
Natural Language Processing (NLP)

“Natural” languages are human languages, such as
English, German, or Chinese.

• Understanding text (in machine-readable form).

What customers ordered widgets in May?

• Understanding continuous speech: perception as well
as language understanding.

• Language generation (written or spoken).

• Machine translation, e.g., German to English:1

Vor dem Headerfeld befindet sich eine

Praeambel von 42 Byte Laenge fuer den

Ausgleich aller Toleranzen.

-->

A preamble of 42 byte length for the

adjustment of all tolerances is found

in front of the header field.

1METAL system, University of Texas Linguistics Research Center.

1

Why Study Natural Language?

Theoretical:

• Understand how language is structured:
the right way to do linguistics.

• Understand the mental mechanisms necessary to
support language use, e.g. memory:
language as a window on the mind.

Practical:

• Easier communication with computers for humans:

– Talking is easier than typing

– Compact communication of complex concepts

• Machine translation

• Someday intelligent computers may use natural
language to talk to each other!

2

Model of Natural Language Communication

3

Minimality of Natural Language

William Woods postulated that natural language evolved
because humans needed to communicate complex
concepts over a bandwidth-limited serial channel, i.e.
speech.

All of our communication methods are serial:

• a small number of basic symbols (characters,
phonemes)

• basic symbols are combined into words

• words are combined into phrases and sentences.

Claude Shannon’s information theory deals with
transmission of information with the smallest possible
number of bits. Likewise, natural language is strongly
biased toward minimality:

• Never say something the listener already knows.

• Omit things that can be inferred.

• Eliminate redundancy.

• Shorten!

4

Zipf’s Law

Zipf’s Law says that frequently used words are short.
This is true across all human languages.

More formally, length ∝ −log(frequency) .

If a word isn’t short, people who use it frequently will
shorten it:

facsimile transmission fax
latissimus dorsae lat
Mediterranean Med
robot bot

5

Areas of Natural Language

The study of language has traditionally been divided into
several broad areas:

• Syntax: The rules by which words can be put
together to form legal sentences.

• Semantics: Study of the ways statements in the
language denote meanings.

• Pragmatics: Knowledge about the world and the
social context of language use.

Q: Do you know the time?

A: Yes.

6

Computer Language Understanding

In general, natural language processing involves a
translation from the natural language to some internal
representation that represents its meaning. The internal
representation might be predicate calculus, a semantic
network, or a frame representation.

There are many problems in making such a translation:

• Ambiguity: There may be multiple ways of
translating a statement.

– Lexical Ambiguity: most words have multiple
meanings.

The pitcher broke his arm.

The pitcher broke.

– Grammatical Ambiguity: Different ways of
parsing (assigning structure to) a given sentence.

One morning I shot an elephant

in my pajamas.

How he got in my pajamas

I don’t know.

7

Problems in Understanding Language ...

• Incompleteness: The statement is usually only the
bare outline of the message. The missing parts must
be filled in.

I was late for work today.

My car wouldn’t start.

The battery was dead.

• Anaphora:2 Words that refer to others.

John loaned Bill his bike.

•Metonymy: Using a word associated with the
intended concept.

The White House denied the report.

• Semantics: Understanding what was meant from
what was said.

– Only differences from assumed knowledge are
stated explicitly.

– Reasoning from general knowledge about the world
is required for correct understanding.

– A vast amount of world knowledge is needed.

2The singular is anaphor.

8

Morphology

Morphology is the study of word forms. A program
called a morphological analyzer will convert words to
root forms and affixes (prefixes and suffixes); the root
forms can then be looked up in the lexicon.

For English, a fairly simple suffix-stripping algorithm plus
a small list of irregular forms will suffice.3

running --> run + ing

went --> go + ed

If the lexicon needed for an application is small, all word
forms can be stored together with the root form and
affixes. For larger lexicons, a morphological analyzer
would be more efficient. In our discussions of syntax,
we will assume that morphological analysis has already
been done.

3Winograd, T., in Understanding Natural Language, Academic Press, 1972, presents a simple algorithm
for suffix stripping. A thorough treatment can be found in Slocum, J., “An English Affix Analyzer with
Intermediate Dictionary Lookup”, Technical Report LRC-81-01, Linguistics Research Center, University of
Texas at Austin, 1981.

9

Lexicon

The lexicon contains “definitions” of words in a machine-
usable form. A lexicon entry may contain:

• The root word spelling

• Parts of speech (noun, verb, etc.)

• Semantic markers, e.g., animate, human, concrete,
countable.

• Case frames that describe how the word is related to
other parts of the sentence (especially for verbs).

• Related words or phrases. For example, United
States of America should usually be treated as a
single term rather than a noun phrase.

Modern language processing systems put a great deal of
information in the lexicon; the lexicon entry for a single
word may be several pages of information.

