokentype == OPERATOR)

{ last = NULL;

ptr = tree->operands;

tok = copytok(tree);

while (ptr != NULL)

{ opnd = subst (new, old, ptr);

if (last == NULL)

tok->operands = opnd;

else last->link = opnd;

last = opnd;

ptr = ptr->link;

}

return (tok) ;

}

else if (tree->tokentype == IDENTIFIERTOK

&& strcmp(tree->stringval,

old->stringval) == 0)

return (copytok(new));

else return (copytok(tree));

}

339

Loop Unrolling

Substitution makes it easy to do loop unrolling:

(defun unroll (var n code)

(let (res)

(dotimes (i n)

(push (subst (1+ i) var code) res))

(cons ’progn (reverse res))))

>(unroll ’j 5 ’(|:=| (aref x (+ -8 (* 8 j))) 0))

(PROGN

(|:=| (AREF X (+ -8 (* 8 1))) 0)

(|:=| (AREF X (+ -8 (* 8 2))) 0)

(|:=| (AREF X (+ -8 (* 8 3))) 0)

(|:=| (AREF X (+ -8 (* 8 4))) 0)

(|:=| (AREF X (+ -8 (* 8 5))) 0))

340

Instantiating Design Patterns

sublis can instantiate design patterns. For example, we
can instantiate a tree-recursive accumulator pattern to
make various functions:

(setq pattern

’(defun ?fun (tree)

(if (consp tree)

(?combine (?fun (car tree))

(?fun (cdr tree)))

(if (?test tree) ?trueval ?falseval))))

>(sublis ’((?fun . nnums)

(?combine . +)

(?test . numberp)

(?trueval . 1)

(?falseval . 0)) pattern)

(DEFUN NNUMS (TREE)

(IF (CONSP TREE)

(+ (NNUMS (CAR TREE))

(NNUMS (CDR TREE)))

(IF (NUMBERP TREE) 1 0)))

>(nnums ’(+ 3 (* i 5)))

2

341

Pattern Matching

Pattern matching is the inverse of substitution: it tests
to see whether an input is an instance of a pattern, and
if so, how it matches. 50

(match ’(defun ?fun (tree)

(if (consp tree)

(?combine (?fun (car tree))

(?fun (cdr tree)))

(if (?test tree) ?trueval ?falseval)))

’(DEFUN NNUMS (TREE)

(IF (CONSP TREE)

(+ (NNUMS (CAR TREE))

(NNUMS (CDR TREE)))

(IF (NUMBERP TREE) 1 0))))

((?FALSEVAL . 0) (?TRUEVAL . 1) (?TEST . NUMBERP)

(?COMBINE . +) (?FUN . NNUMS) (T . T))

(match ’(- ?x (- ?y))

’(- z (- (* u v))))

((?Y * U V) (?X . Z) (T . T))

50The pattern matcher code can be loaded using (load "/projects/cs375/patmatch.lsp") .

342

Pattern Matching

(defun equal (pat inp)

(if (consp pat) ; interior node?

(and (consp inp)

(equal (car pat) (car inp))

(equal (cdr pat) (cdr inp)))

(eql pat inp))) ; leaf node

(defun match (pat inp) (matchb pat inp ’((t . t))))

(defun matchb (pat inp bindings)

(and bindings

(if (consp pat) ; interior node?

(and (consp inp)

(matchb (cdr pat)

(cdr inp)

(matchb (car pat)

(car inp) bindings)))

(if (varp pat) ; leaf: variable?

(let ((binding (assoc pat bindings)))

(if binding

(and (equal inp (cdr binding))

bindings)

(cons (cons pat inp) bindings)))

(and (eql pat inp) bindings)))))

343

Transformation by Patterns

Matching and substitution can be combined to transform
an input from a pattern-pair: a list of input pattern
and output pattern.

