
CS 378, Symbolic Programming

Gordon S. Novak Jr.

Department of Computer Sciences
University of Texas at Austin
novak@cs.utexas.edu

http://www.cs.utexas.edu/users/novak

Copyright c© Gordon S. Novak Jr.

1

Course Topics

• Introduction

• Clojure

• List and tree representation

• Tree recursion and tree search

• Evaluation and interpretation

• Pattern matching, substitution, rewrite rules

• Symbolic mathematics: algebra, calculus, unit
conversion

• Program generation from trees

• Predicate calculus, rule representation

• Backchaining and Prolog; program composition

• Rule-based expert systems

• Semantic grammar and Natural language interfaces

• Functional programs, MapReduce

• Symbolic programming in ordinary languages

2

Symbolic Programming

Symbols are words that refer to, or denote, other things:
their referents:

• Variable names in programming languages

• Variables in equations

• English words

Symbolic Programming manipulates stuctures of
symbols, typically represented as trees:

• solve equations

• translate a program to another language

• specialize a generic program

• convert units of measurement

• translate English into a database query

• compose program components

3

Functional Programming

A functional program is one with no side effects:

• changing a global variable

• updating a database

• printing

If we call sin(x), it will just return a value, but will have
no side effects.

Functional programming does everything by composition
of functions:

guacamole:

season(mash(slice(peel(wash(avocado)))))

Functions are composed so that the output of one function
is the input of the next function.

Functional programming works well with distributed
cloud computing: the function can be replicated on many
servers and executed in parallel on massive amounts of
data.

4

Clojure

Clojure (clojure.org) is a Lisp dialect that is compiled
into Java Virtual Machine (JVM) code.1 Since it runs on
the JVM, Clojure connects to the Java ecosystem and has
been used for serious web applications by large companies.

There is also a ClojureScript that rests on JavaScript.

Our Clojure system just handled its first
Walmart black Friday and came out without a
scratch.
- Anthony Marcar, Senior Architect, WalmartLabs

1The name Clojure is a pun on closure, a runtime object that combines a function and its environment
(variable values), with a j for Java.

5

Why Symbolic and Functional Programming?

Symbolic and functional programming provide a great
deal of power to do interesting and large applications
easily.

Problem: Given known variable values, find appropriate
physics equations and solve them to find a desired variable
value.

• Ordinary programming: 5 person-years by two PhD
students; 25,000 lines of C++.

• Symbolic Programming: 200 lines, a few days.

Not only does Walmart run its huge e-commerce
operation using Clojure, they built it with only 8
developers.

blog.cognitect.com/blog/2015/6/30/

walmart-runs-clojure-at-scale

6

Class Projects

This course will involve interesting projects that will give
students a taste of what can be done with symbolic
programming:

• Introduction to Clojure, Tree Recursion

• Symbolic Math: Evaluation, Algebra, Calculus, Unit
Conversion

• Pattern Matching, Substitution, Rewrite Rules

• Program Generation from Trees

• Backchaining and Prolog: finding a composition of
functions that achieves a desired program

• Rule-based Expert Systems

• Semantic Grammar and Natural Language Interfaces

• Functional Programs over massive data: MapReduce
and Clojure

• Symbolic programming in ordinary languages

7

Clojure

We will learn only a fraction of Clojure, mainly the small
amount we will need to handle lists and trees (composed
of nested lists).

We will use the List/Tree as our primary data structure
and as a notation that allows trees to be printed and to
be input as data.

Like Lisp, Clojure is homoiconic, which means that
Clojure code and Clojure data are the same thing. This
means that a program can write (and then execute) code
at runtime.

A list is written inside parentheses (the external
notation). A function call is written with the function
name as the first thing in the list, followed by arguments:

(+ i 2) ; i + 2

8

Quotation

Since we will be working with symbols, we must be
able to distinguish between use of a symbol as a name
that denotes a value (its binding) and a reference to the
symbol itself.

A single-quote symbol ’ is used to denote the symbol
itself; this is a read macro that expands to a pseudo-
function quote.

>(def car ’ford) ; > denotes input to Clojure

>car

ford

>’car

car

>(quote car)

car

>(eval (quote car))

ford

9

List

A list is made of two-element data structures, called
conses after the function cons that makes them.

• a link , called rest, that points to the next element;
or () or nil, an empty list, if there is no next element.

• some contents, called first, as needed for the
application. The contents could be a number, a
symbol, or a pointer to another linked list.

A list is written inside parentheses:

(list ’a ’b ’c) -> (a b c)

(list (+ 2 3) (* 2 3)) -> (5 6)

We will use the parentheses notation for lists, and nested
lists for trees.

10

Constructing a List

A list can be built up by linking new elements onto the
front. The function (cons item list) makes a new list
element or cons cell pointing to item and adds it to the
front of list:

(cons ’a nil) -> (a)

(cons ’a ’()) -> (a)

(cons ’a (list)) -> (a)

(cons ’a ’(b c)) -> (a b c)

An easy way to think of (cons x y) is that it makes a
new cons box whose first is x and whose rest is y, or
that cons adds a new item to the front of an existing list.

Note that there is structure sharing between the result
of cons and the list that is the second argument of cons.

(def x ’(a b c))

(def y (cons ’d x))

>x

(a b c)

>y

(d a b c) ; x and y share (a b c)

11

Access to Parts of a List

The two fields of a cons cell are called first, the first
item in the list, and rest, the rest of the list after the
first element.2

(first ’(a b c)) -> a

(rest ’(a b c)) -> (b c)

(first (rest ’(a b c))) -> b

(second ’(a b c)) -> b

(first (rest (rest ’(a b c)))) -> c

(defn third [x] (first (rest (rest x))))

(third ’(a b c)) -> c

(rest (rest (rest ’(a b c)))) -> ()

2In the original Lisp, first was called car, and rest was called cdr.

12

List Access Functions

There are easy rules for the access functions using the
parenthesized representation of lists:

first returns the first thing in a list. A thing is:

• a basic item such as a number or symbol

• a balanced pair of parentheses and everything inside
the parens, no matter how large.

(first ’(a b c)) -> a

(first ’((a b) c)) -> (a b)

rest returns the rest of a list after the first thing. Simply
move the left parenthesis to the right past the first thing.

(rest ’(a b c)) -> (b c)

(rest ’((a b) c)) -> (c)

(rest (rest ’((a b) c))) -> ()

13

IF statement

The if statement in Clojure has the forms:

(if test thencode)

(if test thencode elsecode)

The test is interpreted as follows:

• false or nil are considered to be false.

• anything else is considered to be true, including ().

The if statement returns the value of either the thencode
or elsecode; cf. the C form test ? thenval : elseval

(if true 2 3) -> 2

(if false 2 3) -> 3

(if ’() 2 3) -> 2

(if (+ 2 3) 2 3) -> 2

14

Tests on cons

(cons? item) tests whether item is a cons, i.e. non-
empty part of a list or tree structure. cons? is not a built-
in Clojure function; do (load-file "cs378.clj")

(empty? item) tests whether item is empty, i.e.
either nil or ’() .

These special tests are needed because Clojure is
inconsistent in the ways it represents list structure: nil

and ’() are different.

Clojure error messages can be confusing since they come
from the Java Virtual Machine rather than Clojure.

user=> (first 3.14)

Execution error ...

Don’t know how to create ISeq from:

java.lang.Double

Translated into English, this means: you tried to do
first or rest on something that is not a cons; it was
(in this case) a Double. So, test cons? before doing
first or rest.

15

Recursion

A recursive program calls itself as a subroutine.
Recursion allows one to write programs that are powerful,
yet simple and elegant. Often, a large problem can be
handled by a small program which:

1. Tests for a base case and computes the value for this
case directly.

2. Otherwise,

(a) calls itself recursively to do smaller parts of the
job,

(b) computes the answer in terms of the answers to
the smaller parts.

(defn factorial [n]

(if (<= n 0)

1

(* n (factorial (- n 1)))))

Rule: Make sure that each recursive call involves an
argument that is strictly smaller than the original;
otherwise, the program can get into an infinite loop.

A good method is to use a counter or data whose size
decreases with each call, and to stop at 0; this is an
example of a well-founded ordering.

16

Tracing Function Calls

There is a trace package that allows tracing function calls:

(load-file "cs378/trace.clj")

user=> (trace (* 2 3))

TRACE: 6

6

(deftrace factorial [n]

(if (= n 0) 1 (* n (factorial (- n 1)))))

user=> (factorial 4)

TRACE t256: (factorial 4)

TRACE t257: | (factorial 3)

TRACE t258: | | (factorial 2)

TRACE t259: | | | (factorial 1)

TRACE t260: | | | | (factorial 0)

TRACE t260: | | | | => 1

TRACE t259: | | | => 1

TRACE t258: | | => 2

TRACE t257: | => 6

TRACE t256: => 24

24

17

Designing Recursive Functions

Some guidelines for designing recursive functions:

1. Write a clear definition of what your function should
do, including inputs, outputs, assumptions. Write this
definition as a comment above the function code.

2. Identify one or more base cases: simple inputs for
which the answer is obvious and can be determined
immediately.

3. Identify the recursive case: an input other than the
base case. How can the answer be expressed in terms
of the present input and the answer provided by this
function (assuming that it works as desired) for a
smaller input?

There are two common ways of making the input
smaller:

• Remove a piece of the input, e.g. remove the first
element from a linked list.

• Cut the input in half, e.g. follow a branch of a tree.

18

Design Pattern for Recursive Functions

A design pattern is an abstracted way of writing
programs of a certain kind. By learning design patterns,
you can write programs faster and with fewer errors.

A design pattern for recursive functions is:

(defn myfun [arg]
(if (basecase? arg)

(baseanswer arg)
(combine arg (myfun (smaller arg)))))

In this pattern,

• (basecase? arg) is a test to determine whether arg
is a base case for which the answer is known at once.

• (baseanswer arg) is the known answer for the base
case.

• (combine arg (myfun (smaller arg)))
computes the answer in terms of the current
argument arg and the result of calling the function
recursively on (smaller arg), a reduced version of
the argument.

Exercise: Show how the factorial function
corresponds to this design pattern.

19

Recursive Processing of List

Recursive processing of a list is based on a base case
(often an empty list), which usually has a simple answer,
and a recursive case, whose answer is based on a
recursive call to the same function on the rest of the list.

As an example, we can recursively find the number of
elements in a list. (The Clojure function that does this is
called count.)

(defn length [lst]

(if (empty? lst) ; test for base case

0 ; answer for base case

(+ 1

(length (rest lst))))) ; recursive call

Note that we are using empty? to test for an empty list;
this is because Clojure could represent the end of a list in
different ways.

20

Recursive List Design Pattern

(defn fn [lst]

(if (empty? lst) ; test for base case

baseanswer ; answer for base case

(some-combination-of

(something-about (first lst))

(fn (rest lst))))) ; recursive call

The recursive version is often short and elegant, but it
has a potential pitfall: it requires O(n) stack space on
the function call stack. Many languages do not provide
enough stack space for 1000 calls, but a linked list with
1000 elements is not unusual.

21

Filter a List

A filter keeps items in a list that pass some test, while
removing other items.

(defn myfilter [fn lst]

(if (empty? lst) ; base case

’()

(if (fn (first lst)) ; does it pass?

(cons (first lst) ; yes: keep it

(myfilter fn (rest lst)))

; else: ignore it but keep going

(myfilter fn (rest lst)))))

user=> (myfilter number? ’(2 a d 4 3 d e 8))

(2 4 3 8)

filter is a built-in function of Clojure.

22

Tail Recursive Processing of List

A function is tail recursive if it either

• returns an answer directly, e.g return 0;

• the answer is exactly the result of a recursive call,
return myself(something);

Tail recursion often involves the use of an extra function
with extra variables as parameters: think of picking
apples and putting them into a bucket as you go; the
bucket is an extra variable. The main function just
initializes the extra variables, while the helper function
does the work.3

(defn lengthb [lst answer]

(if (empty? lst) ; test for base case

answer ; answer for base case

(lengthb (rest lst) ; recursive call

(+ answer 1)))) ; update answer

(defn length [lst]

(lengthb lst 0)) ; init answer variable

3Note that we define the helper function first: otherwise, the Clojure compiler will generate an error when
the main function calls it before it is defined.

23

Tail Recursive List Design Pattern

(defn fnb [lst answer]

(if (empty? lst) ; test for base case

answer ; answer for base case

(fnb (rest lst)

(some-combination-of

answer

(something-about (first lst))))))

(defn fn [lst] (fnb lst answerinit))

A smart compiler can detect a tail-recursive function and
compile it so that it is iterative and uses O(1) stack space;
this is called tail-call optimization. Unfortunately, Java
and thus Clojure are not this smart.

24

Constructive Tail Recursive Reverse

reverse makes a new linked list whose elements are
in the reverse order of the original list; the original is
unchanged.

(reverse ’(a b c)) -> (c b a)

This function takes advantage of the fact that cons

creates a list in the reverse order of the conses that are
done, i.e. cons is like a push onto a stack.

(defn trrevb [lst answer]

(if (empty? lst)

answer

(trrevb (rest lst)

(cons (first lst) answer))))

(defn trrev [lst] (trrevb lst ’()))

25

Tail Recursive Reverse Execution

>(trrev ’(a b c d))

1> (TRREVB (A B C D) NIL)

2> (TRREVB (B C D) (A))

3> (TRREVB (C D) (B A))

4> (TRREVB (D) (C B A))

5> (TRREVB NIL (D C B A))

<5 (TRREVB (D C B A))

<4 (TRREVB (D C B A))

<3 (TRREVB (D C B A))

<2 (TRREVB (D C B A))

<1 (TRREVB (D C B A))

(D C B A)

26

Append

append concatenates two lists to form a single list. The
first argument is copied; the second argument is reused
(shared).

(append ’(a b c) ’(d e)) -> (a b c d e)

(defn append [x y]

(if (empty? x)

y

(cons (first x)

(append (rest x) y))))

This version of append append is simple and elegant;
it takes O(nx) time and O(nx) stack space. Time and
stack space are independent of y, since y is reused but
not processed.

27

Append: Big O Hazard

Suppose we want to make a list (0 1 ... n-1).

user=> (listofn 5)

(0 1 2 3 4)

(defn listofnb [n i answer] ; version 1

(if (< i n)

(listofnb n

(+ i 1)

(append answer (list i)))

answer))

(defn listofnb [n i answer] ; version 2

(if (< i n)

(listofnb n

(+ i 1)

(cons i answer)) ; backwards

(reverse answer))) ; fix backwards

(defn listofn [n] (listofnb n 0 ’()))

What is the Big O of each version?

28

Beware the Bermuda Triangle

Some gym teachers punish misbehaving students by
making them run 50 meters. However, the way in which
they must do it is to run 1 meter, then come back, then
run 2 meters, then come back, ...

How many total meters does a student run?

n∑
i=1
i = n ∗ (n + 1)/2 = O(n2)

for (i = 0; i < n; i++) ; i up to n times

for (j = 0; j <= i; j++) ; O(i)

sum += a[i][j];

Rule: If a computation of O(i) is inside a loop where i
is growing up to n, the total computation is O(n2).

29

Set as Linked List

A linked list can be used as a representation of a set.4

member (written ∈) tests whether a given item is an
element of the list. member returns the remainder of the
list beginning with the desired element, although usually
member is used as a predicate to test whether the element
is present or not.

(member ’b ’(a b c)) -> (b c)

(member ’f ’(a b c)) -> nil

(defn member [item lst]

(if (empty? lst)

nil

(if (= item (first lst))

lst

(member item (rest lst)))))

4Clojure has sets as a built-in type, which is more efficient for large sets than what is shown here.

30

Intersection

The intersection (written ∩) of two sets is the set of
elements that are members of both sets.

(intersection ’(a b c) ’(a c e)) -> (c a)

(defn intersection [x y]

(if (empty? x)

’()

(if (member (first x) y)

(cons (first x)

(intersection (rest x) y))

(intersection (rest x) y))))

If the sizes of the input lists are m and n, the time
required is O(m · n). That is not very good; this version
of intersection will only be acceptable for small lists.

31

Tail-Recursive Intersection

(defn intersecttrb [x y answer]

(if (empty? x)

answer

(intersecttrb (rest x) y

(if (member (first x) y)

(cons (first x) answer)

answer))))

(defn intersecttr [x y] (intersecttrb x y ’()))

>(intersecttr ’(a b c) ’(a c e))

1> (INTERSECTTR (A B C) (A C E))

2> (INTERSECTTRB (A B C) (A C E) NIL)

3> (INTERSECTTRB (B C) (A C E) (A))

4> (INTERSECTTRB (C) (A C E) (A))

5> (INTERSECTTRB NIL (A C E) (C A))

<5 (INTERSECTTRB (C A))

<4 (INTERSECTTRB (C A))

<3 (INTERSECTTRB (C A))

<2 (INTERSECTTRB (C A))

<1 (INTERSECTTR (C A))

(C A)

32

Union and Set Difference

The union (written ∪) of two sets is the set of elements
that are members of either set.

(union ’(a b c) ’(a c e)) -> (b a c e)

The set difference (written −) of two sets is the set of
elements that are members of the first set but not the
second set.

(set-difference ’(a b c) ’(a c e)) -> (b)

Note that set difference is asymmetric: unique members
of the second set, such as e above, do not appear in the
output.

33

Association List

An association list or alist is a simple lookup table
or map: a linked list containing a key value and some
information associated with the key.5

(assocl ’two ’((one 1) (two 2) (three 3)))

-> (two 2)

(defn assocl [key lst]

(if (empty? lst)

nil

(if (= (first (first lst)) key)

(first lst)

(assocl key (rest lst)))))

5The function assoc, traditionally the name of this function in Lisp, is used for a Clojure lookup on the
built-in map datatype. The Clojure version would be much more efficient for a large map.

34

Let

The let construct in Clojure allows local variables to be
defined and initialized.

(let [var1 init1 ...] code)

(let [d (* 2.0 r)

c (* Math/PI d)] ...)

Each variable is initialized with the value of the
corresponding initialization code; these initialization
steps are executed in order, so the result of one can be
used in later init code.6

let is useful to save the result of a (possibly expensive)
function call so that it can be used multiple times without
having to be recomputed.

There can be multiple forms inside the let; the value of
the let is the value of the last form.

(defn lookupstudent [eid]

(let [idname (assocl eid alist)]

(if idname

(second idname)

"John Doe")))

6This is called let* is some Lisp dialects.

35

Map

The map function applies a given function to each element
of a list, producing a new list of the results:

(map function list)

(map symbol? ’(2 medium 7 large))

-> (false true false true)

(map (fn [x] (* 2 x)) ’(2 3 7))

-> (4 6 14)

Note that this example used an anonymous function:

(fn [args] code)

This is useful when the function is small and not worth
giving it a name as a separate function.

We could define length (not very efficiently) by mapping
a list to a list of 1’s, which we add using reduce and +:

(defn length [x]

(reduce + (map (fn [z] 1) x)))

(length ’(2 medium 3 large))

-> (1 1 1 1) -> 4

36

Some and Every

The some function (∃ or there exists in math notation)
applies a given function to each element of a list, returning
the first result that is not nil or false:

(some function list)

(some (fn [x] (and (> x 3) x))

’(1 2 17 4 0))

-> 17

Note that in this case we both tested for the desired item
(> x 3) and then returned the item itself, since we want
that answer rather than true as returned by the test.

The every? function (∀ or for all in math notation)
applies a given function to each element of a list, returning
true if the function is not nil or false for every list
element.

(every? function list)

(every? (fn [x] (> x 3)) ’(17 4 5))

-> true

37

println, do, when, str

The println function prints its arguments:

(let [n 3] (println "n = " n))

-> n = 3

The do form wraps multiple forms and executes them in
order, similar to { ... } in C-like languages. Use do
when printing, since printing is a side-effecting operation.
The value of do is the value of the last form.

when is like a combination of if and a do in the true
branch (with no false branch):

(when (> 5 3)

(println "Whew!")

(println "I’d be worried otherwise."))

str makes a string from the values of its arguments.

user=>(str 3 " and " ’(a b))

"3 and (a b)"

38

doseq and sort

doseq is a convenient looping function to do the same
thing for every element of a list:

user=> (doseq [item ’(a b c)]

(println "item = " item))

item = a

item = b

item = c

nil ; value of doseq

There is a convenient sort function that makes a sorted
version of a list (nondestructive):

user=> (let [lst ’(z a p)

sorted (sort lst)]

(list lst sorted))

((z a p) (a p z))

39

Trees

A tree is a kind of graph, composed of nodes and links,
such that:

• A link is a directed pointer from one node to another.

• There is one node, called the root, that has no
incoming links.

• Each node, other than the root, has exactly one
incoming link from its parent.

• Every node is reachable from the root.

A node can have any number of children. A node with
no children is called a leaf ; a node with children is an
interior node.

Trees occur in many places in computer systems and in
nature.

40

Arithmetic Expressions as Trees

Arithmetic expressions can be represented as trees, with
operands as leaf nodes and operators as interior nodes.

y = m * x + b (= y (+ (* m x) b))

41

Computer Programs as Trees

When a compiler parses a program, it often creates a tree.
When we indent the source code, we are emphasizing the
tree structure.

if (x > y)

j = 3;

else

j = 1;

This is called an abstract syntax tree or AST.

42

English Sentences as Trees

Parsing is the assignment of structure to a linear string
of words according to a grammar; this is much like the
diagramming of a sentence taught in grammar school.

The speaker wants to communicate a structure, but must
make it linear in order to say it. The listener needs to
re-create the structure intended by the speaker. Parts of
the parse tree can then be related to object symbols in
memory.

43

Representations of Trees

Many different representations of trees are possible:

• Binary tree: contents and left and right links.

– arithmetic expressions

– cons as a binary tree node, with first and rest

treated equally as binary links

• First-child/next-sibling: contents, first child, next
sibling.

• Linked list: the first element contains the contents,
the rest are a linked list of children.

• Implicit: a node may contain only the contents; the
children can be generated from the contents or from
the location of the parent.

44

First-Child / Next-Sibling Tree

A node may have a variable number of children.
Dedicating many links would be wasteful if the average
number of children is much smaller than the maximum,
and it would still limit the possible number of children.

Luckily, we can use the same structure as the binary tree,
with just two links, and have unlimited children with no
wasted space.

y = m * x + b

Tree: Representation:

The layout of nodes in this kind of tree is the same as for
a traditional tree; the right-hand links “fall down” and
become horizontal.

Down arrows represent the first child, while side arrows
represent the next sibling.

45

Linked List Tree

We can think of a linked list as a tree. The first node of
the list contains the contents of the node, and the rest
of the list is a list of the children. The children, in turn,
can be lists; a non-list is a leaf node. This is similar to
first-child / next-sibling.

(= Y (+ (* M X) B)) (op lhs rhs)

(defn op [e] (first e)) ; operator

(defn lhs [e] (second e)) ; left-hand side

(defn rhs [e] (first (rest (rest e)))) ; right

46

Binary Tree Recursion

While recursion is not always the best method for linked
lists, it usually is the best method for trees. We don’t
have a problem with stack depth because depth is only
O(log(n)) if the tree is balanced.

Suppose that we want to add up all the numbers, or
collect a set of symbols, in a Lisp tree.

(defn addnums [tree]

(if (cons? tree) ; interior node

(+ (addnums (first tree))

(addnums (rest tree)))

(if (number? tree) ; leaf node

tree

0))) ; safe: identity value

(defn symbolset [tree]

(if (cons? tree) ; interior node

(union (symbolset (first tree))

(symbolset (rest tree)))

(if (symbol? tree)

(list tree)

’())))

47

Design Pattern: Binary Tree Recursion

This pattern is like the one for lists, except that it calls
itsefl twice for interior nodes. This is essentially the same
as the divide-and-conquer design pattern.

(defn myfun [tree]
(if (cons? tree)

(combine (myfun (first tree)) ; left
(myfun (rest tree))) ; right

(baseanswer tree))) ; leaf node

(defn addnums [tree]

(if (cons? tree) ; interior node

(+ (addnums (first tree))

(addnums (rest tree)))

(if (number? tree) ; leaf node

tree

0)))

48

Flattening Binary Tree

An ordered binary tree can be flattened into an ordered
list by a backwards inorder traversal. We do the inorder
backwards so that pushing onto a stack (using cons) can
be used to accumulate the result. This accumulation of a
result in an extra variable is similar to tail recursion.