10

Lexical Features

These features are the basis of lexical coding.4

philosopher +N, +common, +anim, +human, +concrete,

+count

honesty +N, +common, -concrete, -count,

idea +N, +common, -concrete, +count

Sebastian +N, -common, +human, +masc, +count

slime +N, +common, +concrete, -anim, -count

kick +VB, +V, +action, +one-trans,

own +VB, +V, -action, +one-trans,

honest +VB, -V, +action

tipsy +VB, -V, -action

I told her to kick the ball
* I told her to own the house
* I told her to be tipsy

The philosopher who ate
The idea which influenced me

* The philosopher which ate
* The idea who influenced me

4slide by Robert F. Simmons.

11

Size of Lexicon

Although a full lexicon would be large, it would not be
terribly large by today’s standards:

• Vocabulary of average college graduate: 50,000 words.

• Oxford English Dictionary: 300,000 words.

• Japanese standard set: 2,000 Kanji.

• Basic English: about 1,000 words.

Each word might have ten or so sense meanings on
average. (Prepositions have about 100; the word “set”
has the most in the Oxford English Dictionary – over
200.)

These numbers indicate that a lexicon is not large
compared to today’s memory sizes.

12

Statistical Natural Language Processing

Statistical techniques can help remove much of the
ambiguity in natural language.

A type is a word form, while a token is each occurrence
of a word type. N-grams are sequences of N words:
unigrams, bigrams, trigrams, etc. Statistics on the
occurrences of n-grams can be gathered from text
corpora.5

Unigrams give the frequencies of occurrence of words.
Bigrams begin to take context into account. Trigrams are
better, but it is harder to get statistics on larger groups.

N-gram approximations to Shakespeare:6

1. Every enter now severally so, let

2. What means, sir. I confess she? then all sorts, he is
trim, captain.

3. Sweet prince, Falstaff shall die. Harry of Monmouth’s
grave.

4. They say all lovers swear more performance than they
are wont to keep obliged faith unforfeited!

5corpus (Latin for body) is singular, corpora is plural. A corpus is a collection of natural language text,
sometimes analyzed and annotated by humans.

6D. Jurafsky and J. Martin, Speech and Language Processing, Prentice-Hall, 2000.

13

Part-of-Speech Tagging

N-gram statistics can be used to guess the part-of-speech
of words in text. If the part-of-speech of each word can
be tagged correctly, parsing ambiguity is greatly reduced.

’Twas brillig, and the slithy toves
did gyre and gimble in the wabe.7

A Hidden Markov Model (HMM) tagger chooses the tag
for each word that maximizes: 8

P (word | tag) ∗ P (tag | previous n tags)

For a bigram tagger, this is approximated as:

ti = argmaxjP (wi | tj)P (tj | ti−1)

In practice, trigram taggers are most often used, and
a search is made for the best set of tags for the whole
sentence; accuracy is about 96%.

7from Jabberwocky, by Lewis Carroll.
8Jurafsky, op. cit.

14

AI View of Syntax

We need a compact and general way to describe language:

How can a finite grammar and parser describe an
infinite variety of possible sentences?

Unfortunately, this is not easy to achieve.

But the English ... having such varieties of
incertitudes, changes, and Idioms, it cannot be in
the compas of human brain to compile an exact
regular Syntaxis thereof.9

9James Howell, A New English Grammar, Prescribing as certain Rules as the Language will bear, for
Forreners to learn English, London, 1662.

15

Grammar

A grammar specifies the legal syntax of a language. The
kind of grammar most often used in computer language
processing is a context-free grammar. A grammar
specifies a set of productions; non-terminal symbols
(phrase names or parts of speech) are enclosed in angle
brackets. Each production specifies how a nonterminal
symbol may be replaced by a string of terminal or
nonterminal symbols, e.g., a Sentence is composed of a
Noun Phrase followed by a Verb Phrase.

<s> --> <np> <vp>

<np> --> <art> <adj> <noun>

<np> --> <art> <noun>

<np> --> <art> <noun> <pp>

<vp> --> <verb> <np>

<vp> --> <verb> <np> <pp>

<pp> --> <prep> <np>

<art> --> a | an | the

<noun> --> boy | dog | leg | porch

<adj> --> big

<verb> --> bit

<prep> --> on

16

Language Generation

Sentences can be generated from a grammar by the
following procedure:

• Start with the sentence symbol, <S>.

• Repeat until no nonterminal symbols remain:

– Choose a nonterminal symbol in the current string.

– Choose a production that begins with that
nonterminal.

– Replace the nonterminal by the right-hand side of
the production.

<s>

<np> <vp>

<art> <noun> <vp>

the <noun> <vp>

the dog <vp>

the dog <verb> <np>

the dog <verb> <art> <noun>

the dog <verb> the <noun>

the dog bit the <noun>

the dog bit the boy

17

Parsing

Parsing is the inverse of generation: the assignment
of structure to a linear string of words according to
a grammar; this is much like the “diagramming” of a
sentence taught in grammar school.