(defun transform (pattern-pair input)

(let (bindings)

(if (setq bindings

(match (first pattern-pair) input))

(sublis bindings (second pattern-pair)))))

>(transform ’((- ?x (- ?y)) (+ ?x ?y))

’(- z (- (* u v))))

(+ Z (* U V))

>(transform ’((- (+ ?x ?y) (+ ?z ?y))

(- ?x ?z))

’(- (+ (age tom) (age mary))

(+ (age bill) (age mary))))

(- (AGE TOM) (AGE BILL))

344

Transformation Patterns

Optimization:

(defpatterns ’opt

’(((+ ?x 0) ?x)

((* ?x 0) 0)

((* ?x 1) ?x)

((:= ?x (+ ?x 1)) (incf ?x))))

Language translation:

(defpatterns ’lisptoc

’(((aref ?x ?y) ("" ?x "[" ?y "]"))

((incf ?x) ("++" ?x))

((+ ?x ?y) ("(" ?x " + " ?y ")"))

((= ?x ?y) ("(" ?x " == " ?y ")"))

((and ?x ?y) ("(" ?x " && " ?y ")"))

((if ?c ?s1 ?s2) ("if (" ?c ")" #\Tab

#\Return ?s1

#\Return ?s2))

345

Program Transformation using Lisp

>code

(IF (AND (= J 7) (<> K 3))

(PROGN (:= X (+ (AREF A I) 3))

(:= I (+ I 1))))

>(cpr (transform (transform code ’opt)

’lisptoc))

if (((j == 7) && (k != 3)))

{

x = (a[i] + 3);

++i;

}

346

Dot Matching

It is possible to use “dot notation” to match a variable to
the rest of a list:

((progn nil . ?s) (progn . ?s))

The variable ?s will match whatever is at the end of the
list: 0 or more statements.

(transf ’((progn nil . ?s) (progn . ?s))

’(progn nil (setq x 3) (setq y 7)))

(PROGN (SETQ X 3) (SETQ Y 7))

347

Looping Patterns

((for ?i ?start ?end ?s)

(PROGN (\:= ?i ?start)

(LABEL ?j)

(IF (<= ?i ?end)

(PROGN ?s

(\:= ?i (+ 1 ?i))

(GOTO ?j))))

t ((?j (gentemp "LABEL"))))

((while ?c ?s)

(PROGN (LABEL ?j)

(IF ?c (PROGN ?s (GOTO ?j))))

t ((?j (gentemp "LABEL"))))

((repeat-until ?c . ?s)

(PROGN (LABEL ?j)

(progn . ?s)

(IF ?c (PROGN) (GOTO ?j)))

t ((?j (gentemp "LABEL"))))

348

Code Expansion by Looping Patterns

>(trans ’(for i 1 100

(\:= sum (+ sum (aref x (* 8 i)))))

’loops)

(PROGN

(|:=| I 1)

(LABEL LABEL7)

(IF (<= I 100)

(PROGN

(|:=| SUM (+ SUM (AREF X (* 8 I))))

(|:=| I (+ 1 I))

(GOTO LABEL7))))

>(trans ’(repeat-until (> i 100)

(writeln i) (\:= i (+ i 1)))

’loops)

(PROGN

(LABEL LABEL8)

(PROGN (WRITELN I) (|:=| I (+ I 1)))

(IF (> I 100) (PROGN) (GOTO LABEL8)))

349

More Complex Rules

It is desirable to augment rewrite rules in two ways:

1. Add a predicate to perform tests on the input; only
perform the transformation if the test succeeds:
(and (numberp ?n) (> ?n 0))

2. Create new variables by running a program on
existing variables:

(transf ’((intersection

(subset (function (lambda (?x) ?p))

?s)

(subset (function (lambda (?y) ?q))

?s))

(subset (function (lambda (?x)

(and ?p ?qq)))

?s)

t

((?qq (subst ?x ?y ?q))))

’(intersection

(subset #’(lambda (w) (rich w)) people)

(subset #’(lambda (z) (famous z)) people)))

(SUBSET #’(LAMBDA (W) (AND (RICH W) (FAMOUS W)))

PEOPLE))

350

Multi-Level Patterns

(redefpatterns ’loop

((average ?set)

(make-loop ?set ?item (?total ?n)

(progn (setq ?total 0)

(setq ?n 0))

(progn (incf ?total ?item)

(incf ?n))

(/ ?total ?n))

t ((?item (gentemp "ITEM"))

(?total (gentemp "TOTAL"))

(?n (gentemp "N"))))))

(redefpatterns ’list

’(((make-loop ?lst ?item ?vars ?init ?action ?result)

(let (?ptr ?item . ?vars)

?init

(setq ?ptr ?lst)