(defn flattenbtb [tree result]

(if (cons? tree) ; interior node

(flattenbtb (lhs tree) ; 3. L child

(cons (op tree) ; 2. parent

(flattenbtb

(rhs tree) ; 1. R child

result)))

(if (not (null? tree))

(cons tree result)

result)))

(defn flattenbt [tree] (flattenbtb tree ’()))

49

Examples: Flattening Tree

>(flattenbt ’(cat (bat ape

bee)

(eel dog

fox)))

(ape bat bee cat dog eel fox)

>(flattenbt ’(= y (+ (* m x) b)))

(y = m * x + b)

50

Tracing Flattening Binary Tree

>(flattenbt ’(cat (bat ape

bee)

(eel dog

fox)))

1> (FLATTENBT (CAT (BAT APE BEE) (EEL DOG FOX)))

2> (FLATTENBTB (CAT (BAT APE BEE) (EEL DOG FOX)) NIL)

3> (FLATTENBTB (EEL DOG FOX) NIL)

4> (FLATTENBTB FOX NIL)

<4 (FLATTENBTB (FOX))

4> (FLATTENBTB DOG (EEL FOX))

<4 (FLATTENBTB (DOG EEL FOX))

<3 (FLATTENBTB (DOG EEL FOX))

3> (FLATTENBTB (BAT APE BEE) (CAT DOG EEL FOX))

4> (FLATTENBTB BEE (CAT DOG EEL FOX))

<4 (FLATTENBTB (BEE CAT DOG EEL FOX))

4> (FLATTENBTB APE (BAT BEE CAT DOG EEL FOX))

<4 (FLATTENBTB (APE BAT BEE CAT DOG EEL FOX))

<3 (FLATTENBTB (APE BAT BEE CAT DOG EEL FOX))

<2 (FLATTENBTB (APE BAT BEE CAT DOG EEL FOX))

<1 (FLATTENBT (APE BAT BEE CAT DOG EEL FOX))

(APE BAT BEE CAT DOG EEL FOX)

51

Postorder

The Lisp function eval evaluates a symbolic expression.
We can write a version of eval using postorder traversal
of an expression tree with numeric leaf values. Postorder
follows the usual rule for evaluating function calls, i.e.,
arguments are evaluated before the function is called.

(defn myeval [x]

(if (number? x)

x

(apply (eval (op x)) ; execute the op

(list (myeval (lhs x))

(myeval (rhs x))))))

>(myeval ’(* (+ 3 4) 5))

1> (MYEVAL (* (+ 3 4) 5))

2> (MYEVAL (+ 3 4))

3> (MYEVAL 3)

<3 (MYEVAL 3)

3> (MYEVAL 4)

<3 (MYEVAL 4)

<2 (MYEVAL 7)

2> (MYEVAL 5)

<2 (MYEVAL 5)

<1 (MYEVAL 35)

35

52

Search

Search programs find a solution for a problem by trying
different sequences of actions (operators) until a solution
is found.

Advantage:
Many kinds of problems can be viewed as search
problems. To solve a problem using search, it is only
necessary to code the operators that can be used; search
will find the sequence of actions that will provide the
desired result. For example, a program can be written to
play chess using search if one knows the rules of chess; it
isn’t necessary to know how to play good chess.

Disadvantage:
Many problems have search spaces so large that it is
impossible to search the whole space. Chess has been
estimated to have 10120 possible games. The rapid
growth of combinations of possible moves is called the
combinatoric explosion problem.

53

State Space Search

A state space represents a problem in terms of states and
operators that change states.

operator

State --------------> New State

A state space consists of:

• A representation of the states the system can be in.
In a board game, for example, the board represents
the current state of the game.

• A set of operators that can change one state into
another state. In a board game, the operators are
the legal moves from any given state. Often the
operators are represented as programs that change a
state representation to represent the new state.

• An initial state.

• A set of final states; some of these may be desirable,
others undesirable. This set is often represented
implicitly by a program that detects terminal states.

54

Depth-First Order: Recursive Default

Depth-first search (DFS) is so named because the
recursion goes deep in the tree before it goes across. The
diagram shows the order in which nodes are examined.

Sometimes, the search will quit and return an answer
when a node is either a terminal failure node or a goal
node. In other cases, the entire tree will be traversed.

A stack composed of stack frames is used to contain
variables of the current node and all of its ancestors, back
to the top of the tree. This stack will grow and contract
as the tree is traversed, with a maximum stack size equal
to tree depth.

Depth-first search is often preferred because of its low
O(log(n)) storage requirement. We will never run out of
storage in any reasonable amount of computer time.

A recursive program typically uses a depth-first order.

55

Tree Recursion

Writing a tree-recursive program requires answering
several questions:

•What are the branches?

– first and rest

– lhs and rhs

• How should results from branches be combined?

– additive

∗ ordered, e.g. consing onto ordered list

∗ unordered, e.g addition or union

– structural

– search: first one that works

• Is an ordering of the tree search required by the
domain?

– preorder: parent before children

– inorder: one child, parent, other child

– postorder: children first, then parent, e.g. must
evaluate children before performing operation on
them

56

DFS: Code to Build Answer

Depth-first Search tries operators one at a time; after
applying one operator to produce a new state, it calls
itself recursively to see if the goal can be reached from
that state.

apply op search

state ---------> newstate --- ... ---> Goal

<- (cons op path) <- path = (ops) <- ()

If path is a list of ops to get from newstate to a goal,
then (cons op path) will get from state to a goal.

(defn search [state]

(if (goal? state)

’() ; no ops needed to get to goal

(if (failure? state)

nil

(let [newstate (op1 state)]

(let [path (search newstate)]

(if path

(cons ’op1 path)

... try another op

))))))

57

Answer for State Space Search

In state space search, we want to find a sequence of
operators that will lead from a start state to a goal state.

Each call to the search function returns either nil

(failure) or a list of operators that lead to a goal state.
At each state, if applying an operator leads to a goal,
we cons that operator onto the list of operators returned
from below by the search.

58

Design Pattern: Depth-first Search

(defn search [state] ; returns path to

goal

(if (goal? state)
’() ; no ops needed to get to goal

(if (failure? state)
nil

(some

(fn [op]

(let

[path (search

(applyop op state))]
(and path (cons op path))))

(operators state)))))

Complications:

• It may not be possible to apply op.

• Applying op might violate a constraint.

•We could get into a loop applying op and its inverse,
or going in a circle back to the same state.

59

Comments on Search Algorithm

• The program continually goes deeper until it reaches
a terminal state, which is either a goal or a failure.

•When the goal is found, search returns ’() as its
answer. This is an empty list of operators, since no
operators are required to reach the goal.

• At each level as the search unwinds, the operator used
at that level is put onto the front of the operator list
using cons. cons adds a new item onto the front of
a list:
(cons ’a ’(b c)) = (A B C)

60

Tail-Recursive Search

The search algorithm can also be written in a tail-
recursive style.

• The path (sequence of operators) to the goal is passed
down as a variable, initially ’().

• Each time an operator op is applied to create a new
state, op is consed onto the path for the recursive
call. Since cons acts as a stack and makes a list
in backwards order, the path is a backwards list of
operators taken from the start.

•When the goal is found, a reverse of the path gives
a solution (sequence of operators to get from the start
to the goal).

61

Robot Mouse in Maze

Depth-first search of an implicit tree can simulate a robot
mouse in a maze. The goal is to return a sequence of steps
to guide the mouse to the cheese.

(defn mouse [maze x y prev]

(if (or (= (nth (nth maze y) x) ’*) ; hit wall

(member (list x y) prev)) ; been there

nil ; fail

(if (= (nth (nth maze y) x) ’c) ; cheese

’() ; success

(let [path (mouse maze (- x 1) y ; go west

(cons (list x y) prev))]

(if path (cons ’w path)

(let [path (mouse maze x (- y 1)

(cons (list x y) prev))]

(if path (cons ’n path)

(let [path (mouse maze (+ x 1) y

(cons (list x y) prev))]

(if path (cons ’e path)

(let [path (mouse maze x (+ y 1)

(cons (list x y) prev))]

(if path (cons ’s path)

nil))))))))))) ; fail

62

Robot Mouse Program

• The maze is a 2-D array. * represents a wall. 0

represents an open space. c represents cheese.

• The mouse starts in an open position.

• The mouse has 4 possible moves at each point: w, n,
e or s.

•We have to keep track of where the mouse has been,
or it might wander infinitely in circles. The list prev
is a stack of previous states. If the mouse re-visits a
position on prev, we want to fail.

•We need to return an answer:

– nil for failure

– a list of moves that will lead from the current
position to the goal; for the goal itself, we return
(). As we unwind the recursion, we will push the
operator that led to the goal onto the answer list
at each step.

63

Robot Mouse Example

(def maze

; 0 1 2 3 4 5 6 7 8 9

’((* * * * * * * * * *) ; 0

(* 0 0 * * * * * * *) ; 1

(* 0 * * * * * * * *) ; 2

(* 0 * * * * * * * *) ; 3

(* 0 0 0 0 0 0 * * *) ; 4

(* * * * 0 * 0 * * *) ; 5

(* * * * 0 * 0 * c *) ; 6

(* * * * 0 * 0 * 0 *) ; 7

(* * * * 0 * 0 0 0 *) ; 8

(* * * * 0 * * * * *))) ; 9

user=> (mouse maze 4 9 ’())

(n n n n n e e s s s s e e n n)

64

Tracing the Robot Mouse

>(mouse maze 4 9 ’())

1> (MOUSE #2A((* * * * * * * * * *)

(* 0 0 * * * * * * *)

(* 0 * * * * * * * *)

(* 0 * * * * * * * *)

(* 0 0 0 0 0 0 * * *)

(* * * * 0 * 0 * * *)

(* * * * 0 * 0 * C *)

(* * * * 0 * 0 * 0 *)

(* * * * 0 * 0 0 0 *)

(* * * * 0 * * * * *)) 4 9 NIL)

2> (MOUSE 3 9 ((4 9))) ; west

<2 (MOUSE NIL) ; hit the wall

2> (MOUSE 4 8 ((4 9))) ; north

3> (MOUSE 3 8 ((4 8) (4 9))) ; west

<3 (MOUSE NIL) ; hit the wall

3> (MOUSE 4 7 ((4 8) (4 9))) ; north

4> (MOUSE 4 6 ((4 7) (4 8) (4 9))) ; north

5> (MOUSE 4 5 ((4 6) (4 7) (4 8) (4 9))) ; north

6> (MOUSE 4 4 ((4 5) (4 6) (4 7) (4 8) (4 9))) ; north

7> (MOUSE 3 4 ((4 4) (4 5) (4 6) (4 7) (4 8) ; west

8> (MOUSE 2 4 ((3 4) (4 4) (4 5) (4 6) ; west

9> (MOUSE 1 4 ((2 4) (3 4) (4 4) (4 5) ; west

10> (MOUSE 0 4 ((1 4) (2 4) (3 4) (4 4) ; west

<10 (MOUSE NIL) ; hit the wall

10> (MOUSE 1 3 ((1 4) (2 4) (3 4) (4 4) ; north

11> (MOUSE 1 2 ((1 3) (1 4) (2 4) (3 4)

12> (MOUSE 1 1 ((1 2) (1 3) (1 4) (2 4)

13> (MOUSE 1 0 ((1 1) (1 2) (1 3) (1 4) ; north

<13 (MOUSE NIL) ; hit the wall

13> (MOUSE 2 1 ((1 1) (1 2) (1 3) (1 4) ; east

14> (MOUSE 1 1 ((2 1) (1 1) (1 2) (1 3) ; west

<14 (MOUSE NIL) ; ! loop

65

Tracing the Robot Mouse ...

14> (MOUSE 3 1 ((2 1) (1 1) (1 2) (1 3)

<14 (MOUSE NIL)

14> (MOUSE 2 2 ((2 1) (1 1) (1 2) (1 3)

<14 (MOUSE NIL)

<13 (MOUSE NIL) ...

<7 (MOUSE NIL) ; fail back to (4 4)

7> (MOUSE 5 4 ((4 4) (4 5) (4 6) (4 7) ; east

8> (MOUSE 6 4 ((5 4) (4 4) (4 5) (4 6)

9> (MOUSE 6 5 ((6 4) (5 4) (4 4) (4 5) ; south

10> (MOUSE 6 6 ((6 5) (6 4) (5 4)

11> (MOUSE 6 7 ((6 6) (6 5) (6 4)

12> (MOUSE 6 8 ((6 7) (6 6) (6 5) ; south

13> (MOUSE 7 8 ((6 8) (6 7) (6 6) ; east

14> (MOUSE 8 8 ((7 8) (6 8) (6 7) ; east

15> (MOUSE 8 7 ((8 8) (7 8) (6 8) ; north

16> (MOUSE 8 6 ((8 7) (8 8) (7 8) ; north

<16 (MOUSE (CHEESE)) ; found the cheese!

<15 (MOUSE (N CHEESE)) ; last move was N

<14 (MOUSE (N N CHEESE)) ; push on operators

<13 (MOUSE (E N N CHEESE)) ; as we backtrack

<12 (MOUSE (E E N N CHEESE))

<11 (MOUSE (S E E N N CHEESE))

<10 (MOUSE (S S E E N N CHEESE))

<9 (MOUSE (S S S E E N N CHEESE))

<8 (MOUSE (S S S S E E N N CHEESE))

<7 (MOUSE (E S S S S E E N N CHEESE))

<6 (MOUSE (E E S S S S E E N N CHEESE))

<5 (MOUSE (N E E S S S S E E N N CHEESE))

<4 (MOUSE (N N E E S S S S E E N N CHEESE))

<3 (MOUSE (N N N E E S S S S E E N N CHEESE))

<2 (MOUSE (N N N N E E S S S S E E N N CHEESE))

<1 (MOUSE (N N N N N E E S S S S E E N N CHEESE))

(N N N N N E E S S S S E E N N CHEESE)

66

Depth-First Search

Depth-first search applies operators to each newly
generated state, trying to drive directly toward the goal.

Advantages:

1. Low storage requirement: linear with tree depth.

2. Easily programmed: function call stack does most of
the work of maintaining state of the search.

Disadvantages:

1. May find a sub-optimal solution (one that is deeper
or more costly than the best solution).

2. Incomplete: without a depth bound, may not find a
solution even if one exists.

67

Big O for Trees

If a tree is uniform and balanced, we can describe it in
terms of several parameters:

• b, the breadth or branching factor, is the number of
branches per interior node. For a binary tree, b = 2.

• d is the depth, the height of the tree. d = logb(n)

• n is the number of leaf nodes. n = bd

Note that most of the nodes are on the bottom row of
the tree. If b = 2, half the nodes are on the bottom; if b is
higher, an even greater proportion will be on the bottom.

In general, a tree algorithm will have Big O:

• if one branch of the tree is followed and the others are
abandoned, O(log(n)): proportional to depth.

• if all branches of the tree are processed, O(n∗ log(n))

68

Bounded Depth-First Search

Depth-first search can spend much time (perhaps infinite
time) exploring a very deep path that does not contain a
solution, when a shallow solution exists.

An easy way to solve this problem is to put a maximum
depth bound on the search. Beyond the depth bound , a
failure is generated automatically without exploring any
deeper.

Problems:

1. It’s hard to guess how deep the solution lies.

2. If the estimated depth is too deep (even by 1) the
computer time used is significantly increased, by a
factor of bextra.

3. If the estimated depth is too shallow, the search fails
to find a solution; all that computer time is wasted.

69

Iterative Deepening

Iterative deepening begins a search with a depth bound
of 1, then increases the bound by 1 until a solution is
found.

Advantages:

1. Finds an optimal solution (shortest number of steps).

2. Has the low (linear in depth) storage requirement of
depth-first search.

Disadvantage:

1. Some computer time is wasted re-exploring the higher
parts of the search tree. However, this actually is not
a very high cost.

70

Cost of Iterative Deepening

In general, (b− 1)/b of the nodes of a search tree are on
the bottom row. If the branching factor is b = 2, half the
nodes are on the bottom; with a higher branching factor,
the proportion on the bottom row is higher.

Korf calculates the work done by iterative deepening as
bd ∗ (1 − 1/b)−2, where the multiplier approaches 1 as b
increases.7

My calculation of the work multiplier for iterative
deepening is (b+ 1)/(b− 1), which is not far from Korf’s
result. The multiplier is a constant, independent of depth.

b multiplier
2 3.00
3 2.00
4 1.67
5 1.50
10 1.22

7Korf, Richard E., “Depth-First Iterative-Deepening: An Optimal Admissible Tree Search,” Artificial
Intelligence. vol. 27, no. 1, pp. 97-112, Sept. 1985.

71

Depth-First Search

Many kinds of problems can be solved by search, which
involves finding a goal from a starting state by applying
operators that lead to a new state.

Depth-first search (DFS) follows an implicit tree of size
O(bdepth), where b is the branching factor. (number of
children of a node). Given a state, we test whether it
is a goal or a terminal failure node; if not, we generate
successor states and try searching from each of them.
Many of these searches may fail, and we will backtrack
and try a different branch.

72

Solving Equations

Simple equations can be solved by search, using rules
of algebra as operators to transform equations into
equivalent forms until an equation for the desired variable
is produced.

We will think of the same data structure in several ways:

• Equation: y = m · x + b

• List structure: (= Y (+ (* M X) B))

or (op lhs rhs) recursively

• Tree:

• Node of a Tree: an equation is a node in a search
tree whose nodes are equivalent equations.

• Executable code: eval can evaluate an expression
using a set of variable bindings.

73

Solving an Equation by Search

We can perform algebraic operations by manipulating the
list structure representation of an expression tree (taking
apart the original tree and constructing a new tree). To
solve an equation e for a desired variable v:

• Base cases:

– If the lhs of e is v, return e.

– If the rhs of e is v, rewrite e to switch the lhs

and rhs of e, and return that.

– If only an undesired variable or constant is on the
right, (rhs is not a cons), fail by returning nil.

• Recursive case: Rewrite e using an algebraic law,
and try to solve that equation. Return the first result
that is not nil.

Often, there are two possible ways to rewrite an
equation; it is necessary to try both. Thus, the process
will be a binary tree search.

We are rewriting an equation in every possible legal
way; most of these will not be what we want, but one
may work. If we find one that works, we return it.

74

Examples: Base Cases

>(solve ’(= x 3) ’x) ; lhs is desired var

(= x 3)

>(solve ’(= 3 x) ’x) ; rhs is desired var

(= x 3)

>(solve ’(= 3 y) ’x) ; rhs not cons: fail.

nil

75

Recursive Cases: Operators

The recursive case has a rhs that is an operation:
(= α (op β γ))

We are hoping that the desired variable will be somewhere
in β or γ; to get to it, we must apply some kind of inverse
operation to both sides of the equation to get rid of op
and isolate β or γ.

In general, there may be two inverse operations to try.

We can produce the result of the inverse operation by
constructing a new equation from the given one, e.g.,
given:
(= α (+ β γ))

we can construct two new possibilities:

(= (- α β) γ) (subtract β from both sides)

(= (- α γ) β) (subtract γ from both sides)

After making a new equation, we simply call solve to
try to solve that equation. We return the first solution
that is not nil.

76

Recursive Tree Search

In effect, the search process will rewrite the original
equation in every possible legal way. Most of these will
not be what we want, and will fail, but one of them will
be solved for the desired variable.

>(solve ’(= y (+ x b)) ’x)

1> (SOLVE (= Y (+ X B)) X)

2> (SOLVE (= (- Y X) B) X)

<2 (SOLVE NIL)

2> (SOLVE (= (- Y B) X) X)

<2 (SOLVE (= X (- Y B)))

<1 (SOLVE (= X (- Y B)))

(= X (- Y B))

>(solve ’(= y (+ (* m x) b)) ’x)

(= X (/ (- Y B) M))

77

Recursive Tree Search Example

Goal: Solve for X given (= Y (+ (* M X) B))

78

Big O and Termination

We want to make sure that we cannot get into a loop by
transforming an equation endlessly.

Well-founded Ordering: If a program has an input
that is finite and gets smaller in each recursion, and the
program stops when the input reaches a lower boundary,
then the program is guaranteed to terminate.

Our program assumes that initially the lhs is only a
single variable. Each recursive step makes the rhs

smaller.

We don’t have to worry about Big O for this problem
because the number of operations is limited by the size
of the expression tree, which is always small.

79

Solving a Physics Problem

With the collection of programs that we now have, solving
a simple physics problem becomes easy. We assume that
we have values for some variables and want the value of
another variable:

What is the radius of a circle with area = 10

• Make a list (set) of the variables in the problem
(desired variable and variables whose values are
given).

(radius area)

• Find an equation that involves those variables.

(= area (* 3.14159 (expt radius 2)))

• Solve the equation for the desired variable.

(= radius (sqrt (/ area 3.14159)))

• evaluate the rhs of the equation for the given values.

1.78412

80

Solving Sets of Equations

Given:

• a set of equations

fall:

((= gravity ’(q 9.80665 (/ m (* s s))))

(= horizontal-velocity ’(q 0 (/ m s))) ; default

(= height (* 1/2 (* gravity (expt time 2))))

(= velocity (* gravity time)) ; vertical

(= kinetic-energy

(* 1/2 (* mass (expt total-velocity 2))))

(= horizontal-distance (* horizontal-velocity

time))

(= total-velocity

(sqrt (+ (expt velocity 2)

(expt horizontal-velocity 2))))

• a set of variables with known values:
((TIME 4))

• a variable whose value is desired: HEIGHT

81

Solving a Set of Equations by Search

Suppose that we have an association list of known
variables and their values, and a list of equations:

values = ((m 2) (f 8))

• If the desired variable has a known value, return it.

• Try to find an equation where all variables are known
except one: (= f (* m a))

• Solve the equation for that variable: (= a (/ f m))

• Evaluate the right-hand side of the solved equation
using the values of the known variables (function
myevalb) to give the value of the new variable. Add
that variable to the binding list:

values = ((a 4) (m 2) (f 8))

• Keep trying until you get the value of the variable you
want (or quit if you stop making any progress).

82

Solving Physics Story Problems

By combining the techniques we have discussed with a
simple English parser, a remarkably small Lisp program
can solve physics problems stated in English:

>(phys ’(what is the area of a circle

with radius = 2))

12.566370614359172

>(phys ’(what is the circumference of a circle

with area = 12))

12.279920495357862

>(phys ’(what is the power of a lift

with mass = 5 and height = 10

and time = 4))

122.583125

83

Generating Code from Equations

The first programming language, FORTRAN, is an
abbreviation for FORmula TRANslation. There is a long
history of similarity between equations and programs.

Suppose that we have a set of physics equations, and we
want a program to calculate a desired variable from given
variable values.

Each time an equation is solved for a new variable,

• add the new variable to a list of variables

• cons the solved equation onto a list of code

If the variable that is solved for was the desired variable,
cons a return statment onto the code.

At the end, reverse the code (reverse).

84

Eliminating Unused Equations

The opportunistic algorithm, computing whatever can be
computed from the available values, may generate some
equations that are valid but not needed for finding the
desired value.

Optimizing compilers use two notions, available and
busy.

• A value is available at a point p if it has been assigned
a value above the point p in a program, e.g. as an
argument of a subroutine or as the left-hand-side of
an assignment statement.

• A value that is the left-hand-side of an assignment
statement is busy or live if it will be used at a later
point in the program.

We can eliminate equations whose lhs is not busy by
proceeding backwards through the code:

• Initially, the desired value is busy.

• For each equation, if the lhs of the equation is a
member of the busy list, keep the equation, and add its
rhs variables to the busy list. Otherwise, the equation
can be discarded.

85

Conservation Laws

• Common sense:

There is no such thing as a free lunch.

You can’t have your cake and eat it too.

• Physics:

Mass-energy is neither created nor destroyed.

For every action, there is an equal and opposite
reaction.

• Finance:

Money is neither created nor destroyed.

Every transaction requires an equal and
opposite transaction.

86

Double-Entry Bookkeeping

Double-entry bookkeeping dates back some 1000 years,
introduced in Korea and by Jewish bankers in Egypt,
then in Italian banks during the Renaissance.

The basic idea is simple: money moves from one account
to another; an addition to one account must correspond
to a subtraction from another account.

For example, suppose you withdraw $100 in cash from
your bank account at an ATM:

Cash in Pocket Bank Account
Get cash +$100 -$100

Double-entry bookkeeping provides an audit trail that
allows the flow of money to be followed.

87

Representing Financial Contracts

Modern financial contracts are more complex than an
immediate subtraction from one account and addition to
another account.

Wimpy:

I’d gladly pay you Tuesday for a hamburger today.

Can we represent this formally?

(and (one hamburger)

(give (zcb tuesday 5 USD)))

zcb is a zero-coupon bond, i.e. a promise to pay $5 at a
future time, Tuesday.

This kind of representation is recursive, allowing complex
contracts to be represented with a small set of
combinators.