Parts of the parse tree can then be related to object
symbols in the computer’s memory.

18

Ambiguity

Unfortunately, there may be many ways to assign
structure to a sentence (e.g., what does a PP modify?):

Definition: A grammar is ambiguous iff there exists
some sentence with two distinct parse trees.

19

Sources of Ambiguity

• Lexical Ambiguity:
Words often have multiple meanings (homographs)
and often multiple parts of speech.

bit: verb: past tense of bite
noun: a small amount

instrument for drilling
unit of computer memory
part of bridle in horse’s mouth

• Grammatical Ambiguity:
Different ways of parsing (assigning structure to) a

given sentence.

I saw the man on the hill with the

telescope.

Lexical ambiguity compounds grammatical ambiguity
when words can have multiple parts of speech. Words can
also be used as other parts of speech than they normally
have.

20

Foreign Languages

It should be kept in mind that much of the study
of computer language processing has been done using
English.

The techniques used for English do not necessarily work
as well for other languages. Some issues:

•Word order is used more in English than in many
other languages, which may use case forms instead.

gloria in excelsis Deo

• Agreement in number and gender are more important
in other languages.

la casa blanca the white house
el caballo blanco the white horse

• Familiar, formal, honorific forms of language.

21

Formal Syntax

There is a great deal of mathematical theory concerning
the syntax of languages. This theory is based on the
work of Chomsky; grammars for Sanskrit were developed
in India much earlier.

Formal syntax has proved to be better at describing
artificial languages such as programming languages than
at describing natural languages. Nevertheless, it is useful
to understand this theory.

A recursive language is one that can be recognized by a
program; that is, given a string, a program can tell within
finite time whether the string is or is not in the language.

A recursively enumerable language is one for which all
strings in the language can be enumerated by a program.
All languages described by phrase structure grammars are
R.E., but not all R.E. languages are recursive.

22

Notation

The following notations are used in describing grammars
and languages:

V ∗ a string of 0 or more elements
from the set V (Kleene star or Kleene closure)

V + 1 or more elements from V

V ? 0 or 1 elements from V (i.e., optional)

a|b either a or b

< nt > a nonterminal symbol or phrase name

ε the empty string

23

Phrase Structure Grammar

A grammar describes the structure of the sentences of
a language in terms of components, or phrases. The
mathematical description of phrase structure grammars
is due to Chomsky.10

Formally, a Grammar is a four-tuple G = (T,N, S, P)
where:

• T is the set of terminal symbols or words of the
language.

• N is a set of nonterminal symbols or phrase names
that are used in specifying the grammar. We say V =
T ∪N is the vocabulary of the grammar.

• S is a distinguished element of N called the start
symbol.

• P is a set of productions, P ⊆ V ∗NV ∗ × V ∗. We
write productions in the form a → b where a is
a string of symbols from V containing at least one
nonterminal and b is any string of symbols from V.

10See, for example, Aho, A. V. and Ullman, J. D., The Theory of Parsing, Translation, and Compiling,
Prentice-Hall, 1972; Hopcroft, J. E. and Ullman, J. D., Formal Languages and their Relation to Automata,
Addison-Wesley, 1969.

24

Recognizing Automaton

The Finite Control (a program with finite memory) reads
symbols from the input tape one at a time, storing things
in the Auxiliary Memory.

The recognizer answers Yes or No to the question “Is the
input string a member of the language?”

25

Regular Languages

Productions: A→ xB
A→ x
A,B ∈ N
x ∈ T ∗

• Only one nonterminal can appear in any derived
string, and it must appear at the right end.

• Equivalent to a deterministic finite automaton
(simple program).

• Parser never has to back up or do search.

• Linear parsing time.

• Used for simplest items (identifiers, numbers, word
forms).

• Any finite language is regular.

• Any language that can be recognized using finite
memory is regular.

26

Context Free Languages

Productions: A→ α
A ∈ N
α ∈ V ∗

• Since left-hand-side of each production is a single
nonterminal, every derivation is a tree.

• Many good parsers are known. Parsing requires
a recursive program, or equivalently, a stack for
temporary storage.

• Parsing time is O(n3) .

• Used for language elements that can contain
themselves, e.g.,

– Arithmetic expressions can contain sub-
expressions: A + B ∗ (C + D).

– A noun phrase can contain a prepositional phrase,
which contains a noun phrase:
a girl with a hat on her head.

27

What Kind of Language is English?

• English is Context Free.11

• English is not Context Free.12

• English is Regular:

– English consists of finite strings from a finite
vocabulary.

– English is recognized by people with finite memory.

– There is no evidence that peoples’ parsing time is
more then O(n).