(while ?ptr

(setq ?item (first ?ptr))

(setq ?ptr (rest ?ptr))

?action)

?result)

t ((?ptr (gentemp "PTR"))))))

351

Use of Multi-Level Patterns

(cpr (trans

(trans

(trans ’(defun zb (x) (average x))

’loop) ’list) ’lisptoc))

zb(x)

{

int ptr30; int item27; int total28; int n29;;

{

total28 = 0;

n29 = 0;

};

ptr30 = x;

while (ptr30)

{

item27 = first(ptr30);

ptr30 = rest(ptr30);

{

total28 += item27;

++n29;

};

};

return ((total28 / n29));

};

352

Function Inlining

Inlining is the expansion of the code of a function at the
point of call. If the code says sqrt(x), sqrt can be
invoked as a closed function in the usual way, or it can
be expanded as an open or inline function by expanding
the definition of sqrt at each point of call.

Inline expansion saves the overhead of subroutine call
and parameter transmission; it may allow additional
optimization because the compiler can now see that
certain things (including types) are constant.

If code is in the form of abstract syntax trees, inlining is
easy:

• Make sure the variables of the function are distinct
from those of the caller.

• Generate assignment statements for the arguments.

• Copy the code of the function.

353

Program Transformation

Many kinds of transformations of a program are possible:

• Optimization of various kinds. Low-level inefficiencies
created by a program generation system can be
removed.

• Specialization. Generic operations or program
patterns can be specialized to the form needed for a
specific implementation of an abstract data structure.
OOP methods can be specialized for subclasses.

• Language translation. Transformations can change
code into the syntax of the target language.

• Code expansion. Small amounts of input code can be
transformed into large amounts of output code. The
expansion can depend on specifications that are much
smaller than the final code.

• Partial evaluation. Things that are constant at
compile time can be evaluated and eliminated from
code.

• Changing recursion to iteration

• Making code more readable

• Making code less readable (code obfuscation)

354

Pattern Optimization Examples

(defun t1 (C D)

(COND ((> (* PI (EXPT (CADDR (PROG1 C)) 2))

(* PI (EXPT (CADDR (PROG1 D)) 2)))

(PRINT ’BIGGER))))

(LAMBDA-BLOCK T1 (C D)

(IF (> (ABS (CADDR C)) (ABS (CADDR D)))

(PRINT ’BIGGER)))

355

Examples ...

(defun t2 (P Q)

(LET ((DX (- (- (+ (CADDR (CURRENTDATE)) 1900)

(+ (CADDR (GET (PROG1 P)

’BIRTHDATE))

1900))

(- (+ (CADDR (CURRENTDATE)) 1900)

(+ (CADDR (GET (PROG1 Q)

’BIRTHDATE))

1900))))

(DY (- (/ (GET (PROG1 P) ’SALARY) 1000.0)

(/ (GET (PROG1 Q) ’SALARY)

1000.0))))

(SQRT (+ (* DX DX) (* DY DY)))))

(LAMBDA-BLOCK T2 (P Q)

(LET ((DX (- (CADDR (GET Q ’BIRTHDATE))

(CADDR (GET P ’BIRTHDATE))))

(DY (/ (- (GET P ’SALARY)

(GET Q ’SALARY))

1000.0)))

(SQRT (+ (* DX DX) (* DY DY)))))

356

Examples ...

(defun t3 (P)

(> (* PI (EXPT (/ (CADDR (PROG1 P)) 2) 2))

(* (- (* PI (EXPT (/ (CADDR (PROG1 P)) 2) 2))

(* PI (EXPT (/ (CADR (PROG1 P)) 2) 2)))

(GET (FIFTH (PROG1 P)) ’DENSITY))))

(LAMBDA-BLOCK T3 (P)

(> (EXPT (CADDR P) 2)

(* (- (EXPT (CADDR P) 2) (EXPT (CADR P) 2))

(GET (FIFTH P) ’DENSITY))))

(defun t4 ()

(cond ((> 1 3) ’amazing)

((< (sqrt 7.2) 2) ’incredible)

((= (+ 2 2) 4) ’okay)

(t ’jeez)))

(LAMBDA-BLOCK T4 () ’OKAY)

357

Examples ...