88

Finance Combinators8

(zero) a contract that has no rights
and no obligations

(one k) one unit of currency k
c you immediately acquire contract c
(give c) to give a contract c to another party;

like negation
(at t c) if you acquire contract c before time t,

it becomes effective at time t
(truncate t c) contract c ceases to exist after time t
(and c1 c2) both contracts c1 and c2
(or c1 c2) your choice of contracts c1 and c2
(cond b c1 c2) you acquire contract c1

if the observable b is true,
else you acquire c2

(scale o c) multiply contract c by observable o
(when b c) you must acquire contract c

when b becomes true
(but worthless if b can never be true)

(anytime b c) you may acquire contract c
any time b becomes true

(until b c) is like contract c but must be abandoned
when b becomes true

8S. Peyton Jones and J.M. Eber, “How to write a financial contract”, in The Fun of Programming, ed
Gibbons and de Moor, Palgrave Macmillan 2003

89

Pattern Matching Overview

We have emphasized the use of design patterns in writing
programs. We would like to use patterns automatically
to generate, improve, or transform programs, equations,
and other tree-like data structures.

We will use rewrite rules, each consisting of an input
pattern and an output pattern.

• Input Pattern: (- (- ?x ?y))

• Output Pattern: (- ?y ?x)

• Rewrite Rule: ((- (- ?x ?y)) (- ?y ?x))

• Example Input: (- (- (sin theta) z))

• Bindings: ((?y z) (?x (sin theta)))

• Output: (- z (sin theta))

90

Copy Tree and Substitute

It is easy to write a function to copy a binary tree:

(defn copy-tree [form]

(if (cons? form)

(cons (copy-tree (first form))

(copy-tree (rest form)))

form))

Why make an exact copy of a tree that we already have?
Well, if we modify copy-tree slightly, we can make a
copy with a substitution:

; substitute new for old in form

(defn subst [new old form]

(if (cons? form)

(cons (subst new old (first form))

(subst new old (rest form)))

(if (= form old)

new

form)))

91

Substitution Examples

; for in

>(subst ’axolotl ’banana ’(banana pudding))

(axolotl pudding)

>(subst 10 ’r ’(* pi (* r r)))

(* pi (* 10 10))

>(def pi 3.1415926535897933)

>(eval (subst 10 ’r ’(* pi (* r r))))

314.1592653589793

92

Loop Unrolling

Loop unrolling is the compile-time expansion of a loop
into repetitions of the code, with the loop index replaced
by its value in each instance.

for (i = 0; i < 3; i++)

disp[i] = c2[i] - c1[i];

is expanded into:

disp[0] = c2[0] - c1[0];

disp[1] = c2[1] - c1[1];

disp[2] = c2[2] - c1[2];

Loop: Unrolled:
Instructions: 20 12
Executed: 57 12

The second form runs faster, and it may generate less
code. This is a useful optimization when the size of the
loop is known to be a small constant at compile time.

93

Loop Unrolling Code

The code to accomplish loop unrolling is simple:

(defn unrollb [code ivar n nmax codelst]

(if (>= n nmax)

(cons ’do (reverse codelst))

(unrollb code ivar (+ n 1) nmax

(cons (subst n ivar code) codelst))))

(defn unroll [loopcode]

(unrollb (third loopcode) ; code

(get (second loopcode) 0) ; i

0

(get (second loopcode) 1) ; nmax

’()))

(unroll ’(dotimes [i 3]

(println (get arr i))))

(do (println (get arr 0))

(println (get arr 1))

(println (get arr 2)))

94

Binding Lists

A binding is an association between a name and a value.

In Clojure, we can represent a binding as a list:
(list name value), e.g. (?X 3). We will use names
that begin with ? to denote variables.

A set of bindings is represented as a list, called an
association list, or alist for short. A new binding can
be added by:

(cons (list name value) binding-list)

A name can be looked up using assocl:

(assocl name binding-list)

(assocl ’?y ’((?x 3) (?y 4) (?z 5)))

= (?y 4)

The value of the binding can be gotten using second:

(second (assocl ’?y ’((?x 3) (?y 4) (?z 5))))

= 4

95

Multiple Substitutions

The function (sublis alist form) makes multiple
substitutions simultaneously:

; replace by by in

>(sublis ’((rose peach) (smell taste))

’(a rose by any other name

would smell as sweet))

(a peach by any other name would taste as sweet)

; substitute in form with bindings in alist

(defn sublis [alist form]

(if (cons? form)

(cons (sublis alist (first form))

(sublis alist (rest form)))

(let [binding (assocl form alist)]

(if binding ; (name value) or nil

(second binding)

form))))

96

Instantiating Design Patterns

sublis can be used to instantiate design patterns. For
example, we can instantiate a tree-recursive accumulator
pattern to make various functions:

(def pattern

’(defn ?fun [tree]

(if (cons? tree)

(?combine (?fun (first tree))

(?fun (rest tree)))

(if (?test tree) ?trueval ?falseval))))

>(sublis ’((?fun nnums)

(?combine +)

(?test number?)

(?trueval 1)

(?falseval 0)) pattern)

(defn nnums [tree]

(if (cons? tree)

(+ (nnums (first tree))

(nnums (rest tree)))

(if (number? tree) 1 0)))

>(nnums ’(+ 3 (* i 5)))

2

97

Tree Equality

It often is necessary to test whether two trees are equal,
even though they are in different memory locations. We
will say two trees are equal if:

• the structures of the trees are the same

• the leaf nodes are equal

(defn equal [x y]

(if (cons? x)

(and (cons? y)

(equal (first x) (first y))

(equal (rest x) (rest y)))

(= x y)))

>(equal ’(+ a (* b c)) ’(+ a (* b c)))

true

Some say that two trees are equal if they print the same.

Note that this function treats a cons as a binary
first-rest tree rather than as a lhs-rhs tree.

98

Tracing Equal

>(equal ’(+ a (* b c)) ’(+ a (* b c)))

1> (EQUAL (+ A (* B C)) (+ A (* B C)))

2> (EQUAL + +)

<2 (EQUAL T)

2> (EQUAL (A (* B C)) (A (* B C)))

3> (EQUAL A A)

<3 (EQUAL T)

3> (EQUAL ((* B C)) ((* B C)))

4> (EQUAL (* B C) (* B C))

5> (EQUAL * *)

<5 (EQUAL T)

5> (EQUAL (B C) (B C))

6> (EQUAL B B)

<6 (EQUAL T)

6> (EQUAL (C) (C))

7> (EQUAL C C)

<7 (EQUAL T)

7> (EQUAL NIL NIL)

<7 (EQUAL T)

<6 (EQUAL T)

<5 (EQUAL T)

<4 (EQUAL T)

4> (EQUAL NIL NIL)

<4 (EQUAL T)

<3 (EQUAL T)

<2 (EQUAL T)

<1 (EQUAL T)

T

This is our old friend, depth-first search, on two trees
simultaneously.

99

Design Pattern: Nested Tree Recursion

Binary tree recursion can be written in a nested form,
analogous to tail recursion. We carry the answer along,
adding to it as we go. This form is useful if it is easier
to combine an item with an answer than to combine two
answers. Compare to p. 48.

(defn myfunb [tree answer]

(if (interior? tree)

(myfunb (right tree)

(myfunb (left tree) answer))

(combine (baseanswer tree) answer)))

(defn myfun [tree] (myfunb tree init))

; count numbers in a tree

(defn nnumsb [tree answer]

(if (cons? tree)

(nnumsb (rest tree)

(nnumsb (first tree) answer))

(if (number? tree)

(+ 1 answer)

answer)))

(defn nnums [tree] (nnumsb tree 0))

100

Tracing Nested Tree Recursion

>(nnums ’(+ (* x 3) (/ z 7)))

1> (NNUMSB (+ (* X 3) (/ Z 7)) 0)

2> (NNUMSB + 0)

<2 (NNUMSB 0)

2> (NNUMSB ((* X 3) (/ Z 7)) 0)

3> (NNUMSB (* X 3) 0)

4> (NNUMSB * 0)

<4 (NNUMSB 0)

4> (NNUMSB (X 3) 0)

5> (NNUMSB X 0)

<5 (NNUMSB 0)

5> (NNUMSB (3) 0)

6> (NNUMSB 3 0)

<6 (NNUMSB 1)

6> (NNUMSB NIL 1)

<6 (NNUMSB 1)

<5 (NNUMSB 1)

<4 (NNUMSB 1)

<3 (NNUMSB 1)

3> (NNUMSB ((/ Z 7)) 1)

4> (NNUMSB (/ Z 7) 1)

5> (NNUMSB / 1)

<5 (NNUMSB 1)

5> (NNUMSB (Z 7) 1)

6> (NNUMSB Z 1)

<6 (NNUMSB 1)

6> (NNUMSB (7) 1)

7> (NNUMSB 7 1)

<7 (NNUMSB 2)

7> (NNUMSB NIL 2)

<7 (NNUMSB 2)

<6 (NNUMSB 2)

...

2

101

Pattern Matching

Pattern matching is the inverse of substitution: it tests
to see whether an input is an instance of a pattern, and
if so, how it matches.

>(match ’(go ?expletive yourself)

’(go bleep yourself))

((?expletive bleep) (t t))

(match ’(defn ?fun [tree]

(if (cons? tree)

(?combine (?fun (first tree))

(?fun (rest tree)))

(if (?test tree) ?trueval ?falseval)))

’(defn nnums [tree]

(if (cons? tree)

(+ (nnums (first tree))

(nnums (rest tree)))

(if (number? tree) 1 0))))

((?falseval 0) (?trueval 1) (?test number?)

(?combine +) (?fun nnums) (t t))

102

Specifications of Match

• Inputs: a pattern, pat, and an input, inp

• Constants in the pattern must match the input
exactly. (This usually includes function names.)

• Structure that is present in the pattern must also be
present in the input.

• Variables are symbols that begin with ?

• A variable can match anything, but it must do so
consistently.

• The result of match is a list of bindings: nil indicates
failure, not nil indicates success.

• The dummy binding (T T) is used to allow an empty
binding list that is not nil.

103

Match Function

(defn equal [x y]

(if (cons? x)

(and (cons? y)

(equal (first x) (first y))

(equal (rest x) (rest y)))

(= x y)))

(defn matchb [pat inp bindings]

(if (cons? bindings) ; if not, already failed

(if (cons? pat) ; if pat is a cons

(and (cons? inp) ; inp must be a cons

(matchb (rest pat) ; parts must match

(rest inp)

(matchb (first pat)

(first inp) bindings)))

(if (varp pat) ; not a cons: a var?

(if (assocl pat bindings)

(and (equal inp ; existing binding

(second (assocl pat bindings)))

bindings)

(cons (list pat inp) bindings))

(and (= pat inp) bindings)))))

(defn match [pat inp] (matchb pat inp ’((t t))))

104

Matching and Substitution

match and sublis are inverse operations:

• (match pattern instance) = bindings

• (sublis bindings pattern) = instance

If we use a transformed pattern in the second equation,
we can form a rule that transforms instances:

• (match pattern instance) = bindings

• (sublis bindings newpattern) = newinstance

• transformationrule: pattern→ newpattern

• (transform rule instance)
= (sublis (match pattern instance) newpattern)

105

Transformation by Patterns

Matching and substitution can be combined to transform
an input using a transformation rule transrule: a list
of an input pattern and an output pattern.

(defn transform [transrule input]

(let [bindings (match (first transrule)

input)]

(if bindings

(sublis bindings (second transrule)))))

>(transform ’((I aint got no ?x)

(I do not have any ?x))

’(I aint got no bananas))

(I do not have any bananas)

106

Solving Equations with Patterns

Solving equations by writing code to construct new
equations is somewhat difficult. However, doing it with
patterns is easy. All we need is a list of transformations,
from given equation to new equation:

(((= ?x (+ ?y ?z)) (= (- ?x ?y) ?z))

((= ?x (+ ?y ?z)) (= (- ?x ?z) ?y))

...)

To solve an equation, the base cases will be the same as
before. If the rhs is a list, simply try every pattern, in a
loop, until either one pattern works (success) or the end
of the list of patterns is reached (failure).

107

Symbolic Differentiation

Symbolic differentiation is easy to do with patterns
because there is a list of reduction patterns in calculus
books:

d/dx(u + v) = d/dx(u) + d/dx(v)
d/dx(u ∗ v) = v ∗ d/dx(u) + u ∗ d/dx(v)

((deriv (+ ?u ?v) ?x) (+ (deriv ?u ?x)

(deriv ?v ?x)))

((deriv (* ?u ?v) ?x) (+ (* ?v (deriv ?u ?x))

(* ?u (deriv ?v ?x))))

These formulas have the properties:

• the formulas are recursive

• the formula whose derivative is being taken gets
smaller at each step.

These features guarantee that the process of taking a
derivative must terminate in a finite number of steps.

108

Repetitive Transformation

One transformation may expose another opportunity for
transformation:

(+ (* x 0) y)

(+ 0 y)

y

An easy way to handle this is to walk through the
tree, transforming what can be done, until no further
transformations are possible; this is called a fixed point
or fixpoint.

The function transformfp transforms an expression
repeatedly until it reaches a fixpoint.

109

Optimization by Patterns

(def optpatterns

’(((+ ?x 0) ?x)

((* ?x 0) 0)

((* ?x 1) ?x)

((- (- ?x ?y)) (- ?y ?x))

((- 1 1) 0)

...))

While humans are unlikely to write code such as x + 0,
symbolic computations such as symbolic differentiation
and automatic programming by substitution into design
patterns can often generate such expressions.

deriv: (deriv2 (+ (expt x 2) (+ (* 3 x) 6)) x)

der: (+ (+ (* 2 (+ (* (expt x (- 2 1)) 0)

(* 1 (* (- 2 1) (* (expt x (- (- 2 1)

1)) 1))))) (* (* (expt x (- 2 1)) 1) 0))

(+ (+ (+ (* 3 0) (* 1 0))

(+ (* x 0) (* 0 1))) 0))

opt: 2

110

Constant Folding

Constant folding is performing operations on constants
at compile time:

(/ (* angle 3.1415926) 180.0)

(sqrt 2.0)

The savings from doing this on programmer expressions
is minor. However, there can be savings by optimizing
the results of program manipulations.

Constant folding must be used with care: operators that
have side effects should not be folded.

>(println "foo")

foo

nil

We do not want to replace this print with nil.

111

Correctness of Transformations

It is not always easy to be certain that transformed code
will give exactly the same results.

((> (* ?n ?x)

(* ?n ?y)) (> ?x ?y))

((not (not ?x)) ?x)

((= (if ?p ?qu ?qv)

?qu) ?p)

These transformations are usually correct, but it is
possible to construct an example for each in which the
transformation changes the result. We must be careful to
use only correct transforms.

112

Knuth-Bendix Algorithm

The Knuth-Bendix algorithm9 describes how to derive a
complete set of rewrite rules R from an equational theory
E, such that:

If E implies that two terms s and t are equal,
then the reductions in R will rewrite both s and t
to the same irreducible form in a finite number of
steps.

Two properties are needed:

• Confluence: no matter what sequence of transforms
is chosen, the final result is the same.

• Termination: the process of applying transforms will
terminate.

The Knuth-Bendix algorithm is based on a well-founded
ordering of terms so that each rewriting step makes the
result “smaller”.

Unfortunately, rather simple systems do not have a
Knuth-Bendix solution.

9Knuth, D. E and Bendix, P. E., “Simple word problems in universal algebras”, in J. Leech (ed.),
Computational Problems in Abstract Algebra, Pergammon Press, 1970, pp. 263-297.

113

Programs and Trees

• Fundamentally, programs are trees, sometimes called
abstract syntax trees or AST.

• Parsing converts programs in the form of character
strings (source code) into trees.

• It is easy to convert trees back into source code form
(unparsing).

• Parsing - Transformation - Unparsing allows us to
transform programs.

114

Macros

A macro is a function from code to code, usually turning
a short piece of code into a longer code sequence.

Lisp macros produce Lisp code as output; this code is
executed or compiled.

(defn neq [x y] (not (= x y))) ; like !=

(defmacro neq [x y] (list ’not (list ’= x y)))

> (neq 2 3)

true

> (macroexpand ’(neq 2 3))

(not (= 2 3))

If a macro uses its own variables, it is important to
generate new ones with gensym to avoid variable capture
or name conflicts with calling code.

> (gensym ’foo)

foo2382

115

In-line Compilation

In-line or open compilation refers to compile-time
expansion of a subprogram, with substitution of
arguments, in-line at the point of each call.

Advantages:

• Eliminates overhead of procedure call

• Can eliminate method lookup in an object-oriented
system

• Can expose opportunities for optimization across the
procedure call, especially with OOP: more specific
types become exposed.

• Relative saving is high for small procedures

Disadvantages:

• May increase code size

116

Partial Evaluation

Partial evaluation is the technique of evaluating those
parts of a program that can be evaluated at compile time,
rather than waiting for execution time.

For example, the rotation of a point in homogeneous
coordinates by an angle θ around the x axis is
accomplished by multiplying by the matrix:

1 0 0 0
0 cosθ −sinθ 0
0 sinθ cosθ 0
0 0 0 1

Many of the cycles consumed in the matrix multiply
would be wasted because they would be trivial
computations (e.g., multiplying by 1 or adding 0).

By unrolling the loops of matrix multiply, substituting
the values from the coefficient matrix, and performing
partial evaluation on the result, a specialized version of
the matrix multiply can be obtained. This version saves
many operations:

Version: Load Store Add/Sub Mul Total
General 128 16 48 64 256
Specialized 24 16 8 16 64

117

Partial Evaluation10

Partial evaluation specializes a function with respect to
arguments that have known values. Given a program
P (x, y) where the values of variables x are constant, a
specializing function mix transforms P (x, y) → Px(y)
such that P (x, y) = Px(y) for all inputs y. Px(y) may
be shorter and faster than P (x, y). We call x static data
and y dynamic data.

Partial evaluation involves:

• precomputing constant expressions involving x,

• propagating constant values,

• unfolding or specializing recursive calls,

• reducing symbolic expressions such as x ∗ 1, x ∗ 0,
x + 0, (if true S1 S2).

A good rule of thumb is that an interpreted program takes
ten times as long to execute as the equivalent compiled
program. Partial evaluation removes interpretation
by increasing the binding between a program and its
execution environment.

10Neil D. Jones, Carsten K. Gomard, and Peter Sestoft, Partial Evaluation and Automatic Program
Generation, Prentice-Hall, 1993; ACM Computing Surveys, vol. 28, no. 3 (Sept. 1996), pp. 480-503.

118

Example

Suppose we have the following definition of a function
power(x,n) that computes xn :

(defun power (x n)

(if (= n 0)

1

(if (evenp n)

(square (power x (/ n 2)))

(* x (power x (- n 1))))))

If this is used with a constant argument n, as is often the
case, the function can be partially evaluated into more
efficient code:

(gldefun t3 ((x real)) (power x 5))

(LAMBDA (X) (* X (SQUARE (SQUARE X))))

The recursive function calls and interpretation (if
statements) have been completely removed; only
computation remains. Note that the constant argument
5 is gone and has been converted into control.

119

Simple Partial Evaluator

(defun mix (code env)

(let (args test fn)

(if (constantp code) ; a constant

code ; evaluates to itself

(if (symbolp code) ; a variable

(if (assoc code env) ; bound to a constant

(cdr (assoc code env)) ; evals to that constant

code) ; else to itself

(if (consp code)

(progn

(setq fn (car code))

(if (eq fn ’if) ; if is handled

(progn ; specially

(setq test (mix (cadr code) env))

(if (eq test t) ; if true

(mix (caddr code) env) ; then part

(if (eq test nil) ; if false

(mix (cadddr code) env) ; else

(cons ’if

(cons test

(mapcar #’(lambda (x)

(mix x env))

(cddr code)))))))

120

Simple Partial Evaluator...

(progn ; (fn args)

(setq args (mapcar #’(lambda (x)

(mix x env)) ; mix the args

(cdr code)))

(if (and (every #’constantp args) ; if all constant args

(not (member fn ’(print ; and no

prin1 princ error ; compile-time

format)))) ; side-effects

(kwote (eval (cons fn args))) ; eval it now

(if (and (some #’constantp args); if some constant

(fndef fn)) ; & symbolic fn

(fnmix fn args) ; unfold the fn

(fnopt (cons fn args))))))) ; optimize result

(cons ’bad-code code))))))

121

Examples

>(load "/u/novak/cs394p/mix.lsp")

>(mix ’x ’((x . 4)))

4

>(mix ’(if (> x 2) ’more ’less) ’((x . 4)))

’MORE

(defun power (x n)

(if (= n 0)

1

(if (evenp n)

(square (power x (/ n 2)))

(* x (power x (- n 1))))))

>(fnmix ’power ’(x 3))

(* X (SQUARE X))

>(specialize ’power ’(x 3) ’cube)

>(fndef ’cube)

(LAMBDA (X) (* X (SQUARE X)))

> (cube 4)

64

>(fnmix ’power ’(x 22))

(SQUARE (* X (SQUARE (* X (SQUARE (SQUARE X))))))

122

Examples

; append two lists

(defun append1 (l m)

(if (null l)

m

(cons (first l) (append1 (rest l) m))))

>(fnmix ’append1 ’(’(1 2 3) m))

(CONS 1 (CONS 2 (CONS 3 M)))

123

Binding-Time Analysis

Binding-time analysis determines whether each variable
is static (S) or dynamic (D).

• Static inputs are S and dynamic inputs are D.

• Local variables are initialized to S.

• Dynamic is contagious: if there is a statement
v = f (...D...)
then v becomes D.

• Repeat until no more changes occur.

Binding-time analysis can be online (done while
specialization proceeds) or offline (done as a separate
preprocessing phase). Offline processing can annotate
the code by changing function names to reflect whether
they are static or dynamic, e.g. if becomes ifs or ifd.

124

Futamura Projections11

Partial evaluation is a powerful unifying technique that
describes many operations in computer science.

We use the notation [[P]]L to denote running a program P

in language L. Suppose that int is an interpreter for a
language S and source is a program written in S. Then:

•

output = [[source]]s[input]
= [[int]][source, input]
= [[[[mix]][int, source]]][input]
= [[target]][input]

Therefore, target = [[mix]][int, source].

•
target = [[mix]][int, source]

= [[[[mix]][mix, int]]][source]
= [[compiler]][source]

Thus, compiler = [[mix]][mix, int] = [[cogen]][int]

• Finally, cogen = [[mix]][mix, mix] = [[cogen]][mix]
is a compiler generator, i.e., a program that
transforms interpreters into compilers.

11Y. Futamura, “Partial Evaluation of Computation Process – An Approach to a Compiler-Compiler”,
Systems, Computers, Controls, 2(5):45-50, 1971. The presentation here follows Jones et al.

125

Interpreter

This program is an interpreter for arithmetic expressions
using a simulated stack machine.

(defun topinterp (exp) ; interpret, pop result

(progn (interp exp)

(pop *stack*)))

(defun interp (exp)

(if (consp exp) ; if op

(if (eq (op exp) ’+)

(progn (interp (lhs exp)) ; lhs

(interp (rhs exp)) ; rhs

(plus)) ; add

(if ...)) ; other ops

(pushopnd exp))) ; operand

(defun pushopnd (arg) (push arg *stack*))

(defun plus ()

(let ((rhs (pop *stack*)))

(pushopnd (+ (pop *stack*) rhs))))

>(topinterp ’(+ (* 3 4) 5))

17

126

Specialization

The interpreter can be specialized for a given input
expression, which has the effect of compiling that
expression.

>(topinterp ’(+ (* 3 4) 5))

17

>(specialize ’topinterp

’(’(+ (* a b) c))

’expr1 ’(a b c))

>(pp expr1)

(LAMBDA-BLOCK EXPR1 (A B C)

(PROGN

(PUSH A *STACK*)

(PUSH B *STACK*)

(TIMES)

(PUSH C *STACK*)

(PLUS)

(POP *STACK*)))

>(expr1 3 4 5)

17

127

Parameterized Programs

A highly parameterized program is easier to write and
maintain than many specialized versions for different
applications, but may be inefficient.

Example: Draw a line: (x1, y1) to (x2, y2).
Options include:

•Width of line (usually 1)

• Color

• Style (solid, dashed, etc.)

• Ends (square, beveled)

If all of these options are expressed as parameters, it
makes code longer, makes calling sequences longer, and
requires interpretation at runtime. Partial evaluation can
produce efficient specialized versions automatically.

128

Pitfalls of Partial Evaluation

There are practical difficulties with partial evaluation:

• To be successfully partially evaluated, a program must
be written in the right way. There should be good
binding time separation: avoid mixing static and
dynamic data (which makes the result dynamic).