A better question to ask is:

What is a good way to describe English for
computer processing?

11Gazdar, G., “NLs, CFLs, and CF-PSGs”, in Sparck Jones, K. and Wilks, Y., Eds., Automatic Natural
Language Processing, Ellis Horwood Ltd., West Sussex, England, 1983.

12Higginbotham, J., “English is Not a Context Free Language”, Linguistic Inquiry 15, 119-126, 1984.

28

Parsing

A parser is a program that converts a linear string of
input words into a structured representation that shows
how the phrases (substructures) are related and shows
how the input could have been derived according to the
grammar of the language.

Finding the correct parsing of a sentence is an essential
step towards extracting its meaning.

Natural languages are harder to parse than programming
languages; the parser will often make a mistake and have
to fail and back up: parsing is search. There may be
hundreds of ambiguous parses, most of which are wrong.

Parsers are generally classified as top-down or bottom-up,
though real parsers have characteristics of both.

There are several well-known context-free parsers:

• Cocke-Kasami-Younger (CKY or CYK) chart parser

• Earley algorithm

• Augmented transition network

29

Top-down Parser

A top-down parser begins with the Sentence symbol, <S>,
expands a production for <S>, and so on recursively until
words (terminal symbols) are reached. If the string of
words matches the input, a parsing has been found.13

This approach to parsing might seem hopelessly
inefficient. However, top-down filtering, that is, testing
whether the next word in the input string could begin the
phrase about to be tried, can prune many failing paths
early.

For languages with keywords, such as programming
languages or natural language applications, top-down
parsing can work well. It is easy to program.

13See the Language Generation slide earlier in this section.

30

Bottom-up Parsing

In bottom-up parsing, words from the input string are
reduced to phrases using grammar productions:

<NP>

/ \

<art> <noun>

| |

The man ate fish

This process continues until a group of phrases can be
reduced to <S>.

31

Augmented Transition Networks

An ATN 14 is like a finite state transition network, but is
augmented in three ways:

1. Arbitrary tests can be added to the arcs. A test
must be satisfied for the arc to be traversed. This
allows, for example, tests on agreement of a word and
its modifier.

2. Structure-building actions can be added to
the arcs. These actions may save information in
registers to be used later by the parser, or to build
the representation of the meaning of the sentence.
Transformations, e.g., active/passive, can also be
handled.

3. Phrase names, as well as part-of-speech names,
may appear on arcs. This allows a grammar to be
called as a subroutine.

The combination of these features gives the ATN the
power of a Turing Machine, i.e., it can do anything a
computer program can do.

14Woods, W. A., “Transition Network Grammars for Natural Language Analysis”, Communications of the
ACM, Oct. 1970

32

Augmented Transition Networks

A grammar can be written in network form. Branches are
labeled with parts of speech or phrase names. Actions,
such as constructing a database query, can be taken as
arcs are traversed.

ATN’s are more readable than lists of productions.

ATN interpreter and compiler packages exist; one can also
write an ATN-like program directly in Lisp.

33

Separability of Components

An idealized view of natural language processing has the
components cleanly separated and sequential:

Lexicon

/ \

/ \

Sentence --> Syntax --> Semantics

|

V

Pragmatics

|

V

Output

Unfortunately, such a clean separation doesn’t work well
in practice.

34

Problems with Separability

• Lexicon:

– New uses of words.

You can verb anything. – William Safire

– Metaphor: The computer is down.

• Syntax:

– Ambiguity: hundreds of syntactically possible
interpretations of ordinary sentences.

– Agreement:

Bill and John love Mary.

– Elision: omission of parts of a sentence.

He gave John fruit and Mary candy.

• Discourse:

– The meaning of a sentence depends on context.

35

Combining Syntax and Semantics

There are several advantages to combining syntactic and
semantic processing:

• Removal of Ambiguity: It is better to eliminate
an incorrect parsing before it is generated, rather
than generating all possible interpretations and then
removing bad ones.

– Computer time is saved.

– Eliminating one bad partial interpretation elimi-
nates many bad total interpretations.

• Reference: It is often advantageous to relate the
sentence being parsed to the model that is being
constructed during the parsing process. “John holds
the pole at one end [of the pole].”

• Psychological Plausibility: People can deal with
partial and even ungrammatical language.

All your base are belong to us.

This sentence no verb. – D. Hofstadter

36

How to Combine Syntax & Semantics

• Grammar and Parser: no place to include
program operations.

Note that in natural language processing we often
want the parsing that is chosen for ambiguous
sentences to depend on semantics.

• Program Alone: ad hoc, likely to be poorly
structured.

• Augmented Transition Network: best of both
worlds.

37

Natural Language as an AI Problem

Natural language understanding is a classical AI Problem:

•Minimal Input Data: the natural language
statement does not contain the message, but is a
minimal specification to allow an intelligent reader to
construct the message.