(defun t5 (C)

(DOLIST

(S (INTERSECTION

(SUBSET #’(LAMBDA (GLVAR7289)

(EQ (GET (PROG1 GLVAR7289)

’SEX)

’FEMALE))

(GET (PROG1 C) ’STUDENTS))

(SUBSET #’(LAMBDA (GLVAR7290)

(>= (STUDENT-AVERAGE

(PROG1 GLVAR7290))

95))

(GET (PROG1 C) ’STUDENTS))))

(FORMAT T "~A ~A~%" (GET S ’NAME)

(STUDENT-AVERAGE S))))

(LAMBDA-BLOCK T5 (C)

(DOLIST (S (GET C ’STUDENTS))

(IF (AND (EQ (GET S ’SEX) ’FEMALE)

(>= (STUDENT-AVERAGE S) 95))

(FORMAT T "~A ~A~%" (GET S ’NAME)

(STUDENT-AVERAGE S)))))

358

Paul Graham:

“If you ever do find yourself working for a startup, here’s
a handy tip for evaluating competitors. Read their job
listings...

After a couple years of this I could tell which companies
to worry about and which not to. The more of an IT
flavor the job descriptions had, the less dangerous the
company was. The safest kind were the ones that wanted
Oracle experience. You never had to worry about those.
You were also safe if they said they wanted C++ or Java
developers. If they wanted Perl or Python programmers,
that would be a bit frightening – that’s starting to sound
like a company where the technical side, at least, is run
by real hackers. If I had ever seen a job posting looking
for Lisp hackers, I would have been really worried.”

359

English

English is a context-free language (more or less).

English has a great deal of ambiguity, compared to
programming languages. By restricting the language to
an English subset for a particular application domain,
English I/O can be made quite tractable.

Some users may prefer an English-like interface to a more
formal language.

Of course, the best way to process English is in Lisp.

360

Expression Trees to English 51

(defun op (x) (first x))

(defun lhs (x) (second x))

(defun rhs (x) (third x))

(defun op->english (op)

(list ’the

(second (assoc op ’((+ sum)

(- difference)

(* product)

(/ quotient)

(sin sine)

(cos cosine)))) ’of))

(defun exp->english (x)

(if (consp x) ; operator?

(append

(op->english (op x))

(exp->english (lhs x))

(if (null (cddr x)) ; unary?

’()

(cons ’and

(exp->english (rhs x)))))

(list x))) ; leaf: operand

51file expenglish.lsp

361

Generating English

%lisp

>(load "/projects/cs375/expenglish.lsp")

>(exp->english ’x)

(X)

>(exp->english ’(+ x y))

(THE SUM OF X AND Y)

>(exp->english ’(/ (cos z) (+ x (sin y))))

(THE QUOTIENT OF THE COSINE OF Z AND

THE SUM OF X AND THE SINE OF Y)

362

Parsing English

In most cases, a parser for a programming language never
has to back up: if it sees if, the input must be an if

statement or an error.

Parsing English requires that the parser be able to fail,
back up, and try something else: if it sees in, the
input might be in Austin or in April, which may be
handled by different kinds of grammar rules.

Backup means that parsing is a search process, i.e. likely
to be NP-complete. However, since English sentences are
usually short, this is not a problem in practice.

An Augmented Transition Network (ATN) framework
facilitates parsing of English.

363

ATN in Lisp 52

• A global variable *sent* points to a list of words that
is the remaining input sentence:
(GOOD CHINESE RESTAURANT IN LOS ALTOS)

• A global variable *word* points to the current word:
GOOD

• (cat category) tests whether a word is in the
specified category. It can also translate the word, e.g.
(cat ’month) might return 3 if *word* is MARCH.

• (next) moves to the next word in the input

• (saveptr) saves the current sentence position on a
stack.

• (success) pops a saved position off the stack and
returns T.

• (fail) restores a saved position from the stack
(restoring *sent* and *word*) and returns NIL.

52file atn.lsp

364

Parsing Functions

The parser works by recursive descent, but with the
ability to fail and back up and try another path.

(defun loc ()

(let (locname)

(saveptr)

(if (and (eq *word* ’in) (next)

(setq locname (cat ’city))

(next))

(progn

(addrestrict

(list ’equal

(dbaccess ’customer-city)

(kwote locname)))

(success))

(fail))))

365

Grammar Compiler 53

It is easy to write a grammar compiler that converts
a Yacc-like grammar into the equivalent ATN parsing
functions. This is especially easy in Lisp since Lisp code
and Lisp data are the same thing.