(lambda (x y z) (lambda (x y z)

(+ (+ x y) z)) (+ x (+ y z)))

• The user may have to give advice on when to unfold
recursive calls. Otherwise, it is possible to generate
large or infinite programs.

One way to avoid this is to require that recursively
unfolding a function call must make a constant
argument smaller according to a well-founded
ordering. Branches of dynamic if statements should
not be unfolded.

129

Pitfalls ...

• Repeating arguments can cause exponential compu-
tation duplication: 12

(defun f (n)

(if (= n 0)

1

(g (f (- n 1)))))

(defun g (m) (+ m m))

• The user should not have to understand the logic of
the output program, nor understand how the partial
evaluator works.

• Speedup of partial evaluation should be predictable.

• Partial evaluation should deal with typed languages
and with symbolic facts, not just constants.

12Jones et al., p. 119.

130

Language Translation

Language translation:

(defpatterns ’lisptojava

’(((aref ?x ?y) ("" ?x "[" ?y "]"))

((incf ?x) ("++" ?x))

((setq ?x ?y) ("" ?x " = " ?y))

((+ ?x ?y) ("(" ?x " + " ?y ")"))

((= ?x ?y) ("(" ?x " == " ?y ")"))

((and ?x ?y) ("(" ?x " && " ?y ")"))

((if ?c ?s1 ?s2) ("if (" ?c ")" #\Tab

#\Return ?s1

#\Return ?s2))

131

Program Transformation using Lisp

>code

(IF (AND (= J 7) (/= K 3))

(PROGN (SETQ X (+ (AREF A I) 3))

(SETQ I (+ I 1))))

>(cpr (trans (trans code ’opt)

’lisptojava))

if (((j == 7) && (k != 3)))

{

x = (a[i] + 3);

++i;

}

132

Max and Min of a Function

A minimum or maximum value of a function occurs where
the derivative of the function is zero (i.e. on a graph of
the function, the line will be horizontal).

We can derive a symbolic expression for the min/max or
a function as follows:

1. Find the derivative of the rhs of the equation with
respect to the independent variable.

2. Make a new equation, setting the derivative to zero.

3. Solve the new equation for the independent variable.

4. Simplify the rhs of the equation.

(def cannonball

’(= y (- (* (* v (sin theta)) t)

(* (/ g 2) (expt t 2)))))

133

Knowledge Representation and Reasoning

Much intelligent behavior is based on the use of
knowledge; humans spend a third of their useful
lives becoming educated. There is not yet a clear
understanding of how the brain represents knowledge.

There are several important issues in knowledge
representation:

• how knowledge is stored;

• how knowledge that is applicable to the current
problem can be retrieved;

• how reasoning can be performed to derive informa-
tion that is implied by existing knowledge but not
stored directly.

The storage and reasoning mechanisms are usually closely
coupled.

134

Representation Hypothesis

A central tenet of A.I. is the representation hypothesis
that intelligent behavior is based on:

• representation of input and output data as symbols
in a physical symbol system13

• reasoning by processing symbol structures, resulting
in other symbol structures.

A central problem of A.I. is to understand the symbolic
representations and reasoning processes.14

13Newell, A., Physical Symbol Systems, Cognitive Science, 1980, 4, 135-183.
14Diagram by John Sowa, from “The Challenge of Knowledge Soup,” 2005.

135

Kinds of Knowledge

Several kinds of information need to be represented:

Long-term Knowledge: This is accumulated
knowledge about the world. It can include simple data,
general rules (every person has a mother), programs, and
heuristic knowledge (knowledge of what is likely to work).
The collection of long-term knowledge is often called a
knowledge base (KB). Human long-term memory seems
unlimited, but writing to it is slow.

Current Data: A representation of the facts of the
current situation. Human short-term memory is very
limited (7± 2 items).15

Conjectures: Courses of action or reasoning that are
being considered but are not yet final.

These will be represented in a knowledge representation
language. Questions that are not directly in the KB may
be answered by inference.

15Miller, George A., “The magical number seven, plus or minus two: some limits on our capacity for
processing information”, Psychological Review vol. 63, pp. 81-97, 1956.

136

Logic

Mathematical logic is an important area of AI:

• Logic is one of the major knowledge representation
and reasoning methods.

• Logic serves as a standard of comparison for other
representation and reasoning methods.

• Logic has a sound mathematical basis.

• The PROLOG language is based on logic.

• Those who fail to learn logic are doomed to reinvent
it.

The forms of logic most commonly used are propositional
calculus and first-order predicate calculus (FOPC).

137

Logical Representation

Mathematical logic requires that certain strong conditions
be satisfied by the data being represented:

• Discrete Objects: The objects represented must
be discrete individuals: people, trucks, but not 1000
gallons of gasoline.

• Truth or Falsity: Propositions must be entirely
true or entirely false; inaccuracy or degrees of belief
are not representable.

• Non-Contradiction: Not only must data not be
contradictory, but facts derivable by rules must not
contradict.

These strict requirements give logic its power, but make
it difficult to use for many practical applications.

138

Propositional Logic

Formulas in propositional logic are composed of:

• Atoms or propositional variables : P,Q, S

• Connectives (in order of precedence):

Math C meaning
Negation ¬ or ∼ ! not
Conjunction ∧ (“wedge”) && and
Disjunction ∨ (“vee”) || or
Implication → or ⊃ ? : implies, if-then

↔ == iff (if and only if)
← ∧ →

• Constants: True or filled-in box True
2 (“box”) False

139

Interpretation in Propositional Logic

An interpretation of a propositional logic formula is an
assignment of a value (true or false) to each atom. There
are 2n possible interpretations of a formula with n atoms.
Although this is large, it is finite; thus, every question
about propositional logic is decidable.

Terminology:

• A formula is valid if it is true under every possible
interpretation: P ∨ ¬P . Otherwise, it is invalid: P .

• A formula is consistent or satisfiable if it is true
under some interpretation. If it is false under every
interpretation, it is inconsistent or unsatisfiable:
P ∧ ¬P .

Clearly, a formula G is valid iff ¬ G is inconsistent.

If a formula F is true under an interpretation I , I is a
model for F .

Two formulas F and G are equivalent if they have the
same values under every interpretation: F ↔ G.

140

Equivalent Formula Laws

• Implication:
F → G = ¬F ∨G
F ↔ G = (F → G) ∧ (G→ F)
A ∧B ∧ C → D = ¬A ∨ ¬B ∨ ¬C ∨D

• De Morgan’s Laws:
¬(F ∨G) = ¬F ∧ ¬G
¬(F ∧G) = ¬F ∨ ¬G

• Distributive:
F ∨ (G ∧H) = (F ∨G) ∧ (F ∨H)
F ∧ (G ∨H) = (F ∧G) ∨ (F ∧H)

Inference Rules

• Modus Ponens: P, P→Q
Q or P, P → Q ` Q

141

Ways to Prove Theorems

Given a set of facts (ground literals) and a set of rules,
a desired theorem can be proved in several ways:

• Truth Table: Write Premises → Conclusion
and show that this sentence is true for every
interpretation. This is also called model checking.

• Satisfiability: Find an assignment of truth values
to variables that will make a propositional calculus
formula true. There are efficient SAT solvers that can
solve systems with millions of propositional variables.

• Algebra: Write Premises → Conclusion and
reduce it to True using laws of Boolean algebra.

• Backward Chaining: Work backward from the
desired conclusion by finding rules that could deduce
it; then try to deduce the premises of those rules.

• Forward Chaining: Use known facts and rules
to deduce additional known facts. If the desired
conclusion is deduced, stop.

• Resolution: This is a proof by contradiction. Using
ground facts, rules, and the negation of the desired
conclusion, try to derive “box” (false or contradiction)
by resolution steps.

142

Rules for Backward Chaining

Backward chaining assumes rules of the form:

A ∧B → C

Such a rule is called a Horn clause; a Horn clause has
at most one positive literal when written in Conjunctive
Normal Form as a disjunction (or) of literals:

A ∧B → C

(A ∧B)→ C

¬(A ∧B) ∨ C
¬A ∨ ¬B ∨ C

143

Backward Chaining

Suppose that we have formulas:
A
B
D
A ∧B → C or C ← A ∧B
C ∧D → E or E ← C ∧D

A conclusion E can be proved recursively:

1. First check whether the desired conclusion is in the
database of facts. If so, return True.

2. Otherwise, for each rule that has the desired
conclusion as its right-hand side, call the algorithm
recursively for each item in the premise (left-hand
side). If all of the premises are true, return True.

3. Otherwise, return False.

In this example, we would know that E is true if we knew
that C and D were true; we would know that C is true
if we knew A and B; A and B are in the database, so C
must be true; and D is in the database, so E is true.

144

Backchaining

Backchaining is easily implemented as a recursive tree
search (file backch.clj).

The function (backchain goal rules facts) tries to
prove a goal given a set of rules and facts.

goal is a symbol (atom or propositional variable).

facts is a list of atoms that are known to be true.

rules is a list of rules of the form
(conclusion prem1 ... premn); each rule states that the
conclusion is true if all of the premises are true.

For example, the rule A ∧ B → C would be written
C ← A ∧B or (c a b), similar to Prolog, c :- a,b .

145

Backchaining Code

backchain works as follows: if the goal is known to be a
fact, return true. Otherwise, try rules to see if some rule
has the goal as conclusion and has premises that are true
(using backchain).

(defn backchain [goal rules facts] ; true if

(or (member goal facts) ; goal is known fact

(some ; or there is some rule

(fn [rule] ; that concludes

(and (= (first rule) goal) ; goal

(every? ; and every premise

(fn [premise] ; can be proved

(backchain premise rules facts))

(rest rule))))

rules)))

>(backchain ’e ’((c a b) (e c d)) ’(a b d))

true

This form of backchaining is useful when there are
relatively few rules but many facts, e.g. stored in a
separate database.

146

(backchain goal rules facts)

user=> (backchain ’e ’((c a b) (e c d)) ’(a b d))

TRACE t254: (backchain e ((c a b) (e c d)) (a b d))

TRACE t255: | (member e (a b d))

TRACE t255: | => nil

; trying rule (e c d): e if c and d

TRACE t259: | (backchain c ((c a b) (e c d)) (a b d))

TRACE t260: | | (member c (a b d))

TRACE t260: | | => nil

; trying rule (c a b): c if a and b

TRACE t264: | | (backchain a ((c a b) (e c d)) (a b d))

TRACE t265: | | | (member a (a b d))

TRACE t265: | | | => (a b d)

TRACE t264: | | => (a b d)

TRACE t266: | | (backchain b ((c a b) (e c d)) (a b d))

TRACE t267: | | | (member b (a b d))

TRACE t267: | | | => (b d)

TRACE t266: | | => (b d)

TRACE t259: | => true

TRACE t269: | (backchain d ((c a b) (e c d)) (a b d))

TRACE t270: | | (member d (a b d))

TRACE t270: | | => (d)

TRACE t269: | => (d)

TRACE t254: => true

true

147

Backchaining Code, version 2

We can add facts to our list of clauses by making a fact
a premise clause with no antecedents; this is the form
used in Prolog. Since the premise list is empty, every?
returns true.

(defn backch [goal] ; goal is true

(some (fn [clause] ; if there is some clause

(and (= goal (first clause))

; that concludes goal

(every? backch (rest clause))))

; and every premise is true

clauses))

(def clauses ’((a) (b) (d) (c a b) (e c d)))

user=> (backch ’e)

true

148

Fact = Rule with No Premises

(def clauses ’((a) (b) (d) (c a b) (e c d)))

user=> (backch ’e)

TRACE t290: (backch e)

TRACE t291: | (backch c)

TRACE t292: | | (backch a)

TRACE t292: | | => true

TRACE t293: | | (backch b)

TRACE t293: | | => true

TRACE t291: | => true

TRACE t294: | (backch d)

TRACE t294: | => true

TRACE t290: => true

true

149

Normal Forms

A literal is an atom or negation of an atom: P or ¬P .

A formula F is in conjunctive normal form (CNF) if F
is of the form F = F1 ∧ F2 ∧ ... ∧ Fn where each Fi is a
clause, i.e. a disjunction (∨, OR) of literals.

Example:

(¬P ∨Q) clause 1
∧ (P) clause 2
∧ (¬Q) clause 3

CNF is used for resolution and for SAT solvers. There is
also a disjunctive normal form, less often used.

150

Satisfiability Checking (Model Checking)

Many problems in CS can be reduced to checking
satisfiability of a propositional calculus formula.

Suppose that there is an election, with candidates Alice
and Bob. One of them will win, but they cannot both win.
We can express this as two clauses in CNF, assumed to
be ANDed together:

(A ∨B)

∧(¬A ∨ ¬B)

There are two interpretations (models) that satisfy all of
the clauses:

A,¬B
¬A,B

A special case of SAT is 3SAT, where all clauses have
at most 3 literals, corresponding to rules that have two
premises and a single conclusion. For example, A∧B →
C becomes ¬A ∨ ¬B ∨ C in CNF.

151

SAT Solvers

There is a trivial algorithm for satisfiability checking:
for each possible interpretation, check whether the
conjunction of clauses is satisfied. The problem is that
this is O(2n) when there are n literals.

However, there are some efficient algorithms:

• The Davis-Putnam or DPLL algorithm uses heuristics
for early termination (determining the value from a
partially specified model), pure symbols (those that
have the same sign in all clauses) and unit clauses
(those with a single literal).

The CHAFF inplementation of DPLL solves hardware
verification problems with a million variables.

• The WalkSAT algorithm uses a combination of hill
climbing (selecting a literal assignment that makes the
most clauses true) and random steps.

152

Uses of SAT Solvers

There are practical uses of SAT solvers:

• Constraint satisfaction problems, e.g. FPGA routing.

• Circuit checking: two Boolean functions f1 and f2 are
equal iff (f1 ∨ f2) ∧ (¬f1 ∨ ¬f2) is unsatisfiable.

• Safety checking: show that an instance where two
trains are going in opposite directions on the same
track is not satisfiable.

• Show that a request will eventually be answered; this
may be approximated by unrolling it into k time
steps.

• Show that a case where a distributed memory system
will give the wrong value for a memory request is
unsatisfiable.

153

Predicate Calculus (First-order Logic)

Propositional logic does not allow any reasoning based on
general rules. Predicate calculus generalizes propositional
logic with variables, quantifiers, and functions.

Formulas are constructed from:

• Predicates have arguments, which are terms:
P (x, f (a)). Predicates are true or false.

• Terms refer to objects in the application domain:

– Variables: x, y, z

– Constants: John,Mary, 3, a, b. Note that
a constant is generally capitalized in English:
Austin can be a constant, but dog cannot.
A constant is equivalent to a function of no
arguments.

– Functions: f (x) whose arguments are terms.

• Quantifiers: ∀ (“for all”) (cf. every) and ∃ (“there
exists” or “for some”) (cf. some) quantify variables:
∀x, ∃y. If a variable is in the scope of a quantifier, it
is bound; otherwise, it is free.

154

Order of Quantifiers

The order in which quantifiers appear is very important;
it must be maintained.

Consider the ambiguous sentence, Every man loves
some woman. This sentence could be interpreted as:

1. For every man, there is some woman (depending on
who the man is) whom the man loves. This would be
written:

∀x[Man(x)→ ∃y[Woman(y) ∧ Loves(x, y)]]

and Skolemized:

Man(x)→
[Woman(lover(x)) ∧ Loves(x, lover(x))]

2. There is some woman (perhaps Marilyn Monroe) who
is loved by every man. This would be written:

∃y∀x[Man(x)→ [Woman(y) ∧ Loves(x, y)]]

and Skolemized:

Man(x)→ [Woman(a) ∧ Loves(x, a)]

155

Skolemization

Skolemization eliminates existential quantifiers by
replacing each existentially quantified variable with a
Skolem constant or Skolem function.

In effect, we are saying “If there exists (at least) one, give
the algebraic name a to it.” Having named the existential
variable, we can eliminate the quantifier.

In general, an existential variable is replaced by a Skolem
function of all the universal variables to its left. (A
Skolem constant is a function of no variables.)

Each Skolem constant or function that is introduced must
be a new one, distinct from any constant or function
symbol that has been used already.

Example: ∃x∀y∀z∃wP (x, y, z, w)
This is Skolemized as P (a, y, z, f (y, z)). ∃x has no
universals to its left, so it is Skolemized as a constant, a.
∃w has universals y and z to its left, so it is Skolemized
as a function of y and z.

After Skolemizing, universal quantifiers are eliminated;
all remaining variables are understood to be universally
quantified.

156

Unification

If a variable is universally quantified, we are justified in
substituting any term for that variable.

If we want to do backchaining with predicate calculus, we
need to find a set of substitutions of terms for variables
that will make the conclusion of a formula match what we
are trying to prove. The process that does this is called
unification.

If we have a formula C ← A∧B, we can think of this as
being analogous to a subroutine: subroutine C consists
of calls to subroutines A and B.

We can think of unification as analogous to binding the
formal arguments of a subroutine to the actual arguments
with which it is called. Unification is more general than
subroutine call: whereas subroutine call is top-down,
unification can send arguments in both directions.

157

Unification Algorithm

Given two predicates that initially have no (universally
quantified) variables in common, a unification algorithm
should:

• Find a substitution of terms for variables that will
make the two predicates identical, or

• Report that no such substitution exists:
the predicates do not unify.

user=> (unify ’(p x (a))

’(p (b) y))

((y (a)) (x (b)) (t t))

user=> (unify ’(q (a))

’(q (b)))

nil

158

Examples of Unification

Consider unifying the literal P (x, g(x)) with:

1. P (z, y) : unifies with {x/z, g(x)/y}
2. P (z, g(z)): unifies with {x/z} or {z/x}
3. P (Socrates, g(Socrates)) : unifies, {Socrates/x}
4. P (z, g(y)): unifies with {x/z, x/y} or {z/x, z/y}
5. P (g(y), z): unifies with {g(y)/x, g(g(y))/z}
6. P (Socrates, f (Socrates)) : does not unify: f and g

do not match.

7. P (g(y), y) : does not unify: no substitution works.

159

Substitutions

A substitution ti/vi specifies substitution of term ti for
variable vi. Unification will produce a set of substitutions
that make two literals the same.

A substitution set can be represented as either sequential
substitutions (done one at a time in sequence) or
as simultaneous substitutions (done all at once).
Unification can be done correctly either way.

We will assume a simultaneous substitution, using the
function sublis. (sublis alist form) performs the
substitutions specified by alist in the formula form.
alist is of the form ((var term) ...).

Suppose we want to substitute {a/x, f (b)/y} in P (x, y).
As a call to sublis, this is:

(sublis ’((x (a)) (y (f (b))))

’(p x y))

= (P (A) (F (B)))

160

Unification Code

(defn unify [u v] (unifyb u v ’((t t))))

; unify terms: subst list, nil if failure.

(defn unifyb [u v subs] ; unification works if:

(and subs

(or (and (= u v) subs) ; identical vars

(varunify v u subs) ; u is a var

(varunify u v subs) ; v is a var

(and (cons? u) (cons? v) ; functions

(= (first u) (first v)) ; same name

(unifyc (rest u) (rest v) subs)))))

; and args unify

; unify variable and term if possible

; adds (var term) to subs, or nil

(defn varunify [term var subs]

(and var subs (symbol? var)

(not (occurs var term))

(cons (list var term)

(subst term var subs))))

161

Unification Code ...

; unify lists of arguments

; lists must be of same length

(defn unifyc [args1 args2 subs]

(if (empty? args1)

(if (empty? args2)

subs) ; return subs, else fail

(and args2 subs

(let [newsubs (unifyb (first args1)

(first args2) subs)]

(if newsubs

(unifyc (sublis newsubs (rest args1))

(sublis newsubs (rest args2))

newsubs))))))

162

Unification Examples

user=> (unify ’(p x) ’(p (a)))

((x (a)) (t t))

user=> (unify ’(p x (g x) (g (b)))

’(p (f y) z y))

((y (g (b)))

(z (g (f (g (b)))))

(x (f (g (b)))) (t t))

user=> (unify ’(p x (f x)) ’(p (f y) y))

nil

163

Soundness and Completeness

The notation p |= q is read “p entails q”; it means that
q holds in every model in which p holds.

The notation p `m q means that q can be derived from p
by some proof mechanism m.

A proof mechanism m is sound if p `m q → p |= q.

A proof mechanism m is complete if p |= q → p `m q.

Resolution for predicate calculus is:

• sound: If 2 is derived by resolution, then the original
set of clauses is unsatisfiable.

• complete: If a set of clauses is unsatisfiable, resolution
will eventually derive 2. However, this is a search
problem, and may take a very long time.

We generally are not willing to give up soundness, since
we want our conclusions to be valid. We might be willing
to give up completeness: if a sound proof procedure will
prove the theorem we want, that is enough.

164

Resolution

Suppose that we have formulas such as the following:
A
B
D
¬A ∨ ¬B ∨ C (same as A ∧B → C)
¬C ∨ ¬D ∨ E (same as C ∧D → E)

A desired conclusion, say E, is negated to form the
hypothetical fact ¬E ; then the following algorithm is
executed:

1. Choose two clauses that have exactly one pair of
literals that are complementary (have different signs).

2. Produce a new clause by deleting the complementary
literals and combining the remaining literals.

3. If the resulting clause is empty (“box”), stop; the
theorem is proved by contradiction. (If the negation of
the theorem leads to a contradiction, then the theorem
must be true.)

This assumes that the premises are consistent.

165

Conjunctive Normal Form

For a resolution program, we want to eliminate as much
of the logic notation as possible. This is done in the
following ways:

• Universal ∀ quantifiers are eliminated by assuming
that any variable is universally quantified: x .

• Existential ∃ quantifiers are eliminated by Skolemiz-
ing and turning existential variables into constants,
which are functions of no arguments: (b) .

• Predicates in a clause are assumed to be connected by
∨.

• Clauses are assumed to be connected by ∧.

• The only operator remaining is not

• The conclusion is negated and added to the set of
clauses.

A clause such as “all hounds howl” becomes:
∀xHound(x)→ Howl(x)
¬Hound(x) ∨Howl(x)
((not (hound x)) (howl x))

166

Resolution Example

1. All hounds howl at night.

2. Anyone who has any cats will not have any mice.

3. Light sleepers do not have anything which howls at
night.

4. John has either a cat or a hound.

5. (Conclusion) If John is a light sleeper, then John does
not have any mice.

167

Resolution Example

>(linres *hounds* *houndc*)

1. ((NOT (HOUND X)) (HOWL X))

2. ((NOT (LS X)) (NOT (HAVE X Y))

(NOT (HOWL Y)))

3. ((NOT (HAVE X Y)) (NOT (CAT Y))

(NOT (HAVE X Z)) (NOT (MOUSE Z)))

4. ((HAVE (JOHN) (A)))

5. ((CAT (A)) (HOUND (A)))

6. ((LS (JOHN)))

7. ((HAVE (JOHN) (B)))

8. ((MOUSE (B)))

(6, 2): 9. ((NOT (HAVE (JOHN) Y)) (NOT (HOWL Y)))

(9, 1): 10. ((NOT (HAVE (JOHN) X)) (NOT (HOUND X)))

(10, 4): 11. ((NOT (HOUND (A))))

(11, 5): 12. ((CAT (A)))

(12, 3): 13. ((NOT (HAVE X (A))) (NOT (HAVE X Z))

(NOT (MOUSE Z)))

(13, 4): 14. ((NOT (HAVE (JOHN) Z)) (NOT (MOUSE Z)))

(13, 4): 15. ((NOT (HAVE (JOHN) (A)))

(NOT (MOUSE (A))))

(14, 4): 16. ((NOT (MOUSE (A))))

(14, 7): 17. ((NOT (MOUSE (B))))

(17, 8): 18. NIL

PROVED

168

Natural Deduction

Natural deduction methods perform deduction in a
manner similar to reasoning used by humans, e.g. in
proving mathematical theorems.

Forward chaining and backward chaining are natural
deduction methods. These are similar to the algorithms
described earlier for propositional logic, with extensions
to handle variable bindings and unification.

Backward chaining by itself is not complete, since it only
handles Horn clauses (clauses that have at most one
positive literal). Not all clauses are Horn; for example,
“Every integer is odd or even” becomes:
Integer(x)→ Odd(x) ∨ Even(x)
¬Integer(x) ∨Odd(x) ∨ Even(x)
which has two positive literals. Such clauses do not work
with backchaining.

Splitting can be used with backchaining to make it
complete. Splitting makes assumptions (e.g. “Assume x
is Odd) and attempts to prove the theorem for each case.
If the conclusion is true for all possible assumptions, it is
true.