• Knowledge Based: the interpretation of the
message is based in large part on the knowledge that
the reader already has.

• Reference to Context: the message implicitly
refers to a context, including what has been said
previously.

• Local Ambiguity: many wrong interpretations are
superficially consistent with the input.

• Global Constraints: there are many different
kinds of constraints on interpretation of the input.

• Capturing the Infinite: a language understand-
ing system must capture, in finite form, rules sufficient
to understand a potentially infinite set of statements.

38

Reference

Reference is the problem of determining which objects
are referred to by phrases.

A pole supports a weight at one end.

Determiners:

• Indefinite: a

Make a new object.

• Definite: the, one, etc.

Find an existing object;

else, find something closely related

to an existing object;

else, make a new one.

In reading the above sentence, we create a new pole object
and a new weight object, but look for an existing end: one
end of the existing pole.

39

Referent Identification

Referent identification is the process of identifying the
object(s) in the internal model to which a phrase refers.

Paul and Henry carry a sack on a pole. If the
load is 0.5 m from Paul, what force does each boy
support?

load is not a synonym for sack; instead, it describes the
role played by the sack in this context.

Unification of Paul and Henry with each boy conveys
new information about the ages of Paul and Henry.

the left end ... the other end

the 100 lb boy

the heavy end

40

English

English is a context-free language (more or less).

English has a great deal of ambiguity, compared to
programming languages. By restricting the language to
an English subset for a particular application domain,
English I/O can be made quite tractable.

Some users may prefer an English-like interface to a more
formal language.

Of course, the best way to process English is in Lisp.

41

Expression Trees to English 15

(defn op [x] (first x))

(defn lhs [x] (second x))

(defn rhs [x] (third x))

(defn op->english [op]

(list ’the

(second (assocl op ’((+ sum)

(- difference)

(* product)

(/ quotient)

(sin sine)

(cos cosine)))) ’of))

(defn exp->english [x]

(if (cons? x) ; operator?

(append

(op->english (op x))

(append (exp->english (lhs x))

(if (null? (rest (rest x)))

’() ; unary

(cons ’and

(exp->english (rhs x))))))

(list x))) ; leaf: operand

15file expenglish.clj

42

Generating English

%clojure

>(load-file "cs378/expenglish.clj")

>(exp->english ’x)

(X)

>(exp->english ’(+ x y))

(THE SUM OF X AND Y)

>(exp->english ’(/ (cos z) (+ x (sin y))))

(THE QUOTIENT OF THE COSINE OF Z AND

THE SUM OF X AND THE SINE OF Y)

43

Simple Language Processing: ELIZA

Weizenbaum’s ELIZA program simulated a
psychotherapist; it achieved surprisingly good
performance simply by matching the “patient’s”
input to patterns:

Pattern: (I HAVE BEEN FEELING *)

Response: (WHY DO YOU THINK YOU

HAVE BEEN FEELING *)

The * matches anything; it is repeated in the
answer.

Patient: I have been feeling depressed

today.

Doctor: Why do you think you have been

feeling depressed today?

Problems:

• Huge number of patterns needed.

• Lack of real understanding:

Patient: I just feel like jumping

off the roof.

Doctor: Tell me more about the roof.

44

Spectrum of Language Descriptions

ELIZA and a general grammar represent two
extremes of the language processing spectrum:

• ELIZA:
Too restricted. A large application, PARRY – an
artificial paranoid – was attempted, but failed to get
good enough coverage even with 10,000 patterns.

• General English Grammar:
Too ambiguous. Hundreds of interpretations of
ordinary sentences.

There is a very useful middle ground: semantic
grammar.

45

Semantic Grammar

Semantic grammar lies between ELIZA and a more
general English grammar. It uses a grammar in which
nonterminal symbols have meaning in the domain of
application.

<S> --> WHAT <CUST> ORDERED <PART>

<MODS>

<CUST> --> CUSTOMER | CUSTOMERS <LOC>

<LOC> --> IN <CITY>

<CITY> --> AUSTIN | SEATTLE | LA

<PART> --> WIDGETS | WIDGET BRACKETS

<MODS> --> IN <MONTH> | BEFORE <MONTH>

<MONTH> --> JANUARY | FEBRUARY | MARCH

WHAT CUSTOMERS IN AUSTIN ORDERED

WIDGET BRACKETS IN MARCH

Advantages:

• More coverage with fewer patterns than ELIZA.

• No ambiguity due to use of semantic phrases.

• Easy to program.

46

Semantic Grammar: Extended Pattern
Matching

In this approach, the pattern-matching that is allowed
is restricted to certain semantic categories. A grammar
is used to specify the allowable patterns; this allows
the restrictions to be specified easily, while allowing
more language coverage and easier extension with fewer
specified patterns.