(rulecom ’(LOC -> (in (city))

(restrict ’customer-city $2)))

(DEFUN LOC62 ()

(LET ($1 $2)

(SAVEPTR)

(IF (AND (AND (EQL (SETQ $1 *WORD*) ’IN)

(NEXT))

(SETQ $2 (CITY)))

(PROGN (SUCCESS)

(RESTRICT ’CUSTOMER-CITY $2))

(FAIL))))

53file gramcom.lsp

366

Access to Database54

English can be a good language to use query a database.

(deflexicon

’((a/an (a an some))

(i/you (i you one))

(get (get find obtain))

(quality ((good 2.5)))

(restword (restaurant

(restaurants restaurant)))

))

54file restgram.lsp

367

Restaurant Database Grammar

(defgrammar

(s -> ((command) (a/an)? (qual)? (resttype)?

(restword) (qualb)? (loc)?)

(makequery (combine (retrieve ’restaurant)

(retrieve ’streetno)

(retrieve ’street)

(retrieve ’rating)

$3 $4 $6 $7)))

(s -> (where can (i/you) (get) (qual)?

(resttype)? food ? (loc)?)

(makequery (combine (retrieve ’restaurant)

(retrieve ’streetno)

(retrieve ’street)

(retrieve ’rating)

$5 $6 $8)))

(command -> (what is) t)

(qual -> ((quality))

(restrictb ’>= ’rating $1))

(qualb -> (rated above (number))

(restrictb ’>= ’rating $3))

(resttype -> ((kindfood))

(restrict ’foodtype $1))

(loc -> (in (city)) (restrict ’city $2)))

368

Restaurant Queries

%lisp

>(load "/projects/cs375/restaurant.lsp")

>(askr ’(where can i get ice cream in berkeley))

((2001-FLAVORS-ICE-CREAM-&-YOGUR 2485 TELEGRAPH-AVE)

(BASKIN-ROBBINS 1471 SHATTUCK-AVE)

(DOUBLE-RAINBOW 2236 SHATTUCK-AVE)

(FOSTERS-FREEZE 1199 UNIVERSITY-AVE)

(MARBLE-TWENTY-ONE-ICE-CREAM 2270 SHATTUCK-AVE)

(SACRAMENTO-ICE-CREAM-SHOP 2448 SACRAMENTO-ST)

(THE-LATEST-SCOOP 1017 ASHBY-AVE))

>(askr ’(show me chinese restaurants

rated above 2.5 in los altos))

((CHINA-VALLEY 355 STATE-ST)

(GRAND-CHINA-RESTAURANT 5100 EL-CAMINO-REAL)

(HUNAN-HOMES-RESTAURANT 4880 EL-CAMINO-REAL)

(LUCKY-CHINESE-RESTAURANT 140 STATE-ST)

(MANDARIN-CLASSIC 397 MAIN-ST)

(ROYAL-PALACE 4320 EL-CAMINO-REAL))

369

Physics Problems55

(deflexicon

’((propname (radius diameter circumference

area volume height velocity time

weight power height work speed mass))

(a/an (a an))

(the/its (the its))

(objname (circle sphere fall lift))

)) ; deflexicon

(defgrammar

(s -> (what is (property) of (object))

(list ’calculate $3 $5))

(property -> ((the/its)? (propname)) $2)

(quantity -> ((number)) $1)

(object -> ((a/an)? (objname) with (objprops))

(cons ’object (cons $2 $4)))

(objprops -> ((objprop) and (objprops))

(cons $1 $3))

(objprops -> ((objprop)) (list $1))

(objprop -> ((a/an)? (propname) of ? (quantity))

(cons $2 $4))

(objprop -> ((propname) = (quantity))

(cons $1 $3)))
55file physgram.lsp

370

Physics Queries

%lisp

>(load "/projects/cs375/physics.lsp")

>(phys ’(what is the area of a circle

with diameter = 10))

78.539816339744831

>(phys ’(what is the circumference of a circle

with an area of 100))

35.449077018110316

>(phys ’(what is the power of a lift with

mass = 100 and height = 6

and time = 10))

588.399

371