169

Backchaining Theorem Prover

1. ((FATHER (ZEUS) (ARES)))

2. ((MOTHER (HERA) (ARES)))

3. ((FATHER (ARES) (HARMONIA)))

4. ((PARENT X Y) (MOTHER X Y))

5. ((PARENT X Y) (FATHER X Y))

6. ((GRANDPARENT X Y) (PARENT Z Y) (PARENT X Z))

>(goal ’(father x (harmonia)))

1> (GOAL (FATHER X (HARMONIA)))

((X ARES))

>(goal ’(parent z (harmonia)))

1> (GOAL (PARENT Z (HARMONIA)))

2> (GOAL (FATHER Z (HARMONIA)))

<2 (GOAL ((Z ARES)))

((Z ARES))

>(goal ’(grandparent x (harmonia)))

1> (GOAL (GRANDPARENT X (HARMONIA)))

2> (GOAL (PARENT Z (HARMONIA)))

3> (GOAL (FATHER Z (HARMONIA)))

<3 (GOAL ((Z ARES)))

<2 (GOAL ((Z ARES)))

2> (GOAL (PARENT X (ARES)))

3> (GOAL (FATHER X (ARES)))

<3 (GOAL ((X ZEUS)))

<2 (GOAL ((X ZEUS)))

((X ZEUS))

170

; remove the father of ares

>(setf (get ’father ’ground) ’(3))

(3)

>(goal ’(grandparent x (harmonia)))

1> (GOAL (GRANDPARENT X (HARMONIA)))

2> (GOAL (PARENT Z (HARMONIA)))

3> (GOAL (FATHER Z (HARMONIA)))

<3 (GOAL ((Z ARES)))

<2 (GOAL ((Z ARES)))

2> (GOAL (PARENT X (ARES)))

3> (GOAL (FATHER X (ARES)))

<3 (GOAL NIL)

3> (GOAL (MOTHER X (ARES)))

<3 (GOAL ((X HERA)))

<2 (GOAL ((X HERA)))

<1 (GOAL ((X HERA)))

((X HERA))

171

Deductive Composition of Astronomical
Software from Subroutine Libraries 16 17

Amphion: Compose programs from a subroutine
library, based on a graphical specification, using
deduction.

SPICE: subroutine library for solar-system geometry.

• Various systems of time: ephemeris time, spacecraft
clock time, etc.

• Various frames of reference

• Light does not travel instantaneously over astronom-
ical distances

Example task: observe the position of a moon of a nearby
planet to determine position of the spacecraft.

16M. Stickel, R. Waldinger, M. Lowry, T. Pressburger, I. Underwood: ”Deductive Composition of
Astronomical Software from Subroutine Libraries”, Proc. 12th Int. Conf on Automated Deduction
(CADE’94), Nancy (France), June 994, LNAI 814, Springer Verlag, pp. 341-355.

17Steve Roach and Jeffrey Van Baalen, “Experience Report on Automated Procedure Construction for
Deductive Synthesis”, Proc. Automated Software Engineering Conf., Sept. 2002, pp. 69-78.

172

Difficulty of Programming

• Subroutines may not be well documented

• User must understand documentation

• Many subroutines: takes time to become familiar with
the collection

• User may rewrite subroutine rather than reusing it

• User might make mistakes, e.g. wrong type of units
of argument

Constructive proof: given a theorem ∀x∃y P (x, y),
prove it by constructing a y that satisfies the theorem.

During program synthesis, witnesses are constructed
for existential terms. The witnesses correspond to
subroutines in the SPICE library (concrete terms).

specification→ theorem→ proof → program

173

Domain Theory

A domain theory provides a logical language for the
application domain:

• Time: time is abstract, but has several concrete
representations (ephemeris time, UTC, spacecraft
clock time)

• Points, rays, planes

• Photon travel

• Events (space-time points)

• Celestial bodies, e.g. Saturn

• Axioms that relate abstract and concrete terms.

∀tc (= (absctt UTC tc)
(absctt Ephemeris (UTC2Ephemeris tc)))

∀tc (= (absctt Ephemeris tc)
(absctt UTC (Ephemeris2UTC tc)))

absctt abstracts from a time system and time coordinate
to an abstract time. These axioms specify what the
conversion functions such as Ephemeris2UTC do.

Representation conversions are combinatorially explosive
because they can loop.

174

Astronomical Domain

About 200 axioms are used to describe the domain of
astronomy.

• lightlike?(e1, e2) holds if a photon could leave the
event (position and time) e1 and arrive at event e2.

• ephemeris-object-and-time-to-event yields an event
corresponding to the position of a given astronomical
object (planet or spacecraft) at a given time.

• a-sent(o, d, ta) computes the time a photon must
leave object o to arrive at destination d at time ta.

• Axiom lightlike?-of-a-sent:

(all (o d ta)

(lightlike?

(ephemeris-object-and-time-to-event

o (a-sent o d ta))

(ephemeris-object-and-time-to-event d ta)))

– o = origin

– d = destination

– ta = time of arrival

175

Problem Difficulty

The program out-performs human experts and signifi-
cantly out-performs non-experts:

• Expert who knows subroutine library: 30 minutes

• Non-expert: several days

• Program: 3 minutes

Time to construct specification:

• Expert: a few minutes

• Non-expert: 30 minutes

176

Where is the shadow of Io on Jupiter?

Dotted lines indicate photon motion connections, i.e.
lightlike?.

177

Shadow of Io Theorem

(all (time-voyager-2-c)

(find (shadow-point-c)

(exists

(time-sun sun-spacetime-loc time-io io-spacetime-loc

time-jupiter jupiter-spacetime-loc time-voyager-2

voyager-2-spacetime-loc shadow-point jupiter-ellipsoid

ray-sun-to-io)

(and

(= ray-sun-to-io

(two-points-to-ray

(event-to-position sun-spacetime-loc)

(event-to-position io-spacetime-loc)))

(= jupiter-ellipsoid

(body-and-time-to-ellipsoid jupiter time-jupiter))

(= shadow-point

(intersect-ray-ellipsoid ray-sun-to-io jupiter-ellipsoid))

(lightlike? jupiter-spacetime-loc voyager-2-spacetime-loc)

(lightlike? io-spacetime-loc jupiter-spacetime-loc)

(lightlike? sun-spacetime-loc io-spacetime-loc)

(= voyager-2-spacetime-loc

(ephemeris-object-and-time-to-event voyager-2 time-voyager-2))

(= jupiter-spacetime-loc

(ephemeris-object-and-time-to-event jupiter time-jupiter))

(= io-spacetime-loc

(ephemeris-object-and-time-to-event io time-io))

(= sun-spacetime-loc

(ephemeris-object-and-time-to-event sun time-sun))

(= shadow-point (abs (coords-to-point j2000) shadow-point-c))

(= time-voyager-2

(abs ephemeris-time-to-time time-voyager-2-c))))))

178

Shadow of Io Program

SUBROUTINE SHADOW (TIMEVO, SHADOW)

DOUBLE PRECISION TIMEVO ...

INTEGER JUPITE

PARAMETER (JUPITE = 599) ...

DOUBLE PRECISION RADJUP (3) ...

CALL BODVAR (JUPITE, ’RADII’, DMYO, RADJUP)

TJUPIT = SENT (JUPITE, VOYGR2, TIMEVO)

CALL FINDPV (JUPITE, TJUPIT, PJUPIT, DMY20)

CALL BODMAT (JUPITE, TJUPIT, MJUPIT)

TIO = SENT (IO, JUPITE, TJUPIT)

CALL FINDPV (IO, TIO, PIO, DMY30)

TSUN = SENT (SUN, 10, TIO)

CALL FINDPV (SUN, TSUN, PSUN, DMY40)

CALL VSUB (PIO, PSUN, DPSPI)

CALL VSUB (PSUN, PJUPIT, DPJPS)

CALL MXV (MJUPIT, DPSPI, XDPSPI)

CALL MXV (MJUPIT, DPJPS, XDPJPS)

CALL SURFPT (XDPJPS, XDPSPI, RADJUP (1),

RADJUP, RADJUP (3), P, DMY90)

CALL VSUB (P, PJUPIT, DPJUPP)

CALL MTXV (MJUPIT, DPJUPP, SHADOW)

END

179

Performance

Overall system performance is a win:

• Easy to use, even by novices.

• Easier to revise a stored specification than to make a
new one.

• Easy to expand axiom set for new subroutines.

Most programs produced are 2-3 pages of Fortran,
consisting mainly of declarations and subroutine calls.
There are no if statements or loops.

180

Deductive Composition of Programs

Logic can be used to construct programs by composition
of subroutines from a library. We write axioms that
describe what the subroutines do, then write a theorem
about the goal of the program we want. Proving the
theorem constructs a way to accomplish the goal by
composition of function calls; these function calls can then
be easily converted into a program.

We express what subroutines do with rules; in logic
notation:

cartesian(p) ∧ cartesian(q)
→ distance(p, q, euclidist(p, q))

This expresses the axiom that if p and q are points in
cartesian coordinates, then the distance between them
is given by the function euclidist(p, q) . This axiom
specifies the required inputs of the function euclidist,
as well as what the function does.

181

Logic Form of Rules

Our rule in logic form is:

cartesian(p) ∧ cartesian(q)
→ distance(p, q, euclidist(p, q))

For backchaining, we put the conclusion on the left:

((distance p1 p2 (euclidist p1c p2c)) ; dist is

(cartesian p1 p1c) ; if p1c is cart of p1

(cartesian p2 p2c)) ; and p2c is cart of p2

cartesian is now a two-place predicate:
cartesian(p, pc) is true if pc is the Cartesian form of
p.

182

Navigation in the Plane

We will use navigation in the plane as a domain in which
to explore deductive program synthesis; this domain can
be considered a mini version of the Amphion domain of
interplanetary navigation.

Many forms of data are used in solving navigation
problems:

• xy-data is a list (x y). The corresponding predicate
is cartesian: (cartesian p q) means that q is the
Cartesian equivalent of p.

• rth-data is a list (r theta) where theta is in
radians, measured counter-clockwise from the x axis.
The corresponding predicate is polar.

• rb-data is a list (range bearing) where bearing
is in degrees, measured clockwise from north.

• dd-data is a list (distance direction) where
direction is a compass direction such as n, s, e, w,
ne, etc.

183

Navigation Predicates

• lat-long is a list (latitude longitude) where
the values are in floating degrees; negative longitude
denotes west longitude.

• UTM or Universal Transverse Mercator is a way of
representing positions on Earth that locally maps
locations to a flat, Cartesian x-y grid. UTM is a
list (easting northing) where the values are in
meters. northing is meters north of the equator and
easting is meters east of center on a six-degree strip
of longitude, plus 500000.

((cartesian p (ll2utm q)) (lat-long p q))

“The cartesian form of p is (ll2utm q) if the lat-
long form of p is q.”

• city is a symbol, such as austin. An alist maps a
city to its lat-long.

• (movefrom a b c) specifies that c is the result of
moving from a by an amount b.

184

Example Navigation Problem

These predicates can be used for problems such as:

A helicopter starts at Austin and flies 80000
meters at bearing 20 to pick up a clue; then it
flies 100000 meters NW and picks up a treasure.
Find the range and bearing to take the treasure to
Dallas.

This problem might be nontrivial for a human
programmer, even with documentation of the subroutine
library. The resulting program is longer than the logic
specification.

185

Difficulties with Deductive Synthesis

There are some difficulties with using logic for deductive
synthesis:

• It is possible to get into loops: a Cartesian point can
be converted to Polar, and then back to Cartesian
again.

•We have the usual problem of combinatoric explosion
in searching for a proof.

• The resulting program may not be as efficient as
possible: there may be recomputation of the same
quantities.

186

Knowledge Rep. in Predicate Calculus

Facts: Facts can be stored in a propositional database:

(DOG DOG1)

(NAME DOG1 FIDO)

(HOUND DOG1)

(LOVES JOHN MARY)

Facts can be retrieved in response to patterns:

(LOVES JOHN MARY) Does John love Mary?

(LOVES JOHN ?X) Whom does John love?

(LOVES ?X MARY) Who loves Mary?

(LOVES ?X ?Y) All pairs of lovers.

Knowledge: Knowledge is stored as logical axioms that
can be used for deduction. For example, the rule that ‘all
hounds howl’ could be represented as:

(ALL X (IF (HOUND X) (HOWL X)))

or

(IF (HOUND ?X) (HOWL ?X))

187

Rules

Rules are typically written in an “If ... then” form:

If <premises> then <conclusion>

If <condition> then <action>

These forms correspond to the logical implication form:

∀xP1(x) ∧ ... ∧ Pn(x)→ C(x)

However, the interpretation of rules may or may not
correspond to a formal logical interpretation.

188

Backward Chaining

In backward chaining, if it is desired to prove the
conclusion C of a clause, the system tries to do so by
proving the premises P1...Pn.

∀xCAR(x) ∧RED(x)→ EXPENSIV E(x)

Given this axiom, an attempt to prove that BMW1 is
expensive would be reduced to the subproblems of proving
that it is a car and that it is red.

Problems:

1. Infinite loops. For example, consider transitivity:

∀x∀y∀zGREATER(x, y) ∧ GREATER(y, z) →
GREATER(x, z)

2. The system has to keep reproving (and failing to
prove) the same mundane facts.

189

Importance of Backchaining

Backward chaining, rather than forward chaining, is the
method of choice for most search problems. The reason
is that backward chaining causes variables to be bound
to the constant data of the problem of interest, and thus
greatly reduces the size of the search space.

Example:

∀x∀yWIFE(x, y)→ LOV ES(x, y)

WIFE(John,Mary)
WIFE(Bill, Jane)
...

Suppose we want to prove LOVES(John,Mary). Back-
ward chaining will bind x and y in the theorem, do a single
database lookup of WIFE(John,Mary), and succeed.
Forward chaining will assert the LOVES relationship for
every WIFE pair in the database until it happens to hit
LOVES(John,Mary).

190

PROLOG

PROLOG is a logic-based programming language. A
PROLOG statement, C ← P1, ..., Pn can be considered
to be a rule. Proofs proceed by backchaining.

Problems:

1. Hard to control search.

2. The Horn clause restriction prevents some kinds of
rules from being written:

(a) Rules which conclude a negated conclusion, or have
a disjunction (OR) in the conclusion.

(b) Rules which depend on a fact being not true.
(Some PROLOGs do this using negation as
failure.)

3. Backchaining is not logically complete. For example,
it cannot do reasoning by cases.

PROLOG has the advantages that search is built into
the language, and that PROLOG programs can run
“forward” or “backward”.

191

Predicate Calculus as Programming Language

1. New knowledge or methods can be added.

Advantage: In theory, at least, the program can
immediately combine new knowledge with existing
knowledge.

Disadvantage: The “new knowledge” may contradict
or subsume existing knowledge without our being
aware of it.

2. Predicate Calculus is completely “unstructured”. Any
two clauses which are unifiable may interact.

3. In order to make a program run in a reasonable length
of time, it is usually necessary to restructure clauses
to:

• Order the search so the desired solution will be
found rapidly.

• Reduce the branching factor of the search tree.

192

When to Use Logic

Logic is a preferred representation and reasoning method
in cases where the data are discrete and there is “absolute
truth”. Such applications include:

• Mathematical theorem proving.

• Proofs of correctness of computer programs.

• Proofs of correctness of logic designs.

193

Unit Conversion

There are hundreds of units of measurement in common
use.18

Conversion between different units is an important
problem:

• Most programming languages do not support or check
units.

• Humans have difficulty converting units. (“Police
estimated that the bomb contained 22 pounds of
explosive.”)

• Use of the wrong units caused a $327 million
spacecraft to crash into Mars.

en.wikipedia.org/wiki/Mars_Climate_Orbiter

• Although unit conversion is actually easy, several
complex and costly methods have been published.

18G. Novak, “Conversion of Units of Measurement”, IEEE Transactions on Software Engineering, vol. 21,
no. 8 (August 1995), pp. 651-661.

194

Conversion Using SI Units

The scientific standard for units is the Systeme
Internationale

en.wikipedia.org/wiki/International_System_of_Units

previously known as the meter-kilogram-second (MKS)
system.

Conversion of units is simple: Each unit is assigned a
number that converts it to the corresponding SI unit.
Given two units, source and goal,

source ∗ fsource = SI = goal ∗ fgoal

goal = source ∗ (fsource / fgoal)

When there are multiple units, their factors are multiplied
or divided as above. This process is O(n) for a quotient
involving n units.

195

Unit Checking

It is necessary to check that a unit conversion is correct:
a length cannot be converted to a mass. Each unit has
a corresponding abstract unit, which is a quotient of two
products. For example, a force such as newton has an
abstract unit:

(/ (* mass length) (* time time))

If the abstract units for source and goal are divided, and
corresponding units in numerator and denominator are
cancelled, the result should be 1.

Symbolically, if the terms are collected into a quotient of
two lists and the lists are sorted, the two lists should be
equal.

For efficiency, the units can be encoded as 32-bit integers
that are added and subtracted, giving a result of 0 for a
correct conversion.

196

Special Conversions

Two special conversions of incompatible units are often
seen:

• Mass to weight (force)

• Mass to energy

These can be detected by the pattern of abstract units,
allowing the correct conversion factor to be applied.

197

Unit Simplification

A combination of units can be simplified symbolically as
follows:

• Cancel corresponding units in numerator and
denominator.

• Search for the known composite unit that covers the
most terms in the existing expression.

• Repeat until all terms are covered.

>(glsimplifyunit ’(/ volt ohm))

AMPERE

198

Problem Solving by Unit Conversion

Some physics problems are just unit conversions:

How many Watts is a person on average?

To convert from source unit:

(/ (* 2000 KILO CALORIE) DAY)

to goal unit:

WATT

multiply source quantity by: 96.85185185

199

Fixing Conversion Errors

Experience with an on-line conversion system showed that
users would ask for impossible conversions, e.g. convert
amps to horsepower.

However, it is possible to lead the user to a correct
specification:

• Divide the goal unit by the source unit symbolically

• Simplify the resulting unit expression

• Present the result to the user:

The units could be converted if you multiplied
by an appropriate quantity of VOLT

200

Units in Programming Languages

It is possible to incorporate units into the type system,
make legal conversions automatically, and detect errors:

>(gldefun test ((x (units real meter))

(z (units real inch)))

(z = x))

result type: (UNITS REAL INCH)

(LAMBDA (X Z) (SETQ Z (* 39.37007874015748 X)))

(gldefun testb ((x (units real meter))

(z (units real kilogram)))

(z = x))

glisp error detected in function TESTB

Cannot convert METER to KILOGRAM

in expression: (Z = X)

201

Expert Systems19

Expert systems attempt to capture the knowledge of a
human expert and make it available through a computer
system.20

Expert systems are expected to achieve significant actual
performance in a specialized area that normally requires
a human expert for successful performance, e.g, medicine,
geology, investment counseling.

Expert systems have been some of the most successful
applications of A.I. Since these programs must perform
in the real world, they encounter important issues for A.I.:

• Lack of sufficient input information

• Probabilistic reasoning

19These slides jointly authored with Bruce Porter.
20Duda, R. O. and Shortliffe, E. H., “Expert Systems Research”, Science, vol. 220, no. 4594,15 April

1983, pp. 261-268.

202

Power-Based Strategy

Some have hoped that powerful theorem-proving methods
on fast computers would allow useful reasoning from a set
of axioms. Several problems have kept this power-based
strategy from succeeding.

• Combinatoric explosion: blind search using even a
small axiom set takes excessive time.

• Knowledge representation: few real-world relation-
ships are universally true.

• Lack of inputs: many problems lack some inputs, but
require fast action anyway.

Knowledge-Based Strategy

“In the Knowledge Lies the Power”

The knowledge-based strategy is to include within the
program a great deal of knowledge to cover particular
cases.

The surprising finding:

A thousand rules can provide significant
performance within a limited domain.

203

Expert Reasoning

Expert reasoning typically has special characteristics:

• Use of specialized representations appropriate to
the domain and specialized problem-solving methods
based on those representations.

• Translation of observables into specialized terminol-
ogy and representations (e.g., “person has turned
blue” into “patient is cyanotic”).

• Use of empirical rules of thumb (e.g., “to blow out a
tree stump, use one stick of dynamite per 4 inches of
stump diameter”21).

• Use of empirical correlations (e.g., certain bacteria
have been observed to be likely to cause infection in
burn patients).

• Use of “incidental” facts to discriminate cases (e.g.,
“a snake that swims with its head out of the water is
a water moccasin”). Such discrimination depends on
the sparseness of the domain (only certain snakes are
possible).

21Parker, T., Rules of Thumb, Boston, MA: Houghton Mifflin Publishers, 1983.

204

Expert Knowledge

Expert knowledge is highly idiosyncratic:

• Build stair steps 7 inches high and 10 inches wide.

• Two times height plus width should equal 25 inches.

•Width times height should equal 72 inches.22

• Different rules may be generated for the same
phenomena.

• The rules may have no fundamental validity and
may give bad answers outside a limited domain of
applicability.

• The rules generally work within the limits of
applicability, but the expert often doesn’t know what
the limits are.

22Parker, T., Rules of Thumb, Boston, MA: Houghton Mifflin Publishers, 1983.

205

Choosing a Domain

A domain chosen for an expert system (especially a first
one) should have the following characteristics:

• Task takes from a few minutes to a few hours for
human experts.

• Specialized task (avoid commonsense reasoning).

• Expertise in the area exists and can be identified.

• An expert who is willing to commit significant
amounts of time over a long period is available.

• Opportunity for large payoff.

Problem Characteristics

• Complexity: significant expertise required.

• Lack of algorithmic solution to the problem.

• Data may be unavailable or uncertain.

• “Judgment” may be used in reaching conclusion.

• Many different kinds of knowledge sources involved
in performing task.

206

Rule-Based Systems

One of the most popular methods for representing
knowledge is in the form of Production Rules. These
are in the form of:

if conditions then conclusion

Example: MYCIN23

Rule 27

If 1) the gram stain of the organism is gram

negative, and

2) the morphology of the organism is rod, and

3) the aerobicity of the organism is

anaerobic,

Then: There is suggestive evidence (0.6) that

the identity of the organism is

Bacteroides.

23Shortliffe, Edward H., Computer Based Medical Consultations: MYCIN, American Elsevier, 1976.
Buchanan, Bruce G. and Shortliffe, Edward H., Rule-Based Expert Systems, Addison-Wesley, 1984.

207

Advantages of Rules

• Knowledge comes in meaningful chunks.

• New knowledge can be added incrementally.

• Rules can make conclusions based on different kinds
of data, depending on what is available.

• Rule conclusions provide “islands” that give multi-
plicative power.

• Rules can be used to provide explanations, control
problem-solving process, check new rules for errors.

208

EMYCIN

EMYCIN was the first widely used expert system tool.

• Good for learning expert systems

• Limited in applicability to “finite classification”
problems:

– Diagnosis

– Identification

• Good explanation capability

• Certainty factors

Several derivative versions exist.

209

Rule-Based Expert Systems24

MYCIN diagnoses infectious blood diseases using a
backward-chained (exhaustive) control strategy.

The algorithm, ignoring certainty factors, is basically
backchaining:

Given:

1. list of diseases, Goal-list

2. initial symptoms, DB

3. Rules

For each g ∈ Goal-list do
If prove(g, DB, Rules) then Print (“Diagnosis:”, g)

Function prove (goal, DB, Rules)
If goal ∈ DB then return True
elseif ∃r ∈ Rules such that rRHS contains goal
then return provelist(LHS, DB, Rules)25

else Ask user about goal and return answer

24Shortliffe, E. Computer-based medical consultations: MYCIN. New York: Elsevier, 1976.
25provelist calls prove with each condition of LHS

210

Reasoning Under Uncertainty

Human expertise is based on effective application of
learned biases. These biases must be tempered with
an understanding of strengths and weaknesses (range of
applicability) of each bias.

In expert systems, a model of inexact reasoning is needed
to capture the judgmental, “art of good guessing” quality
of science.

In this section we discuss several approaches to reasoning
under uncertainty.

• Bayesian model of conditional probability

• EMYCIN’s method, an approximation of Bayesian

• Bayesian nets, a more compact representation used
for multiple variables.

211

Bayes’ Theorem

Many of the methods used for dealing with uncertainty
in expert systems are based on Bayes’ Theorem.

Notation:

P (A) Probability of event A
P (AB) Probability of events A and B occurring together
P (A|B) Condiional probability of event A given

that event B has occurred: P (rain|cloudy)

If A and B are independent, then P (A|B) = P (A) and
P (AB) = P (A) ∗ P (B) .

Expert systems usually deal with events that are not
independent, e.g. a disease and its symptoms are not
independent.