Example:

<s> --> what is <ship-property> of <ship>?

<ship-property> --> the <ship-prop> | <ship-prop>

<ship-prop> --> speed | length | draft | beam

<ship> --> <ship-name> | the fastest <ship2>

| the biggest <ship2> | <ship2>

<ship-name> | Kennedy | Kitty Hawk | Constellation

<ship2> --> <countrys> <ship3> | <ship3>

<ship3> --> <shiptype> <loc> | <shiptype>

<shiptype> --> carrier | submarine | ...

<countrys> --> American | French | British

<loc> --> in the Mediterranean | in the Med | ...

”What is the length of the fastest French sub in the Med?”

47

Example Semantics for a Semantic Grammar

Suppose we want to use the semantic grammar
given earlier to access a relational database containing
information about ships. For simplicity, let us assume a
single SHIP relation-as follows:

NAME TYP OWN LAT LONG SPD LNG
Kitty Hawk CV US 10o00′N 50o27′E 35 1200
Eclair SS France 20o00′N 05o30′E 15 50

Consider the query: What is the length of the fastest
French sub in the Med?

This query is parsed by the top-level production

<S> --> What is <ship-property> of <ship>?

which is conveniently structured in terms of:

1. The data values to be retrieved: <ship-property>

2. The data records (tuples) from which to retrieve the
data: <ship>.

In each case, the values are additive and can be
synthesized from the parse tree, as shown below.

48

Compositional Semantics

The semantics of each phrase is propagated up the tree
and combined with the semantics of the other descendant
nodes at each higher-level node of the tree.

49

Additional Language Features

Semantic grammar enables additional features that help
users:

• Spelling correction:

What is the lentgh of Kennedy?

= length

Because we know from the grammar that a
<ship-prop> is expected, the list of possible ship
properties can be used as input to a spelling corrector
algorithm to automatically correct the input.

• Sentence fragments:

What is the length of Kennedy?

speed

= What is the speed of Kennedy?

If the input can be parsed as a part of the previous
parse tree, the rest of the input can be filled in.

50

Recursive Descent

Recursive Descent is a method of writing a parsing
program in which a grammar rule is written as a function.

Given a grammar rule:

S -> NP VP

we simply make the left-hand-side nonterminal be the
name of the function, and write a series of function calls
for the right-hand side.

(defn s []

(np)

(vp))

There could be an infinite loop if there is left recursion,
i.e. a rule of the form:

A -> A ...

51

Parsing English

In most cases, a parser for a programming language never
has to back up: if it sees if, the input must be an if

statement or an error.

Parsing English requires that the parser be able to fail,
back up, and try something else: if it sees in, the
input might be in Austin or in April, which may be
handled by different kinds of grammar rules.

Backup means that parsing is a search process, possibly
time-consuming. However, since English sentences are
usually short, this is not a problem in practice.

An Augmented Transition Network (ATN) framework
facilitates parsing of English.

52

ATN Program 16

• A global variable atnsent points to a list of words
that remain in the input sentence:
(GOOD CHINESE RESTAURANT IN LOS ALTOS)

• A global variable atnword points to the current word:
GOOD

• (wordcat category) tests whether atnword is in
the specified category. It can also translate the word,
e.g. (wordcat ’month) might return 3 if atnword
is MARCH.

• (nextword) moves to the next word in the input

• (saveptr) saves the current sentence position on a
stack, atnsavesent.

• (success) pops a saved position off the stack.

• (fail) restores a saved position from the stack
(restoring atnsent and atnword) and returns nil.

16file atn.clj

53

Parsing Functions

The parser works by recursive descent, but with the
ability to fail and back up and try another path.

(defn locfn []

(saveptr)

(let [$1 (and (= atnword (quote in)) atnword)]

(if $1

(do (nextword)

(let [$2 (wordcat (quote city))]

(if $2

(do (nextword)

(success)

(restrict (quote city) $2))

(fail))))

(fail))))

The program performs (saveptr) on entry and either
(success) or (fail) before leaving.

54

Grammar Compiler 17

It is easy to write a grammar compiler that converts
a Yacc-like grammar into the equivalent ATN parsing
functions. This is especially easy in Lisp since Lisp code
and Lisp data are the same thing.

(rulecompr ’(loc -> (in (city))

(restrict ’city $2))

’locfn)

(defn locfn []

(saveptr)

(let [$1 (and (= atnword (quote in)) atnword)]

(if $1

(do (nextword)

(let [$2 (wordcat (quote city))]

(if $2

(do (nextword)

(success)

(restrict (quote city) $2))

(fail))))

(fail))))

17file gramcom.clj

55

Sentence Pointer Handling

; initialize for a new sentence

(defn initsent [sent]

(def atnsent sent) ; remainder of sentence

(def atnsavesent ’()) ; saved pos for backup

(setword))

; set atnword for current position

(defn setword []

(def atnword (first atnsent)) ; current word

(def atnnext (rest atnsent)))

; move to next word

(defn nextword []

(def atnsent atnnext) (setword) true)

56

Sentence Pointer Handling ...

; save the current position

(defn saveptr []

(def atnsavesent

(cons atnsent atnsavesent))) ; push

; pop the stack on success

(defn success []

(def atnsavesent (rest atnsavesent))) ; pop

; restore position on failure, return nil

(defn fail []

(def atnsent (first atnsavesent))

(def atnsavesent (rest atnsavesent))

(setword)

nil)

57

Lexicon Example

(def lexicon

’((a/an (a an some))

(i/you (i you one))

(get (get find obtain))

(quality ((good 2.5)))

(restword (restaurant (restaurants restaurant)))

(kindfood (american bakery chinese))

(city (palo-alto berkeley los-altos))

(county (santa-clara))

(area (bay-area))

(street (el-camino-real))

))

Note translation to internal form, e.g., good -> 2.5

It is easy to include abbreviations, slang, and special
terms. These are good because they are usually short
(reducing typing), are usually unambiguous, and users
like them.

58

Word Category Testing

; Test if current word is in category

(defn wordcat [category]

(if (= category ’number)

(and (number? atnword) atnword)

(if (= category ’symbol)

(and (symbol? atnword) atnword)

(let [catlst (assocl category lexicon)

wd (findwd atnword (second catlst))]

(if (cons? wd)

(if (empty? (rest wd))

(first wd)

(second wd))

wd)))))

The lexicon and category testing can do multiple tasks:

1. Test if a word has a specified part of speech.

2. Translate to internal form, e.g.,
March --> 3.

3. Check for multi-word items, e.g., United States (not
implemented).

59

Database Access

Database access requires two kinds of information:

1. Which records are to be selected. This takes the
form of a set of restrictions that selected records must
satisfy.

(restrict ’field value)

2. What information is to be retrieved from the selected
records.

(retrieve ’field)

The task of the NL access program is to translate the
user’s question from English into a formal call to an
existing database program.

The components of the query are collected as lists in the
global variables restrictions and retrievals.

60

Database Access

Our example database program takes queries of the form:

(querydb <condition> <action>)

The <condition> is formed by consing and onto the
restrictions, and the <action> is formed by consing
list onto the retrievals.

The condition and action are Clojure code using a
variable tuple: if the condition is true, the action is
executed and its result is collected. Both the condition
and action can access fields of the current database record
using the call:

(getdb (quote <fieldname>))

61

Building Database Access

; retrievals = things to get from database

; restrictions = restrictions on the query

; Main function: ask

(defn ask [sentence]

...

(s)

...

(let [ans (querydb (cons ’and restrictions)

(cons ’list retrievals))]

(if postprocess

(eval (subst ans ’$$ postprocess))

ans))))

; make a database access call

(defn retrieve [field]

(addretrieval (list ’getdb ’tuple (kwote field))))

; add a restriction to the query

(defn restrict [field value]

(addrestrict

(list ’= (list ’getdb ’tuple (kwote field))

(kwote value))))

62

Grammar Rules

A grammar rule has the form:

(nonterm -> (right-hand side items) semantics)

nonterm is a nonterminal symbol that is the left-hand
side of the production; the rule says that the left-hand side
nonterminal can be composed of the sequence of items on
the right-hand side.

The allowable items on the right-hand side are:
word exactly the specified word

(nonterminal) like a subroutine call to a sub-grammar.
(category) a word in the category, e.g. (month)

(number) any number
(symbol) any symbol

? preceding item is optional
(separate ? from a word by a space)

The semantics is clojure code to be executed when the
grammar rule is satisfied. The right-hand side items are
available as variables $1, $2, $3, etc., similar to what is
done in Yacc. For example, consider the rule:

(loc -> (in (city)) (restrict ’city $2))

In this case, $2 refers to whatever matches the (city)

part of the grammar rule.

63

Restaurant Database Grammar

(def grammar

’((command -> (show me) true)

(command -> (what is) true)

(qual -> ((quality))

(restrictb ’>= ’rating $1))

(qualb -> (rated above (number))

(restrictb ’>= ’rating $3))

(resttype -> ((kindfood))

(restrict ’foodtype $1))

(loc -> (in (city)) (restrict ’city $2))

(loc -> (in (county)) (restrict ’county $2))

(s -> ((command) (a/an)? (qual)? (resttype)?

(restword) (qualb)? (loc)?)

(retrieve ’restaurant))

(s -> (how many (qual)? (resttype)? food ?

(restword) (loc)?)