Bayes’ Theorem

P (AB) = P (A|B) ∗ P (B) = P (B|A) ∗ P (A)

therefore P (A|B) = P (B|A) ∗ P (A) / P (B)

212

Uses of Bayes’ Theorem

In doing an expert task, such as medical diagnosis,
the goal is to determine identifications (diseases) given
observations (symptoms). Bayes’ Theorem provides such
a relationship.

P (A|B) = P (B|A) ∗ P (A) / P (B)

Suppose: A = Patient has measles, B = has a rash
Then: P (measles/rash) =

P (rash/measles) ∗ P (measles)/P (rash)

The desired diagnostic relationship on the left can be
calculated based on the known statistical quantities on
the right.

213

Joint Probability Distribution

Given a set of random variablesX1...Xn, an atomic event
is an assignment of a particular value to each Xi.

The joint probability distribution is a table that assigns
a probability to each atomic event. Any question of
conditional probability can be answered from the joint.26

Toothache ¬ Toothache
Cavity 0.04 0.06
¬ Cavity 0.01 0.89

Problems:

• The size of the table is combinatoric: the product of
the number of possibilities for each random variable.

• The time to answer a question from the table will also
be combinatoric.

• Lack of evidence: we may not have statistics for
some table entries, even though those entries are not
impossible.

26Example from Russell & Norvig.

214

Chain Rule

We can compute probabilities using a chain rule as
follows:

P (A ∧B ∧ C) = P (A|B ∧ C) ∗ P (B|C) ∗ P (C)

If some conditions C1 ∧ ...∧Cn are independent of other
conditions U , we will have:

P (A|C1 ∧ ... ∧ Cn ∧ U) = P (A|C1 ∧ ... ∧ Cn)

This allows a conditional probability to be computed
more easily from smaller tables using the chain rule.

215

Bayesian Networks

Bayesian networks, also called belief networks or
Bayesian belief networks, express relationships among
variables by directed acyclic graphs with probability
tables stored at the nodes.27

27Example from Russell & Norvig.

216

Computing with Bayesian Networks

If a Bayesian network is well structured as a poly-tree (at
most one path between any two nodes), then probabilities
can be computed relatively efficiently.

One kind of algorithm, due to Judea Pearl, uses a
message-passing style in which nodes of the network
compute probabilities and send them to nodes they are
connected to.

Several software packages exist for computing with belief
networks.

217

A Heretical View

My own view is that CF combination algorithms are not
a major issue.

Question: How accurate does the computation in the
middle need to be, given that the input data are only
accurate to (say) ±10%?

It’s hard to argue that extreme accuracy in the
computation is required.

Remember:

• Use CF’s as a last resort, when a good guess is the
best you can do.

• Never trust a CF to have more than one digit of
accuracy.

218

EMYCIN’s Certainty Factors

EMYCIN’s methods of doing Certainty Factor calcula-
tions represent a good set of engineering choices. They
have been criticized, but represent a useful technique
worthy of study.

Several kinds of CF’s are involved:

• Data CF

• CF from antecedent of a rule

• CF due to rule as a whole

• Combination of CF’s from multiple rules.

There is a further question of what a CF is supposed to
mean.

219

Certainty Factor Meaning

Traditional probability values are on a scale of 0-1.
Shortliffe argues this does not support “ruling out”
reasoning of the kind done in medicine.

EMYCIN CF’s are on a scale of -1 to +1. A CF
combines both a “positive probability” and a “negative
probability”.

MB 0 - 1 Measure of Belief
MD 0 - 1 Measure of Disbelief
CF = MB - MD -1 to 1 Certainty Factor

-1 Definitely False
0 No information, or cancellation
+1 Definitely True

When a data parameter is True/False, “False” is
represented as “True” with a CF of -1.

220

EMYCIN Data CF’s

Each piece of data has a CF associated with it; even
if the parameter is single-valued, there may be multiple
possibilities:

COLOR = ((RED .6) (BLUE .3))

Data is referenced using predicates that differ on:

• the CF values that cause the predicate to be “true”

• the CF value returned by the predicate.

The two most commonly used predicates are:

• SAME: “True” if data CF > .2; returns data CF .

• KNOWN: “True” if data CF > .2; returns 1.0

221

EMYCIN Antecedent CF

The antecedent (“if part”) of a rule is usually a
conjunction of conditions, using the EMYCIN $AND

function:

($AND (SAME CNTXT GRAM GRAMNEG)

(SAME CNTXT MORPH COCCUS))

$AND operates as follows:

1. If any clause is false (nil) or has CF ≤ .2 , $AND
returns false (nil). Thus, .2 is used as a cutoff
threshold. Any data believed less strongly than .2
is considered to be false.

2. If every clause has CF > .2, $AND returns the
minimum of the clause CF values.

There is also a function $OR that returns the maximum
of its argument CF values.

222

Rule Certainty Factors

Premise:

($AND (SAME CNTXT SITE BLOOD)

(SAME CNTXT GRAM GRAMNEG)

(SAME CNTXT MORPH ROD)

(SAME CNTXT BURNED))

Action:

(CONCLUDE CNTXT

IDENTITY PSEUDOMONAS-AERUGINOSA

TALLY 400)

The result of the rule as a whole is calculated as follows:

1. $AND sets the global variable TALLY to the minimum
CF of its components.

2. The Rule CF is TALLY times the CF specified in the
CONCLUDE line, divided by 1000. In this example, the
rule CF is 0.4 .

This forms the input to the CF Combination algorithm.

223

Certainty Factor Combination

When two sets of evidence imply the same conclusion,
there is a need to compute the total certainty factor based
on the certainties of the sets of evidence.

A CF combination method should be:

• Commutative: A ·B = B · A
• Associative: A · (B · C) = (A ·B) · C

This will make the resulting CF independent of the order
in which pieces of evidence are considered.

224

Certainty Factor Combination

If a datum’s previous certainty factor is CFp and a
new rule computes a certainty factor CFn, the combined
certainty factor is given by:

cfcombine(CFp, CFn) =

CFp + CFn ∗ (1− CFp) CFp > 0, CFn > 0

(CFp + CFn) signs differ
/(1−min(|CFp|, |CFn|))

−cfcombine(−CFp,−CFn) CFp < 0, CFn < 0

This algorithm has a desirable feature: it is associative
and commutative; therefore the result is independent of
the order in which rules are considered.

A CF of + 1 or -1 is dominant and sets the combined CF
to that value.

225

Summary of CF Computations

• CF > .2 threshold

• $AND takes minimum CF in premise

• conclude CF = CFpremise ∗ CFrule
• CF combination algorithm

Examples:

If: A (.6)

and B (.3)

and C (.4)

Then: conclude D tally 700

The resulting rule value for D is the minimum premise CF
tally (.3) times the rule CF (.7), or 0.21 .

Suppose that two separate rules reach the same
conclusion with CF’s of 0.5 and 0.6 ; the resulting CF
is .5 + .6 ∗ (1− .5) = .8. This could also be computed as
.6 + .5 ∗ (1− .6) = .8.

226

Contradictions:

EMYCIN’s CF calculations allow contradictory rules to
cancel one another. While in logic a contradiction is
intolerable, use of rules and exceptions, expressed as
contradicting rules, seems to be the way humans often
think.

Example: FUO program for diagnosing Fever of
Unknown Origin. Patient is a 17 year old female
with persistent high fever, headache, lethargy, cardiac
symptoms ...

Results: Lung cancer (.81), Endocarditis (.7)

Endocarditis was the correct diagnosis. The physician
expert remarked that lung cancer was consistent with the
symptoms, but that patients that young never get lung
cancer.

One way to handle this in EMYCIN is to add a rule that
“rules out” certain cancers in young patients; the CF can
be made a function of the patient’s age.

227

Duplicate Rules

Duplicated rules in EMYCIN are harmful because each
of the rules will fire; this will cause the CF’s of the rules
to be combined, giving a larger CF than was intended.

In a large expert system, it is easy for duplicate rules
to be created by different rule-writers (or even the same
one).

In logic, duplicated rules have no effect.

228

Rule Subsumption

A common programmer error is to leave out one or more
clauses in the antecedent of a rule. This causes the rule
to be over-broad in its application and may cause it to
subsume other rules.

Example: SACON structural analysis consultant28

If: 1) The analysis error (in percent) that is

tolerable is less than 5, and

2) The non-dimensional stress of the

substructure is greater than .5, and

3) The number of cycles the loading is to be

applied is greater than 10000

Then: It is definite (1.0) that fatigue is a

phenomenon ...

A rule like this one, but without antecedent clause (3),
was included. The bad rule subsumed this rule and two
others (stress > .7, cycles > 1000; stress > .9, cycles >
100) with the same conclusion.

28Bennett, J. S. and Engelmore, R. S., “SACON: a Knowledge-based Consultant for Structural Analysis”,
Proc. IJCAI-79, pp. 47-49, Morgan Kaufmann Publishers.

229

Increasing Certainty

EMYCIN systems sometimes include rules of the form:
A ∧B → A

Such a rule is logically redundant, but may serve to
increase the CF of the conclusion based on additional
evidence.

If: 1) The identity of the snake is

rattlesnake, and

2) It bites someone, and

3) He dies

Then: There is strongly suggestive

evidence (.8) that the identity of

the snake is rattlesnake.

230

EMYCIN CF vs. Probability Theory

EMYCIN certainty factor calculations differ in significant
ways from standard probability theory. These differences
have attracted criticism, but often have good practical
motivations.

CF Threshold: EMYCIN generally considers anything
with CF < .2 to be false.

Q: “Can’t this prevent several pieces of weak support
from adding up to a significant level of support?”

A: Yes, it is possible, but doesn’t seem to be a problem
in practice.

The benefit of the CF threshold is that it keeps the system
from asking a lot of dumb questions:

If: A (.01)

and B (.02)

and C (.001)

and D (as yet unknown) ...

In such a case, we don’t want the system to ask questions
about D, which is a most unlikely prospect. Asking dumb
questions will quickly discourage potential users of the
system.

231

Sensitivity Analysis

In general, sensitivity analysis attempts to determine
the sensitivity of the output of a computation to small
changes in the input.

An expert system should be relatively insensitive to small
changes in the input or CF’s; high sensitivity indicates
bad design.

The sensitivity of MYCIN to small changes in CF values
has been empirically tested; MYCIN was found to be
relatively insensitive to CF values.

In part, this is due to the fact that MYCIN “plays it
safe:” it treats for all organisms found with CF > .2.

232

Explanation

A rule-based expert system such as EMYCIN makes it
easy to provide explanations that make sense.

A why question can be answered by evaluating all rules
that match the conclusion being questioned; those whose
premise evaluates to true (> 0.2) can be reported.

Likewise, why not questions can be answered by
examining rules that match the conclusion and reporting
the first premise clause that evaluates to false (< 0.2).

233

Expert Systems vs. Decision Trees

There is a rule used by Expert Systems experts:

If: There is a known algorithm to solve

a problem,

Then: Use it.

So, if a decision tree will work for your problem, by all
means use one.

The trouble is that decision trees work only for a relatively
small class of problems, where:

1. All needed data can be obtained with certainty.

2. Data are discrete (Boolean or one of a fixed set of
choices).

3. The structure of the problem is known and is fixed.

4. The problem can be “factored” well, preferably many
times.

5. There is a single conclusion for each set of data.

234

Rule Induction

Motivation: acquire expert knowledge from examples of
expert’s problem solving.

Assumption is that it is easier for expert to demonstrate
his expertise than to “tell all he knows”.

Input to the induction algorithm is classified examples
(which corresponds to I/O of human expert):

< f11, f12, ..., f1n > classification1
< f21, f22, ..., f2m > classification2

Output from the induction algorithm is a decision tree
with features labeling interior nodes and classifications
labeling leaves.

235

Sample Decision Tree:

Classifications = {chair, stool, table}
Features = {number of legs, armrests, height}
Domains:
number of legs = {3, 4}
armrests = {yes, no}
height = {tall, short}

New objects can be classified using the decision tree.

236

Example of Rule Induction29

Classifications = { +, -}
Features = {size, shape, color}
Domains:

size = {large, small}
shape = {square, triangle, circle}
color = {blue, red}

Training set:
small, circle, blue: +
small, square, blue: -
large, square, red: -
large, circle, red: -
large, square, blue: -
small, circle, red: -
large, triangle, blue: +
large, circle, blue: +

29Quinlan, “Learning Efficient Classification Procedures”, Machine Learning, Morgan Kaufmann Publ.,
1983.

237

Final Decision Tree with Classifications

238

Algorithm for Rule Induction

Instances: a set of training instances
Features: feature vector (f1, f2, ..., fn) input from teacher
Domains: set of domains for Features {d1, d2, ..., dm}
Classes: set of classes {c1, c2, ..., ck}

(simply {+,−} for single concept learning.)

Function formrule (Instances, Features, Domains,
Classes)
For some class ∈ Classes
If all members of Instances fall into class
then return class
else f ← select-feature (Features, Instances)
d ← domain from set Domains corresponding to f
return a tree of the form:

239

Alternatives for select-feature

1. Random selection: guaranteed to give a decision
tree which is consistent with the training set. No
guarantee of optimality.

2. Information theoretic selection: select the feature
which maximally partitions the set of instances.
Heuristic for finding decision tree with minimum
expected classification time.

3. Minimal cost selection: allow for the fact that some
features are costly to evaluate. For example, body
temperature is easier to determine than lung-capacity.
Put least costly features high in the tree.

240

Limitations of Rule Induction

1. ”Flat“ classification rules produced with no justifica-
tion facility

2. Lots of training examples are necessary

3. Training must be noise-free

4. Each training example must be described using all the
features

5. Classifications and features are static sets

6. Rules produced do not distinguish between correlation
and causality

241

Digital Low-Pass Filter

A simple mechanism that can be used to learn parameter
values over time is the digital low-pass filter. 30 A simple
digital low-pass filter is defined by:

outi+1 = α∗ini+(1−α)∗outi, where α << 1.

This filter reduces “noise” in the input, passing through
the long-term trend, but with a time delay. There is
memory of past data, but with exponential forgetting of
old data. A filter like this was used to adjust weights
of heuristic feature detectors in Samuel’s checker-player
program. Multiple parameter values can be learned
simultaneously.

30The filter lets low frequencies pass through, while blocking high frequencies.

242

Getting Knowledge From Expert

1. Watch (and videotape) the expert doing examples.
Encourage expert to talk aloud about actions,
strategy and reasoning behind conclusions. Ask
questions to keep expert talking.

2. Focus on a test case and build a system to handle that
case as soon as possible.

3. Review initial system with expert; fix as needed.

4. Add rules related to existing rules to expand coverage.

5. Try additional test cases; fix as errors are found.

6. Rewrite and restructure the whole system when
needed.

7. The order in which the expert asks questions is an
important clue to the strategy being used. Ordering
is also an important component of expert knowledge
in some domains, especially design.

243

Interaction with Expert

Test cases often reveal missing pieces of knowledge.
Experts cannot “tell all they know”, but they quickly
spot errors. When the expert spots an error, that leads
to new rules.

Example: Fever of Unknown Origin

Patient is 17-year-old female; persistent fever, headache,
lethargy, cardiac symptoms, ...

Diagnoses: Lung cancer (.81), Endocarditis (7).

Correct diagnosis was endocarditis. Physician expert
said the diagnosis of lung cancer was consistent with the
symptoms; however, lung cancer would never be expected
in a patient this young.

Result: new rules added to rule out certain cancers in
young patients. Patient age can be used to determine
certainty factor of ruling out lung cancer.

244

Conceptual Islands

An important thing to look for in gathering knowledge
about a domain from an expert is “conceptual islands:”
intermediate conclusions that have special meaning in the
domain. Often these islands have specialized terminology
associated with them.

Example: Compromised Host in MYCIN

A compromised host is a patient who has been weakened
and therefore cannot fight off infections as well as a
normal person.

245

Advantages of Conceptual Islands

Conceptual Islands reduce the number of rules required
and aid robustness.

246

Expansion with Conceptual Islands

Islands give multiplicative power. New rules that reach a
conceptual island become effective with all the rest of the
system’s knowledge.

247

Orthogonal Knowledge Sources

Often the best way to get discriminating power is to find
another knowledge source that is “orthogonal to” the
existing ones (i.e., discriminating on a basis unrelated to
the existing set of data.

Example: Nuclear magnetic resonance data used in
conjunction with mass spec data in DENDRAL.

248

Example of Orthogonal Knowledge Sources

Look for orthogonal knowledge sources in your domain.
A Jigsaw Puzzle is a good example,

Generate-and-Test Solution: Select a piece; try to fit it to
every other piece until you succeed. Repeat until done.
O(n2) comparisons required.

Orthogonal Knowledge Sources:

1. Pieces with one straight edge must go on the edge.

2. Pieces with two straight edges are corners.

3. Color must be continuous across piece boundaries.

4. A piece of a given color is likely to go in a picture area
of that color. (E.g., a light blue piece is likely to be
part of the sky area.)

Each of these knowledge sources is orthogonal to the
others (independent); each reduces search by reducing
the number of edge pattern comparisons required.

249

The Tuning Fallacy

The Tuning Fallacy operates as follows:

• A breadboard system is trained on one set of data and
achieves 90% accuracy on that data. This is taken as
a “proof of concept” .

• However, the trained system only gets 70% accuracy
on a new data set.

• If trained on the new data set, the system reaches 90%
on that data, but only gets 70% on the original data:
the training set phenomenon or overfitting.

• The goal becomes to find a setting of the weights that
will recognize all the exemplars simultaneously.

The Fallacy: There is no such setting. But one can
spend years and millions of dollars looking for one.

The problem is the false alarm rate as the number of
exemplars grows.

The ROC Curve31 is often used to show true positive rate
recall plotted against false positive rate.

31Receiver Operating Characteristic

250

Natural Language Processing (NLP)

“Natural” languages are human languages, such as
English, German, or Chinese.

• Understanding text (in machine-readable form).

What customers ordered widgets in May?

• Understanding continuous speech: perception as well
as language understanding.

• Language generation (written or spoken).

• Machine translation, e.g., German to English:32

Vor dem Headerfeld befindet sich eine

Praeambel von 42 Byte Laenge fuer den

Ausgleich aller Toleranzen.

-->

A preamble of 42 byte length for the

adjustment of all tolerances is found

in front of the header field.

32METAL system, University of Texas Linguistics Research Center.

251

Why Study Natural Language?

Theoretical:

• Understand how language is structured:
the right way to do linguistics.

• Understand the mental mechanisms necessary to
support language use, e.g. memory:
language as a window on the mind.

Practical:

• Easier communication with computers for humans:

– Talking is easier than typing

– Compact communication of complex concepts

• Machine translation

• Someday intelligent computers may use natural
language to talk to each other!

252

Model of Natural Language Communication

253

Minimality of Natural Language

William Woods postulated that natural language evolved
because humans needed to communicate complex
concepts over a bandwidth-limited serial channel, i.e.
speech.

All of our communication methods are serial:

• a small number of basic symbols (characters,
phonemes)

• basic symbols are combined into words

• words are combined into phrases and sentences.

Claude Shannon’s information theory deals with
transmission of information with the smallest possible
number of bits. Likewise, natural language is strongly
biased toward minimality:

• Never say something the listener already knows.

• Omit things that can be inferred.

• Eliminate redundancy.

• Shorten!

254

Zipf’s Law

Zipf’s Law says that frequently used words are short.
This is true across all human languages.

More formally, length ∝ −log(frequency) .

If a word isn’t short, people who use it frequently will
shorten it:

facsimile transmission fax
latissimus dorsae lat
Mediterranean Med
robot bot

255

Areas of Natural Language

The study of language has traditionally been divided into
several broad areas:

• Syntax: The rules by which words can be put
together to form legal sentences.

• Semantics: Study of the ways statements in the
language denote meanings.

• Pragmatics: Knowledge about the world and the
social context of language use.

Q: Do you know the time?

A: Yes.

256

Computer Language Understanding

In general, natural language processing involves a
translation from the natural language to some internal
representation that represents its meaning. The internal
representation might be predicate calculus, a semantic
network, or a frame representation.

There are many problems in making such a translation:

• Ambiguity: There may be multiple ways of
translating a statement.

– Lexical Ambiguity: most words have multiple
meanings.

The pitcher broke his arm.

The pitcher broke.

– Grammatical Ambiguity: Different ways of
parsing (assigning structure to) a given sentence.

One morning I shot an elephant

in my pajamas.

How he got in my pajamas

I don’t know.

257

Problems in Understanding Language ...

• Incompleteness: The statement is usually only the
bare outline of the message. The missing parts must
be filled in.

I was late for work today.

My car wouldn’t start.

The battery was dead.

• Anaphora:33 Words that refer to others.

John loaned Bill his bike.

•Metonymy: Using a word associated with the
intended concept.

The White House denied the report.

• Semantics: Understanding what was meant from
what was said.

– Only differences from assumed knowledge are
stated explicitly.

– Reasoning from general knowledge about the world
is required for correct understanding.

– A vast amount of world knowledge is needed.

33The singular is anaphor.

258

Morphology

Morphology is the study of word forms. A program
called a morphological analyzer will convert words to
root forms and affixes (prefixes and suffixes); the root
forms can then be looked up in the lexicon.

For English, a fairly simple suffix-stripping algorithm plus
a small list of irregular forms will suffice.34

running --> run + ing

went --> go + ed

If the lexicon needed for an application is small, all word
forms can be stored together with the root form and
affixes. For larger lexicons, a morphological analyzer
would be more efficient. In our discussions of syntax,
we will assume that morphological analysis has already
been done.

34Winograd, T., in Understanding Natural Language, Academic Press, 1972, presents a simple algorithm
for suffix stripping. A thorough treatment can be found in Slocum, J., “An English Affix Analyzer with
Intermediate Dictionary Lookup”, Technical Report LRC-81-01, Linguistics Research Center, University of
Texas at Austin, 1981.

259

Lexicon

The lexicon contains “definitions” of words in a machine-
usable form. A lexicon entry may contain:

• The root word spelling

• Parts of speech (noun, verb, etc.)

• Semantic markers, e.g., animate, human, concrete,
countable.

• Case frames that describe how the word is related to
other parts of the sentence (especially for verbs).

• Related words or phrases. For example, United
States of America should usually be treated as a
single term rather than a noun phrase.

Modern language processing systems put a great deal of
information in the lexicon; the lexicon entry for a single
word may be several pages of information.

260

Lexical Features

These features are the basis of lexical coding.35

philosopher +N, +common, +anim, +human, +concrete,

+count

honesty +N, +common, -concrete, -count,

idea +N, +common, -concrete, +count

Sebastian +N, -common, +human, +masc, +count

slime +N, +common, +concrete, -anim, -count

kick +VB, +V, +action, +one-trans,

own +VB, +V, -action, +one-trans,

honest +VB, -V, +action

tipsy +VB, -V, -action

I told her to kick the ball
* I told her to own the house
* I told her to be tipsy

The philosopher who ate
The idea which influenced me

* The philosopher which ate
* The idea who influenced me

35slide by Robert F. Simmons.

261

Size of Lexicon

Although a full lexicon would be large, it would not be
terribly large by today’s standards:

• Vocabulary of average college graduate: 50,000 words.

• Oxford English Dictionary: 300,000 words.

• Japanese standard set: 2,000 Kanji.

• Basic English: about 1,000 words.

Each word might have ten or so sense meanings on
average. (Prepositions have about 100; the word “set”
has the most in the Oxford English Dictionary – over
200.)

These numbers indicate that a lexicon is not large
compared to today’s memory sizes.

262

Statistical Natural Language Processing

Statistical techniques can help remove much of the
ambiguity in natural language.

A type is a word form, while a token is each occurrence
of a word type. N-grams are sequences of N words:
unigrams, bigrams, trigrams, etc. Statistics on the
occurrences of n-grams can be gathered from text
corpora.36

Unigrams give the frequencies of occurrence of words.
Bigrams begin to take context into account. Trigrams are
better, but it is harder to get statistics on larger groups.

N-gram approximations to Shakespeare:37

1. Every enter now severally so, let

2. What means, sir. I confess she? then all sorts, he is
trim, captain.

3. Sweet prince, Falstaff shall die. Harry of Monmouth’s
grave.

4. They say all lovers swear more performance than they
are wont to keep obliged faith unforfeited!

36corpus (Latin for body) is singular, corpora is plural. A corpus is a collection of natural language text,
sometimes analyzed and annotated by humans.

37D. Jurafsky and J. Martin, Speech and Language Processing, Prentice-Hall, 2000.

263

Part-of-Speech Tagging

N-gram statistics can be used to guess the part-of-speech
of words in text. If the part-of-speech of each word can
be tagged correctly, parsing ambiguity is greatly reduced.

’Twas brillig, and the slithy toves
did gyre and gimble in the wabe.38

A Hidden Markov Model (HMM) tagger chooses the tag
for each word that maximizes: 39

P (word | tag) ∗ P (tag | previous n tags)

For a bigram tagger, this is approximated as:

ti = argmaxjP (wi | tj)P (tj | ti−1)

In practice, trigram taggers are most often used, and
a search is made for the best set of tags for the whole
sentence; accuracy is about 96%.

38from Jabberwocky, by Lewis Carroll.
39Jurafsky, op. cit.

264

AI View of Syntax

We need a compact and general way to describe language:

How can a finite grammar and parser describe an
infinite variety of possible sentences?

Unfortunately, this is not easy to achieve.

But the English ... having such varieties of
incertitudes, changes, and Idioms, it cannot be in
the compas of human brain to compile an exact
regular Syntaxis thereof.40

40James Howell, A New English Grammar, Prescribing as certain Rules as the Language will bear, for
Forreners to learn English, London, 1662.

265

Grammar

A grammar specifies the legal syntax of a language. The
kind of grammar most often used in computer language
processing is a context-free grammar. A grammar
specifies a set of productions; non-terminal symbols
(phrase names or parts of speech) are enclosed in angle
brackets. Each production specifies how a nonterminal
symbol may be replaced by a string of terminal or
nonterminal symbols, e.g., a Sentence is composed of a
Noun Phrase followed by a Verb Phrase.

<s> --> <np> <vp>

<np> --> <art> <adj> <noun>

<np> --> <art> <noun>

<np> --> <art> <noun> <pp>

<vp> --> <verb> <np>

<vp> --> <verb> <np> <pp>

<pp> --> <prep> <np>

<art> --> a | an | the

<noun> --> boy | dog | leg | porch

<adj> --> big

<verb> --> bit

<prep> --> on

266

Language Generation

Sentences can be generated from a grammar by the
following procedure:

• Start with the sentence symbol, <S>.

• Repeat until no nonterminal symbols remain:

– Choose a nonterminal symbol in the current string.

– Choose a production that begins with that
nonterminal.

– Replace the nonterminal by the right-hand side of
the production.

<s>

<np> <vp>

<art> <noun> <vp>

the <noun> <vp>

the dog <vp>

the dog <verb> <np>

the dog <verb> <art> <noun>

the dog <verb> the <noun>

the dog bit the <noun>

the dog bit the boy

267

Parsing

Parsing is the inverse of generation: the assignment
of structure to a linear string of words according to
a grammar; this is much like the “diagramming” of a
sentence taught in grammar school.

Parts of the parse tree can then be related to object
symbols in the computer’s memory.

268

Ambiguity

Unfortunately, there may be many ways to assign
structure to a sentence (e.g., what does a PP modify?):

Definition: A grammar is ambiguous iff there exists
some sentence with two distinct parse trees.

269

Sources of Ambiguity

• Lexical Ambiguity:
Words often have multiple meanings (homographs)
and often multiple parts of speech.

bit: verb: past tense of bite
noun: a small amount

instrument for drilling
unit of computer memory
part of bridle in horse’s mouth

• Grammatical Ambiguity:
Different ways of parsing (assigning structure to) a

given sentence.

I saw the man on the hill with the

telescope.

Lexical ambiguity compounds grammatical ambiguity
when words can have multiple parts of speech. Words can
also be used as other parts of speech than they normally
have.

270

Foreign Languages

It should be kept in mind that much of the study
of computer language processing has been done using
English.

The techniques used for English do not necessarily work
as well for other languages. Some issues:

•Word order is used more in English than in many
other languages, which may use case forms instead.

gloria in excelsis Deo

• Agreement in number and gender are more important
in other languages.

la casa blanca the white house
el caballo blanco the white horse

• Familiar, formal, honorific forms of language.

sie you
Du Thou

271

Formal Syntax

There is a great deal of mathematical theory concerning
the syntax of languages. This theory is based on the
work of Chomsky; grammars for Sanskrit were developed
in India much earlier.

Formal syntax has proved to be better at describing
artificial languages such as programming languages than
at describing natural languages. Nevertheless, it is useful
to understand this theory.

A recursive language is one that can be recognized by a
program; that is, given a string, a program can tell within
finite time whether the string is or is not in the language.

A recursively enumerable language is one for which all
strings in the language can be enumerated by a program.
All languages described by phrase structure grammars are
R.E., but not all R.E. languages are recursive.

272

Notation

The following notations are used in describing grammars
and languages:

V ∗ a string of 0 or more elements
from the set V
(Kleene star or Kleene closure)

V + 1 or more elements from V

V ? 0 or 1 elements from V (i.e., optional)

a|b either a or b

< nt > a nonterminal symbol or phrase name

ε the empty string

273

Phrase Structure Grammar

A grammar describes the structure of the sentences of
a language in terms of components, or phrases. The
mathematical description of phrase structure grammars
is due to Chomsky.41

Formally, a Grammar is a four-tuple G = (T,N, S, P)
where:

• T is the set of terminal symbols or words of the
language.

• N is a set of nonterminal symbols or phrase names
that are used in specifying the grammar. We say V =
T ∪N is the vocabulary of the grammar.

• S is a distinguished element of N called the start
symbol.

• P is a set of productions, P ⊆ V ∗NV ∗ × V ∗. We
write productions in the form a → b where a is
a string of symbols from V containing at least one
nonterminal and b is any string of symbols from V.

41See, for example, Aho, A. V. and Ullman, J. D., The Theory of Parsing, Translation, and Compiling,
Prentice-Hall, 1972; Hopcroft, J. E. and Ullman, J. D., Formal Languages and their Relation to Automata,
Addison-Wesley, 1969.

274

Recognizing Automaton

The Finite Control (a program with finite memory) reads
symbols from the input tape one at a time, storing things
in the Auxiliary Memory.

The recognizer answers Yes or No to the question “Is the
input string a member of the language?”

275

Regular Languages

Productions: A→ xB
A→ x
A,B ∈ N
x ∈ T ∗

• Only one nonterminal can appear in any derived
string, and it must appear at the right end.

• Equivalent to a deterministic finite automaton
(simple program).

• Parser never has to back up or do search.

• Linear parsing time.

• Used for simplest items (identifiers, numbers, word
forms).

• Any finite language is regular.

• Any language that can be recognized using finite
memory is regular.

276

Context Free Languages

Productions: A→ α
A ∈ N
α ∈ V ∗

• Since left-hand-side of each production is a single
nonterminal, every derivation is a tree.

• Many good parsers are known. Parsing requires
a recursive program, or equivalently, a stack for
temporary storage.

• Parsing time is O(n3) .

• Used for language elements that can contain
themselves, e.g.,

– Arithmetic expressions can contain sub-
expressions: A + B ∗ (C + D).

– A noun phrase can contain a prepositional phrase,
which contains a noun phrase:
a girl with a hat on her head.

277

What Kind of Language is English?

• English is Context Free.42

• English is not Context Free.43

• English is Regular:

– English consists of finite strings from a finite
vocabulary.

– English is recognized by people with finite memory.

– There is no evidence that peoples’ parsing time is
more then O(n).

A better question to ask is:

What is a good way to describe English for
computer processing?

42Gazdar, G., “NLs, CFLs, and CF-PSGs”, in Sparck Jones, K. and Wilks, Y., Eds., Automatic Natural
Language Processing, Ellis Horwood Ltd., West Sussex, England, 1983.

43Higginbotham, J., “English is Not a Context Free Language”, Linguistic Inquiry 15, 119-126, 1984.

278

Parsing

A parser is a program that converts a linear string of
input words into a structured representation that shows
how the phrases (substructures) are related and shows
how the input could have been derived according to the
grammar of the language.

Finding the correct parsing of a sentence is an essential
step towards extracting its meaning.

Natural languages are harder to parse than programming
languages; the parser will often make a mistake and have
to fail and back up: parsing is search. There may be
hundreds of ambiguous parses, most of which are wrong.

Parsers are generally classified as top-down or bottom-up,
though real parsers have characteristics of both.

There are several well-known context-free parsers:

• Cocke-Kasami-Younger (CKY or CYK) chart parser

• Earley algorithm

• Augmented transition network

279

Top-down Parser

A top-down parser begins with the Sentence symbol, <S>,
expands a production for <S>, and so on recursively until
words (terminal symbols) are reached. If the string of
words matches the input, a parsing has been found.44

This approach to parsing might seem hopelessly
inefficient. However, top-down filtering, that is, testing
whether the next word in the input string could begin the
phrase about to be tried, can prune many failing paths
early.

For languages with keywords, such as programming
languages or natural language applications, top-down
parsing can work well. It is easy to program.

44See the Language Generation slide earlier in this section.

280

Bottom-up Parsing

In bottom-up parsing, words from the input string are
reduced to phrases using grammar productions:

<NP>

/ \

<art> <noun>

| |

The man ate fish

This process continues until a group of phrases can be
reduced to <S>.

281

Augmented Transition Networks

An ATN 45 is like a finite state transition network, but is
augmented in three ways:

1. Arbitrary tests can be added to the arcs. A test
must be satisfied for the arc to be traversed. This
allows, for example, tests on agreement of a word and
its modifier.

2. Structure-building actions can be added to
the arcs. These actions may save information in
registers to be used later by the parser, or to build
the representation of the meaning of the sentence.
Transformations, e.g., active/passive, can also be
handled.

3. Phrase names, as well as part-of-speech names,
may appear on arcs. This allows a grammar to be
called as a subroutine.

The combination of these features gives the ATN the
power of a Turing Machine, i.e., it can do anything a
computer program can do.

45Woods, W. A., “Transition Network Grammars for Natural Language Analysis”, Communications of the
ACM, Oct. 1970

282

Augmented Transition Networks

A grammar can be written in network form. Branches are
labeled with parts of speech or phrase names. Actions,
such as constructing a database query, can be taken as
arcs are traversed.

ATN’s are more readable than lists of productions.

ATN interpreter and compiler packages exist; one can also
write an ATN-like program directly in Lisp.

283

Separability of Components

An idealized view of natural language processing has the
components cleanly separated and sequential:

Lexicon

/ \

/ \

Sentence --> Syntax --> Semantics

|

V

Pragmatics

|

V

Output

Unfortunately, such a clean separation doesn’t work well
in practice.

284

Problems with Separability

• Lexicon:

– New uses of words.

You can verb anything. – William Safire

– Metaphor: The computer is down.

• Syntax:

– Ambiguity: hundreds of syntactically possible
interpretations of ordinary sentences.

– Agreement:

Bill and John love Mary.

– Elision: omission of parts of a sentence.

He gave John fruit and Mary candy.

• Discourse:

– The meaning of a sentence depends on context.

285

Combining Syntax and Semantics

There are several advantages to combining syntactic and
semantic processing:

• Removal of Ambiguity: It is better to eliminate
an incorrect parsing before it is generated, rather
than generating all possible interpretations and then
removing bad ones.

– Computer time is saved.

– Eliminating one bad partial interpretation elimi-
nates many bad total interpretations.

• Reference: It is often advantageous to relate the
sentence being parsed to the model that is being
constructed during the parsing process. “John holds
the pole at one end [of the pole].”

• Psychological Plausibility: People can deal with
partial and even ungrammatical language.

All your base are belong to us.

This sentence no verb. – D. Hofstadter

286

How to Combine Syntax & Semantics

• Grammar and Parser: no place to include
program operations.

Note that in natural language processing we often
want the parsing that is chosen for ambiguous
sentences to depend on semantics.

• Program Alone: ad hoc, likely to be poorly
structured.

• Augmented Transition Network: best of both
worlds.

287

Natural Language as an AI Problem

Natural language understanding is a classical AI Problem:

•Minimal Input Data: the natural language
statement does not contain the message, but is a
minimal specification to allow an intelligent reader to
construct the message.

• Knowledge Based: the interpretation of the
message is based in large part on the knowledge that
the reader already has.

• Reference to Context: the message implicitly
refers to a context, including what has been said
previously.

• Local Ambiguity: many wrong interpretations are
superficially consistent with the input.

• Global Constraints: there are many different
kinds of constraints on interpretation of the input.

• Capturing the Infinite: a language understand-
ing system must capture, in finite form, rules sufficient
to understand a potentially infinite set of statements.

288

Reference

Reference is the problem of determining which objects
are referred to by phrases.

A pole supports a weight at one end.

Determiners:

• Indefinite: a

Make a new object.

• Definite: the, one, etc.

Find an existing object;

else, find something closely related

to an existing object;

else, make a new one.

In reading the above sentence, we create a new pole object
and a new weight object, but look for an existing end: one
end of the existing pole.

289

Referent Identification

Referent identification is the process of identifying the
object(s) in the internal model to which a phrase refers.

Paul and Henry carry a sack on a pole. If the
load is 0.5 m from Paul, what force does each boy
support?

load is not a synonym for sack; instead, it describes the
role played by the sack in this context.

Unification of Paul and Henry with each boy conveys
new information about the ages of Paul and Henry.

the left end ... the other end

the 100 lb boy

the heavy end

290

English

English is a context-free language (more or less).

English has a great deal of ambiguity, compared to
programming languages. By restricting the language to
an English subset for a particular application domain,
English I/O can be made quite tractable.

Some users may prefer an English-like interface to a more
formal language.

Of course, the best way to process English is in Lisp.

291

Expression Trees to English 46

(defn op [x] (first x))

(defn lhs [x] (second x))

(defn rhs [x] (third x))

(defn op->english [op]

(list ’the

(second (assocl op ’((+ sum)

(- difference)

(* product)

(/ quotient)

(sin sine)

(cos cosine)))) ’of))

; expression x -> (list of words)

(defn exp->english [x]

(if (cons? x) ; operator?

(append

(op->english (op x))

(append (exp->english (lhs x))

(if (null? (rest (rest x)))

’() ; unary

(cons ’and

(exp->english (rhs x))))))

(list x))) ; leaf: operand

46file expenglish.clj

292

Generating English

%clojure

>(load-file "cs378/expenglish.clj")

>(exp->english ’x)

(X)

>(exp->english ’(+ x y))

(THE SUM OF X AND Y)

>(exp->english ’(/ (cos z) (+ x (sin y))))

(THE QUOTIENT OF THE COSINE OF Z AND

THE SUM OF X AND THE SINE OF Y)

293

Simple Language Processing: ELIZA

Weizenbaum’s ELIZA program simulated a Rogerian psy-
chotherapist; it achieved surprisingly good performance
simply by matching the “patient’s” input to patterns:

Pattern: (I HAVE BEEN FEELING *)

Response: (WHY DO YOU THINK YOU

HAVE BEEN FEELING *)

The * matches anything; it is repeated in the
answer.

Patient: I have been feeling depressed

today.

Doctor: Why do you think you have been

feeling depressed today?

Problems:

• Huge number of patterns needed.

• Lack of real understanding:

Patient: I just feel like jumping

off the roof.

Doctor: Tell me more about the roof.

294

Spectrum of Language Descriptions

ELIZA and a general grammar represent two
extremes of the language processing spectrum:

• ELIZA:
Too restricted. A large application, PARRY – an
artificial paranoid – was attempted, but failed to get
good enough coverage even with 10,000 patterns.

• General English Grammar:
Too ambiguous. Hundreds of interpretations of
ordinary sentences.

There is a very useful middle ground: semantic
grammar.

295

Semantic Grammar

Semantic grammar lies between ELIZA and a more
general English grammar. It uses a grammar in which
nonterminal symbols have meaning in the domain of
application.

<S> --> WHAT <CUST> ORDERED <PART>

<MODS>

<CUST> --> CUSTOMER | CUSTOMERS <LOC>

<LOC> --> IN <CITY>

<CITY> --> AUSTIN | SEATTLE | LA

<PART> --> WIDGETS | WIDGET BRACKETS

<MODS> --> IN <MONTH> | BEFORE <MONTH>

<MONTH> --> JANUARY | FEBRUARY | MARCH

WHAT CUSTOMERS IN AUSTIN ORDERED

WIDGET BRACKETS IN MARCH

Advantages:

• More coverage with fewer patterns than ELIZA.

• No ambiguity due to use of semantic phrases.

• Easy to program.

296

Semantic Grammar: Extended Pattern
Matching

In this approach, the pattern-matching that is allowed
is restricted to certain semantic categories. A grammar
is used to specify the allowable patterns; this allows
the restrictions to be specified easily, while allowing
more language coverage and easier extension with fewer
specified patterns.

Example:

<s> --> what is <ship-property> of <ship>?

<ship-property> --> the <ship-prop> | <ship-prop>

<ship-prop> --> speed | length | draft | beam

<ship> --> <ship-name> | the fastest <ship2>

| the biggest <ship2> | <ship2>

<ship-name> | Kennedy | Kitty Hawk | Constellation

<ship2> --> <countrys> <ship3> | <ship3>

<ship3> --> <shiptype> <loc> | <shiptype>

<shiptype> --> carrier | submarine | ...

<countrys> --> American | French | British

<loc> --> in the Mediterranean | in the Med | ...

”What is the length of the fastest French sub in the Med?”

297

Example Semantics for a Semantic Grammar

Suppose we want to use the semantic grammar
given earlier to access a relational database containing
information about ships. For simplicity, let us assume a
single SHIP relation-as follows:

NAME TYP OWN LAT LONG SPD LNG
Kitty Hawk CV US 10o00′N 50o27′E 35 1200
Eclair SS France 20o00′N 05o30′E 15 50

Consider the query: What is the length of the fastest
French sub in the Med?

This query is parsed by the top-level production

<S> --> What is <ship-property> of <ship>?

which is conveniently structured in terms of:

1. The data values to be retrieved: <ship-property>

2. The data records (tuples) from which to retrieve the
data: <ship>.

In each case, the values are additive and can be
synthesized from the parse tree, as shown below.

298

Compositional Semantics

The semantics of each phrase is propagated up the tree
and combined with the semantics of the other descendant
nodes at each higher-level node of the tree.

299

Additional Language Features

Semantic grammar enables additional features that help
users:

• Spelling correction:

What is the lentgh of Kennedy?

= length

Because we know from the grammar that a
<ship-prop> is expected, the list of possible ship
properties can be used as input to a spelling corrector
algorithm to automatically correct the input.

• Sentence fragments:

What is the length of Kennedy?

speed

= What is the speed of Kennedy?

If the input can be parsed as a part of the previous
parse tree, the rest of the input can be filled in.

300

Recursive Descent

Recursive Descent is a method of writing a top-down
parsing program in which a grammar rule is written as a
function.

Given a grammar rule:

S -> NP VP

we simply make the left-hand-side nonterminal be the
name of the function, and write a series of function calls
for the right-hand side.

(defn s []

(and (np)

(vp)))

There could be an infinite loop if there is left recursion,
i.e. a rule of the form:

A -> A ...

301

Parsing English

In most cases, a parser for a programming language never
has to back up: if it sees if, the input must be an if

statement or an error.

Parsing English requires that the parser be able to fail,
back up, and try something else: if it sees in, the
input might be in Austin or in April, which may be
handled by different kinds of grammar rules.

Backup means that parsing is a search process, possibly
time-consuming. However, since English sentences are
usually short, this is not a problem in practice.

An Augmented Transition Network (ATN) framework
facilitates parsing of English.

302

ATN Program 47

• A global variable atnsent points to a list of words
that remain in the input sentence:
(GOOD CHINESE RESTAURANT IN LOS ALTOS)

• A global variable atnword points to the current word:
GOOD

• (wordcat category) tests whether atnword is in
the specified category. It can also translate the word,
e.g. (wordcat ’month) might return 3 if atnword
is MARCH.

• (nextword) moves to the next word in the input

• (saveptr) saves the current sentence position on a
stack, atnsavesent.

• (success) pops a saved position off the stack.

• (fail) restores a saved position from the stack
(restoring atnsent and atnword) and returns nil.

47file atn.clj

303

Parsing Functions

The parser works by recursive descent, but with the
ability to fail and back up and try another path.

; $$ $1 $2

; (loc -> (in (city)) (restrict ’city $2))

(defn locfn []

(saveptr)

(let [$1 (and (= atnword (quote in)) atnword)]

(if $1

(do (nextword)

(let [$2 (wordcat (quote city))]

(if $2

(do (nextword)

(success)

(restrict (quote city) $2))

(fail))))

(fail))))

The program performs (saveptr) on entry and either
(success) or (fail) before leaving.

304

Grammar Compiler 48

It is easy to write a grammar compiler that converts
a Yacc-like grammar into the equivalent ATN parsing
functions. This is especially easy in Lisp since Lisp code
and Lisp data are the same thing.

; $$ $1 $2

(rulecompr ’(loc -> (in (city))

(restrict ’city $2))

’locfn)

(defn locfn []

(saveptr)

(let [$1 (and (= atnword (quote in)) atnword)]

(if $1

(do (nextword)

(let [$2 (wordcat (quote city))]

(if $2

(do (nextword)

(success)

(restrict (quote city) $2))

(fail))))

(fail))))

48file gramcom.clj

305

Sentence Pointer Handling

; initialize for a new sentence

(defn initsent [sent]

(def atnsent sent) ; remainder of sentence

(def atnsavesent ’()) ; saved pos for backup

(setword))

; set atnword for current position

(defn setword []

(def atnword (first atnsent)) ; current word

(def atnnext (rest atnsent)))

; move to next word

(defn nextword []

(def atnsent atnnext) (setword) true)

306

Sentence Pointer Handling ...

; save the current position

(defn saveptr []

(def atnsavesent

(cons atnsent atnsavesent))) ; push

; pop the stack on success

(defn success []

(def atnsavesent (rest atnsavesent))) ; pop

; restore position on failure, return nil

(defn fail []

(def atnsent (first atnsavesent))

(def atnsavesent (rest atnsavesent))

(setword)

nil)

307

Lexicon Example

(def lexicon

’((a/an (a an some))

(i/you (i you one))

(get (get find obtain))

(quality ((good 2.5)))

(restword (restaurant (restaurants restaurant)))

(kindfood (american bakery chinese))

(city (palo-alto berkeley los-altos))

(county (santa-clara))

(area (bay-area))

(street (el-camino-real))

))

Note translation to internal form, e.g., good -> 2.5

It is easy to include abbreviations, slang, and special
terms. These are good because they are usually short
(reducing typing), are usually unambiguous, and users
like them.

308

Word Category Testing

; Test if current word is in category

; (wordcat ’month) where atnword = oct

(defn wordcat [category]

(if (= category ’number)

(and (number? atnword) atnword)

(if (= category ’symbol)

(and (symbol? atnword) atnword)

(let [catlst (assocl category lexicon)

wd (findwd atnword (second catlst))]

(if (cons? wd)

(if (empty? (rest wd))

(first wd)

(second wd))

wd)))))

The lexicon and category testing can do multiple tasks:

1. Test if a word has a specified part of speech.

2. Translate to internal form, e.g.,
March --> 3.

3. Check for multi-word items, e.g., United States (not
implemented).

309

Database Access

Database access requires two kinds of information:

1. Which records are to be selected. This takes the
form of a set of restrictions that selected records must
satisfy.

(restrict ’field value)

2. What information is to be retrieved from the selected
records.

(retrieve ’field)

The task of the NL access program is to translate the
user’s question from English into a formal call to an
existing database program.

The components of the query are collected as lists in the
global variables restrictions and retrievals.

310

Database Access

Our example database program takes queries of the form:

(querydb <condition> <action>)

The <condition> is formed by consing and onto the
restrictions, and the <action> is formed by consing
list onto the retrievals.

The condition and action are Clojure code using a
variable tuple: if the condition is true, the action is
executed and its result is collected. Both the condition
and action can access fields of the current database record
using the call:

(getdb (quote <fieldname>))

311

Building Database Access

; retrievals = things to get from database

; restrictions = restrictions on the query

; Main function: ask

(defn ask [sentence]

...

(s)

...

(let [ans (querydb (cons ’and restrictions)

(cons ’list retrievals))]

(if postprocess

(eval (subst ans ’$$ postprocess))

ans))))

; make a database access call

(defn retrieve [field]

(addretrieval (list ’getdb ’tuple (kwote field))))

; add a restriction to the query

(defn restrict [field value]

(addrestrict

(list ’= (list ’getdb ’tuple (kwote field))

(kwote value))))

312

Grammar Rules

A grammar rule has the form:

(nonterm -> (right-hand side items) semantics)

nonterm is a nonterminal symbol that is the left-hand
side of the production; the rule says that the left-hand side
nonterminal can be composed of the sequence of items on
the right-hand side.

The allowable items on the right-hand side are:
word exactly the specified word

(nonterminal) like a subroutine call to a sub-grammar.
(category) a word in the category, e.g. (month)

(number) any number
(symbol) any symbol

? preceding item is optional
(separate ? from a word by a space)

The semantics is clojure code to be executed when the
grammar rule is satisfied. The right-hand side items are
available as variables $1, $2, $3, etc., similar to what is
done in Yacc. For example, consider the rule:

(loc -> (in (city)) (restrict ’city $2))

In this case, $2 refers to whatever matches the (city)

part of the grammar rule.