(do (retrieve ’restaurant)

(postpr ’(length (quote $$)))))

64

Notes on Database Grammar

It is good to write grammar rules that cover multiple
sentences, using:

• multiple rules for a nonterminal, to handle similar
phrases

• the ? to make the preceding item optional.

My solution for the restaurant assignment only has 5 rules
for the top-level nonterminal s.

Multiple actions can be combined using do:

(do (retrieve ’streetno) (retrieve ’street))

Questions such as how many or what is the best require
post-processing. The result of the query (restrictions and
retrievals) is available as the variable $$:

(postpr ’(length (quote $$)))

In this case, postpr specifies post-processing, and
length is the function that is called; this would answer
how many.

65

Restaurant Queries

% clojure

user=> (load-file "cs378/restaurant.clj")

user=> (load-files)

user=> (gramcom grammar)

user=> (ask ’(where can i get ice-cream in berkeley))

((x2001-flavors-ice-cream-&-yogur)

(baskin-robbins)

(double-rainbow)

(fosters-freeze)

(marble-twenty-one-ice-cream)

(sacramento-ice-cream-shop)

(the-latest-scoop))

user=> (ask ’(show me chinese restaurants

rated above 2.5 in los-altos))

((china-valley)

(grand-china-restaurant)

(hunan-homes-restaurant)

(lucky-chinese-restaurant)

(mandarin-classic) ...)

66

Physics Problems18

(def lexicon

’((propname (radius diameter circumference area

volume height velocity time

weight power height work speed mass))

(a/an (a an))

(the/its (the its))

(objname (circle sphere fall lift))))

(def grammar ’(

(param -> ((the/its)? (propname)) $2)

(quantity -> ((number)) $1)

(object -> ((a/an)? (objname) with (objprops))

(cons ’object (cons $2 $4)))

(objprop -> ((a/an)? (propname) of ? (quantity))

(list $2 $4))

(objprop -> ((propname) = (quantity))

(list $1 $3))

(objprops -> ((objprop) and (objprops))

(cons $1 $3))

(objprops -> ((objprop)) (list $1))

(s -> (what is (param) of (object))

(list ’calculate $3 $5))))

18file physgram.lsp

67

Physics Queries

% clojure

user=> (load-file "cs378/physics.clj")

user=> (load-files)

user=> (gramcom grammar)

user=> (phys ’(what is the area of a circle

with radius = 2))

(calculate area (object circle (radius 2)))

12.566370614

user=> (phys ’(what is the circumference of

a circle with an area of 100))

(calculate circumference (object circle (area 100)))

35.44907701760372

user=> (phys ’(what is the power of a lift with

mass = 100 and height = 6

and time = 10))

(calculate power (object lift (mass 100)

(height 6) (time 10)))

588.399

68

Physics Units

An important part of physics problems is units of
measurement. These can easily be handled by
multiplying the number by the conversion factor that
converts the unit to SI (metric) units. For example, an
inch is 0.0254 meter, so 40 inches is 1.016 meter.

(phys ’(what is the area of a circle

with radius = 40 inches))

(calculate area (object circle (radius 1.016)))

3.2429278661312964

The calculate form can accept a multiply by a factor,
allowing units for the goal of the calculation:

(phys ’(what is the area in square-inches

of a circle with radius = 1 meter))

(calculate (* area 6.4516E-4)

(object circle (radius 1.0)))

4869.478351881704

69

Physics Changes

An interesting kind of question is how one quantity varies
in terms of another quantity:

(phys ’(how does the force of gravitation

vary with radius))

(varywith gravitation force radius)

inverse-square

(phys ’(how does the area of a circle vary

if radius is doubled))

(varychg circle area ((radius 2.0)))

4.0

These questions can be answered easily as follows:

1. Find an equation that relates these variables.

2. Solve the equation for the desired variable.

3. Evaluate the rhs of the solved equation with all
variables set to 1.

4. Change the variable(s) that change to 2.0 (or the
appropriate value) and evaluate again.

5. The ratio of the two evaluations gives the answer.

70

Natural Language Interfaces

Interfaces for understanding language about limited
domains are easy:

• Database access.

• Particular technical areas.

• Consumer services (e.g., banking).

Benefits:

• Little or no training required.

• User acceptance.

• Flexible.

Specialized language is much easier to handle than
general English. The more jargon used, the better: jargon
is usually unambiguous.

71

Problems with NL Interfaces

• Slow Typing: A formal query language might be
faster for experienced users.

• Typing Errors: Most people are poor typists. A
spelling corrector and line editor are essential.

• Complex Queries: Users may not be able to
correctly state a query in English. “All that glitters
is not gold.”

• Responsive Answers:

Q: How many students failed CS 381K

in Summer 2018?

A: 0

Does this mean:

1. Nobody failed.

2. CS 381K was not offered in Summer 2018.

3. There is no such course as CS 381K.

• Gaps: Is it possible to state the desired
question?

72