313

Restaurant Database Grammar

; (gramcom grammar)

(def grammar

’((command -> (show me) true)

(command -> (what is) true)

(qual -> ((quality))

(restrictb ’>= ’rating $1))

(qualb -> (rated above (number))

(restrictb ’>= ’rating $3))

(resttype -> ((kindfood))

(restrict ’foodtype $1))

(loc -> (in (city)) (restrict ’city $2))

(loc -> (in (county)) (restrict ’county $2))

(s -> ((command) (a/an)? (qual)? (resttype)?

(restword) (qualb)? (loc)?)

(retrieve ’restaurant))

(s -> (how many (qual)? (resttype)? food ?

(restword) (loc)?)

(do (retrieve ’restaurant)

(postpr ’(length (quote $$)))))

314

Notes on Database Grammar

It is good to write grammar rules that cover multiple
sentences, using:

• multiple rules for a nonterminal, to handle similar
phrases

• the ? to make the preceding item optional.

My solution for the restaurant assignment only has 5 rules
for the top-level nonterminal s.

Multiple actions can be combined using do:

(do (retrieve ’streetno) (retrieve ’street))

Questions such as how many or what is the best require
post-processing. The result of the query (restrictions and
retrievals) is available as the variable $$:

(postpr ’(length (quote $$)))

In this case, postpr specifies post-processing, and
length is the function that is called; this would answer
how many.

315

Restaurant Queries

% clojure

user=> (load-file "cs378/restaurant.clj")

user=> (load-files)

user=> (gramcom grammar)

user=> (ask ’(where can i get ice-cream in berkeley))

((x2001-flavors-ice-cream-&-yogur)

(baskin-robbins)

(double-rainbow)

(fosters-freeze)

(marble-twenty-one-ice-cream)

(sacramento-ice-cream-shop)

(the-latest-scoop))

user=> (ask ’(show me chinese restaurants

rated above 2.5 in los-altos))

((china-valley)

(grand-china-restaurant)

(hunan-homes-restaurant)

(lucky-chinese-restaurant)

(mandarin-classic) ...)

316

Physics Problems49

(def lexicon

’((propname (radius diameter circumference area

volume height velocity time

weight power height work speed mass))

(a/an (a an))

(the/its (the its))

(objname (circle sphere fall lift))))

(def grammar ’(

(param -> ((the/its)? (propname)) $2)

(quantity -> ((number)) $1)

(object -> ((a/an)? (objname) with (objprops))

(cons ’object (cons $2 $4)))

(objprop -> ((a/an)? (propname) of ? (quantity))

(list $2 $4))

(objprop -> ((propname) = (quantity))

(list $1 $3))

(objprops -> ((objprop) and (objprops))

(cons $1 $3))

(objprops -> ((objprop)) (list $1))

(s -> (what is (param) of (object))

(list ’calculate $3 $5))))

49file physgram.lsp

317

Physics Queries

% clojure

user=> (load-file "cs378/physics.clj")

user=> (load-files)

user=> (gramcom grammar)

user=> (phys ’(what is the area of a circle

with radius = 2))

(calculate area (object circle (radius 2)))

12.566370614

user=> (phys ’(what is the circumference of

a circle with an area of 100))

(calculate circumference (object circle (area 100)))

35.44907701760372

user=> (phys ’(what is the power of a lift with

mass = 100 and height = 6

and time = 10))

(calculate power (object lift (mass 100)

(height 6) (time 10)))

588.399

318

Physics Units

An important part of physics problems is units of
measurement. These can easily be handled by
multiplying the number by the conversion factor that
converts the unit to SI (metric) units. For example, an
inch is 0.0254 meter, so 40 inches is 1.016 meter.

(phys ’(what is the area of a circle

with radius = 40 inches))

(calculate area (object circle (radius 1.016)))

3.2429278661312964

The calculate form can accept a multiply by a factor,
allowing units for the goal of the calculation:

(phys ’(what is the area in square-inches

of a circle with radius = 1 meter))

(calculate (* area 6.4516E-4)

(object circle (radius 1.0)))

4869.478351881704

319

Physics Changes

An interesting kind of question is how one quantity varies
in terms of another quantity:

(phys ’(how does the force of gravitation

vary with radius))

(varywith gravitation force radius)

inverse-square

(phys ’(how does the area of a circle vary

if radius is doubled))

(varychg circle area ((radius 2.0)))

4.0

These questions can be answered easily as follows:

1. Find an equation that relates these variables.

2. Solve the equation for the desired variable.

3. Evaluate the rhs of the solved equation with all
variables set to 1.

4. Change the variable(s) that change to 2.0 (or the
appropriate value) and evaluate again.

5. The ratio of the two evaluations gives the answer.

320

Natural Language Interfaces

Interfaces for understanding language about limited
domains are easy:

• Database access.

• Particular technical areas.

• Consumer services (e.g., banking).

Benefits:

• Little or no training required.

• User acceptance.

• Flexible.

Specialized language is much easier to handle than
general English. The more jargon used, the better: jargon
is usually unambiguous.

321

Problems with NL Interfaces

• Slow Typing: A formal query language might be
faster for experienced users.

• Typing Errors: Most people are poor typists. A
spelling corrector and line editor are essential.

• Complex Queries: Users may not be able to
correctly state a query in English. “All that glitters
is not gold.”

• Responsive Answers:

Q: How many students failed CS 381K

in Summer 2018?

A: 0

Does this mean:

1. Nobody failed.

2. CS 381K was not offered in Summer 2018.

3. There is no such course as CS 381K.

• Gaps: Is it possible to state the desired
question?

322

Mapping

A mapping M : D → R specifies a correspondence
between elements of a domain D and a range R.

If each element of D maps to exactly one element of R,
and that elementR is mapped to only by that one element
of D, the mapping is one-to-one or injective .

If every element of R is mapped to by some element of
D, the mapping is onto or surjective .

A mapping that is both one-to-one and onto is bijective.

323

Implementation of Mapping

A mapping can be implemented in several ways:

• A function such as sqrt maps from its argument to
the target value.

• If the domain is a finite, compact set of integers, we
can store the target values in an array and look them
up quickly.

• If the domain is a finite set, we can use a lookup table
such as an association list or map data structure such
as TreeMap or HashMap in Java or the Clojure maps
based on them.

• If the domain is a finite set represented as an array or
linked list, we can create a corresponding array or list
of target values.

324

Functional Programming

A functional program is one in which:

• all operations are performed by functions

• a function does not modify its arguments or have side-
effects (such as printing, setting the value of a global
variable, writing to disk).

A subset of Lisp or Clojure, with no destructive functions,
is an example of a functional language.

(defn square [x] (* x x))

(defn hypotenuse [x y]

(Math/sqrt (+ (square x)

(square y))))

Values are passed directly between functions, rather than
being stored in variables.

Functional programming is easily adapted to parallel
programming: a function can be replicated on many
machines, the data set can be broken up into shards,
and the shards can be processed in parallel on different
machines.

325

Associative and Commutative

An operation ◦ is associative if a ◦ (b ◦ c) = (a ◦ b) ◦ c.

An operation ◦ is commutative if a ◦ b = b ◦ a.

If an operation ◦ is both associative and commutative,
then the arguments of the operation can be in any order,
and the result will be the same. For example, the
arguments of integer + can be in any order.

This gives great freedom to process the arguments of a
function independently on multiple processors.

In many cases, parts of the operation (e.g. partial sums)
can be done independently as well.

326

Computation as Simulation

It is useful to view computation as simulation, cf.:
isomorphism of semigroups.50

Given two semigroups G1 = [S, ◦] and G2 =
[T, ∗], an invertible function ϕ : S → T is said
to be an isomorphism between G1 and G2 if, for
every a and b in S, ϕ(a ◦ b) = ϕ(a) ∗ ϕ(b)

from which: a ◦ b = ϕ−1(ϕ(a) ∗ ϕ(b))

(defn string+ [x y]

(str ; phi inverse

(+ ; + in model space

(read-string x) ; phi

(read-string y)))) ; phi

>(string+ "2" "3")

"5"
50Preparata, F. P. and Yeh, R. T., Introduction to Discrete Structures, Addison-Wesley, 1973, p. 129.

327

Mapping in Lisp

Clojure and Lisp have functions that compute mappings
from a linked list. map makes a new list whose elements
are obtained by applying a specified function to each
element (first) of the input list(s).

>(defn square [x] (* x x))

>(map square ’(1 2 3 17))

(1 4 9 289)

>(map + ’(1 2 3 17) ’(2 4 6 8))

(3 6 9 25)

>(map > ’(1 2 3 17) ’(2 4 6 8))

(false false false true)

328

Mapcat and Filter

The Clojure function mapcat (mapcan in Lisp) works
much like map (mapcar in Lisp), but with a different way
of gathering results:

• The function called by mapcat returns a list of results
(perhaps an empty list, signifying no result).

• mapcat concatenates the results; empty lists vanish.

A function related to mapcat is filter, Which returns
a list of only those items that satisfy a predicate.

(defn filtr [predicate lst]

(mapcat (fn [item]

(if (predicate item)

(list item)))

lst))

>(filter number? ’(a 2 or 3 and 7))

; ()(2)()(3)() (7)

(2 3 7)

>(filter symbol? ’(a 2 or 3 and 7))

; (a)()(or)()(and)()

(A OR AND)

329

Input Filtering and Mapping

We can use mapcat to both filter input and map input
values to intermediate values for the application.

• filter: get rid of uninteresting parts of the input.

• map: convert an interesting part of the input to a
useful intermediate value.

A key point is that we are not trying to compute the final
answer, but to set up the inputs for another function to
compute the final answer.

Suppose that we want to count the number of z’s in an
input list. We could map a z to a 1, which must be (1)

for mapcan; anything else will map to () or nil.

(defn testforz [item]

(if (= item ’z) ; if it is a z

(list 1) ; emit 1 (map)

)) ; else emit nothing

; (filter)

>(mapcat testforz ’(z m u l e z r u l e z))

(1) (1) (1)

(1 1 1)

330

Reduce

The function reduce applies a specified function to the
first two elements of a list, then to the result of the first
two and the third element, and so forth.

>(reduce + ’(1 2 3 17))

23

>(reduce * ’(1 2 3 17))

102

reduce is what we need to process a result from mapcan:

>(reduce + (mapcat testforz

’(z m u l e z r u l e z)))

; (1) (1) (1)

; = (reduce + ’(1 1 1))

3

331

Combining Map and Reduce

A combination of map and reduce can provide a great
deal of power in a compact form.

The Euclidean distance between two points in n-space
is the square root of the sum of squares of the differences
between the points in each dimension.

Using map and reduce, we can define Euclidean distance
compactly for any number of dimensions:

(defn edist [pointa pointb]

(Math/sqrt (reduce +

(map square

(map - pointa pointb)))))

>(edist ’(3) ’(1))

2.0

>(edist ’(3 3) ’(1 1))

2.8284271247461903

>(edist ’(3 4 5) ’(2 4 8))

3.1622776601683795

332

MapReduce and Massive Data

At the current state of technology, it has become difficult
to make individual computer CPU’s faster; however, it
has become cheap to make lots of CPU’s. Networks
allow fast communication between large numbers of cheap
CPU’s, each of which has substantial main memory and
disk.

A significant challenge of modern CS is to perform
large computations using networks of cheap computers
operating in parallel.

Google specializes in processing massive amounts of data,
particularly the billions of web pages now on the Internet.
MapReduce makes it easy to write powerful programs
over large data; these programs are mapped onto Google’s
network of hundreds of thousands of CPU’s for execution.

333

Distributed Programming is Hard!

• 1000’s of processors require 1000’s of programs.

• Need to keep processors busy.

• Processors must be synchronized so they do not
interfere with each other.

• Need to avoid bottlenecks (most of the processors
waiting for service from one processor).

• Some machines may become:

– slow

– dead

– evil

and they may change into these states while your
application is running.

• If a machine does not have the data it needs, it must
get the data via the network.

• Many machines share one (slow) network.

• Parts of the network can fail too.

334

What MapReduce Does for Us

MapReduce makes it easy to write powerful programs over
large data to be run on thousands of machines.

All the application programmer has to do is to write two
small programs:

• Map: Input → intermediate value

• Reduce: list of intermediate values → answer

These two programs are small and easy to write!

MapReduce does all the hard stuff for us.

335

Map Sort Reduce

MapReduce extends the Lisp map and reduce in one
significant respect: the map function produces not just
one result, but a set of results, each of which has a key
string. Results are grouped by key.

When our function testforz found a z, it would output
(1). But now, we will always produce a key as well, e.g.
(z (1)). In Java, to “emit” a result, we would say:

mr.collect_map("z", list("1"));

because the intermediate values are always strings.

There is an intermediate Sort process that groups the
results for each key. Then reduce is applied to the results
for each key, returning the key with the reduced answer
for that key.

At the end of the map and sort, we have:

("z" (("1") ("1") ("1")))

with the key and a list of results for that key.

336

Simplified MapReduce

We think of the map function as taking a single input,
typically a String, and emitting zero or more outputs,
each of which is a (key, (value)) pair. For example, if
our program is counting occurrences of the word liberty,
the input "Give me liberty" would emit one output,
("liberty", ("1")).

As an example, consider the problem of finding the
nutritional content of a cheeseburger. Each component
has a variety of features such as calories, protein, etc.
MapReduce can add up the features individually.

We will present a simple version of MapReduce in Clojure
to introduce how it works.

337

Mapreduce in Clojure

(defn mapreduce [mapfn reducefn lst]

(let [rawresult (mapcat mapfn lst)]

(let [sorted

(sort (fn [x y]

(compare (first x) (first y)))

rawresult)]

(let [keyvals (combinekeys sorted)]

(map (fn [lst]

(list (first lst)

(apply reducefn (rest lst))))

keyvals)))))

>(mapreduce identity + ’(((a 3) (b 2) (c 1))

((b 7) (d 3) (c 5))))

((D 3) (C 6) (B 9) (A 3))

338

Simple MapReduce Example

>(mapreduce identity +

’(((a 3) (b 2) (c 1))

((b 7) (d 3) (c 5))) t)

Mapping: ((A 3) (B 2) (C 1))

Emitted: (A 3)

Emitted: (B 2)

Emitted: (C 1)

Mapping: ((B 7) (D 3) (C 5))

Emitted: (B 7)

Emitted: (D 3)

Emitted: (C 5)

Reducing: D (3) = 3

Reducing: C (5 1) = 6

Reducing: B (7 2) = 9

Reducing: A (3) = 3

((D 3) (C 6) (B 9) (A 3))

339

MapReduce Example

(defn nutrition [food]

(rest (assocl food

’((hamburger (calories 80) (fat 8)

(protein 20))

(bun (calories 200) (carbs 40) (protein 8)

(fiber 4))

(cheese (calories 100) (fat 15) (sodium 150))

(lettuce (calories 10) (fiber 2))

(tomato (calories 20) (fiber 2))

(mayo (calories 40) (fat 5) (sodium 20))))))

>(nutrition ’bun)

((calories 200) (carbs 40) (protein 8) (fiber 4))

>(mapreduce nutrition + ’(hamburger bun cheese

lettuce tomato mayo))

((sodium 170) (protein 28) (fiber 8) (fat 28)

(carbs 40) (calories 450))

340

Hamburger Example

>(mapreduce ’nutrition ’+

’(hamburger bun cheese lettuce tomato mayo) t)

Mapping: HAMBURGER

Emitted: (CALORIES 80)

Emitted: (FAT 8)

Emitted: (PROTEIN 20)

Mapping: BUN

Emitted: (CALORIES 200)

Emitted: (CARBS 40)

Emitted: (PROTEIN 8)

Emitted: (FIBER 4)

Mapping: CHEESE

Emitted: (CALORIES 100)

Emitted: (FAT 15)

Emitted: (SODIUM 150)

Mapping: LETTUCE

Emitted: (CALORIES 10)

Emitted: (FIBER 2)

Mapping: TOMATO

Emitted: (CALORIES 20)

Emitted: (FIBER 2)

Mapping: MAYO

Emitted: (CALORIES 40)

Emitted: (FAT 5)

Emitted: (SODIUM 20)

Reducing: SODIUM (20 150) = 170

Reducing: FIBER (2 2 4) = 8

Reducing: CARBS (40) = 40

Reducing: PROTEIN (8 20) = 28

Reducing: FAT (5 15 8) = 28

Reducing: CALORIES (40 20 10 100 200 80) = 450

((SODIUM 170) (FIBER 8) (CARBS 40) (PROTEIN 28) (FAT 28)

(CALORIES 450))

341

How MapReduce Works

There is a single Master computer and many Worker
computers.

The Master divides the input data into bite-size chunks
of 64 MB and assigns the data chunks to workers. If
possible, Master chooses a worker that already has the
data on its hard drive in the Google File System, or is
close to a computer with the data; this minimizes network
traffic.

Think of the data chunks as being like a sack of beans:
lots of pieces of data, all more or less alike.

342

Map Worker

A Map Worker runs the Map program on its
assigned data. The Map program receives as input
(inputkey, inputvalue) pairs; for example, inputkey
could be the IP address of a web page (as a string) and
inputvalue could be the contents of that web page (all
as one string).

The Map worker emits (outputkey, list(mapvalue))
pairs. outputkey could be the same as inputkey, but
often is different. For example, to count links to a web
page, outputkey could be the IP address of a page that
is linked to by the page being processed.

If there are R Reduce Workers, the outputkey is hashed
modulo R to determine which Reduce Worker will get
it; hashing randomizes the assignment of keys to Reduce
Workers, providing load balancing.

The Map Worker has R output buffers corresponding to
R files that it is producing as output, one for each Reduce
Worker. The (outputkey, list(mapvalue)) pair is put
into the corresponding output buffer.

343

Buffering

Buffering is a technique used to match a small-but-steady
process (e.g. a program that reads or writes one line at a
time) to a large-block process (e.g. disk I/O).

Disk I/O has two problematic features:

• A whole disk block (e.g. 4096 bytes) must be read or
written at a time.

• Disk access is slow (e.g. 8 milliseconds).

An I/O buffer is an array, the same size as a disk block,
that is used to collect data. The application program
removes data from the block (or adds data to it) until the
block is empty (full), at which time a new block is read
from disk (written to disk).

If there are R Reduce tasks, each Map task will have
R output buffers, one for each Reduce task. When an
output buffer becomes full, it is written to disk. When
the Map task is finished, it sends the file names of its R
files to the Master.

344

Load Balancing

Some data values are much more popular than others.
For example, there were 13 people on a class roster whose
names started with S, but only one K, and no Q or X.

If MapReduce assigned Reduce tasks based on key values,
some Reduce tasks might have large inputs and be too
slow, while other Reduce tasks might have too little work.

MapReduce performs load balancing by having a large
number R of Reduce tasks and using hashing to assign
data to Reduce tasks:

task = Hash(key) mod R

This assigns many keys to the same Reduce task. The
Reduce task reads the files produced by all Map tasks for
its hash value (remote read over the network), sorts the
combined input by key value, and appends the value

lists before calling the application’s Reduce function.

345

Reduce Worker

A Reduce Worker receives from the Master a set of M
file addresses, one for each Map worker. The Reduce
worker reads these files; these reads must go across the
network, and therefore may take some time and cause
network congestion.

The Reduce Worker first sorts its input data by key and
groups together all the data values for each key. It then
runs the Reduce program on each data set.

The result is a list, (key, list(value)); these are put into
the output buffer of the Reduce worker (these will now
be sorted by key). When done, the Reduce worker send
the file address of its output file to the Master.

The Master can finally combine all the output files from
Reduce workers into sorted order by doing a Merge.

346

PageRank

The PageRank algorithm used by Google expresses the
ranking of a web page in terms of two components:

• a base value, (1− d), usually 0.15

• d ∗ ∑
i∈links PRi/ni where PRi is the page rank of a

page that links to this page, and ni is the number of
links from that page.

The PageRank values can be approximated by relaxation
by using this formula repeatedly within MapReduce.
Each page is initially given a PageRank of 1.0; the sum
of all values will always equal the number of pages.

•Map: Share the love: each page distributes its
PageRank equally across the pages it links to.

• Reduce: Each page sums the incoming values,
multiplies by 0.85, and adds 0.15 .

347

PageRank Example

Iterative PageRank converges fairly quickly for this net:51

A B C

1.00000000 1.00000000 1.00000000

1.00000000 0.57500000 1.42500000

1.36125000 0.57500000 1.06375000

1.05418750 0.72853125 1.21728125

1.18468906 0.59802969 1.21728125

1.18468906 0.65349285 1.16181809

1.13754537 0.65349285 1.20896178

1.17761751 0.63345678 1.18892571

1.16058685 0.65048744 1.18892571

1.16058685 0.64324941 1.19616374

1.16673918 0.64324941 1.19001141

1.16150970 0.64586415 1.19262615

1.16373223 0.64364162 1.19262615

...

1.16336914 0.64443188 1.19219898

The sum of PageRank values is the total number of pages.
The value for each page is the expected number of times
a random web surfer, who starts as many times as there
are web pages, would land on that page.

51http://pr.efactory.de/e-pagerank-algorithm.shtml

348

Running PageRank Example

Starting MapReduce on:

((a (1.0 (b c))) (b (1.0 (c))) (c (1.0 (a))))

mapping: key = a val = (1.0 (b c))

emitting: key = b val = (0.5)

emitting: key = c val = (0.5)

emitting: key = a val = ((b c))

mapping: key = b val = (1.0 (c))

emitting: key = c val = (1.0)

emitting: key = b val = ((c)) ...

reducing: key = a val = (((b c)) (1.0))

result: key = a val = (1.0 (b c))

reducing: key = b val = ((0.5) ((c)))

result: key = b val = (0.575 (c))

reducing: key = c val = ((0.5) (1.0) ((a)))

result: key = c val = (1.425 (a))

Starting MapReduce on:

((a (1.0 (b c))) (b (0.575 (c))) (c (1.425 (a))))

reducing: key = a val = (((b c)) (1.425))

reducing: key = b val = ((0.5) ((c)))

reducing: key = c val = ((0.5) (0.575) ((a)))

Starting MapReduce on:

((a (1.36125 (b c))) (b (0.575 (c))) (c (1.06375 (a))))

reducing: key = a val = (((b c)) (1.06375))

reducing: key = b val = ((0.680625) ((c)))

reducing: key = c val = ((0.680625) (0.575) ((a)))

... after 10 steps:

Result = ((a (1.16673918 (b c)))

(b (0.64324941 (c)))

(c (1.19001141 (a))))

349

Advanced Performance

The notions of Big O and single-algorithm performance
on a single CPU must be extended in order to understand
performance of programs on more complex computer
architectures. We need to also account for:

• Disk access time

• Network bandwidth and data communication time

• Coordination of processes on separate machines

• Congestion and bottlenecks as many computers or
many users want the same resource.

350

Performance Techniques in MapReduce

• The Google File System (GFS) stores multiple copies
(typically 3) of data files on different computers for
redundancy and availability.

• Master assigns workers to process data such that the
data is on the worker’s disk, or near the worker within
the same rack. This reduces network communication;
network bandwidth is scarce.

• Combiner functions can perform partial reductions
(adding "1" values) before data are written out to
disk, reducing both I/O and network traffic.

• Master can start redundant workers to process the
same data as a dead or “slacker” worker. Master
will use the result from the worker that finishes first;
results from later workers will be ignored.

• Reduce workers can start work as soon as some Map
workers have finished their data.

351

Algorithm Failure

If MapReduce detects that a worker has failed or is slow
on a Map task, it will restart redundant Map tasks to
process the same data.

If the redundant Map tasks also fail, maybe the problem
is that the data caused the algorithm to fail, rather than
hardware failure.

MapReduce can restart the Map task without the last un-
processed data. This causes the output to be not quite
right, but for some tasks (e.g. average movie rating) it
may be acceptable.

352

Atomic Commit

In CS, the word atomic, from Greek words meaning
not cut, describes an all-or-nothing process: either the
process finishes without interruption, or it does not
execute at all.

If multiple worker machines are working on the same data,
it is necessary to ensure that only one set of result data
is actually used.

An atomic commit is provided by the operating system
(and, ultimately, CPU hardware) that allows exactly one
result to be committed or accepted for use. If other
workers produce the same result, those results will be
discarded.

In MapReduce, atomicity is provided by the file system.
When a Map worker finishes, it renames its temporary file
to the final name; if a file by that name already exists,
the renaming will fail.

353

