1991 OOPSLA Workshop on Reflection and Metalevel Architectures
.. in Object-Oriented Programming
Computational ‘Reflection in Executions of Knowledge Level Models

Ruey-Juin Chang and Gordon S.Novak, Jr.
Al Laboratory

The University of Texas at Austin

ABSTRACT

A new type of object-oriented components, called reflectors, is presented for making knowledge level
models executable. From a knowledge level perspective, a problem-solving process is viewed as a
modeling activity through explicit representation knowledge level models. Certain useful models are
currently identified such as task structures and problem-solving methods. However, the critical issue is how
to turn a knowledge level description of an application into a working system. The paper describes how to
use a computational reflection scheme for the executions of those higher level models.

1. Introduction

For the design of reusable component libraries in the past, NIH[Gorlen, 87], Libg++[Lea, 88],
InterViews[Linton, 89], Booch Components[Booch, 90], the type of components used mainly is of generic
problem-solving methods. However, from a knowledge level perspective, methods only are not sufficient
for modeling the process of problem-solving. Many other types of components are currently identified in
research projects, for example, KADS, Generic Task and CML[Breuker, 86][Chandrasekaran, -
89][Vanwelkenhuysen, 90] respectively. The knowledge level analysis of problems has received
increasingly attention. This paper presents a new type of component, called reflector. It is smoothly
integrated with other types of knowledge level components, problem-solving methods and task structures.
The component types of task structure, problem-solving method, and computational reflector, and their
relationships, are discussed for modeling the process of problem-solving. A task structure is provided to
model the problem/subproblem relationships and its applicable methods. A problem-solving method is
used 1o describe how to solve a task. There can be multiple methods for a task. A task is executed by
invoking one of its applicable methods. The methods can be task-specific since the relationships to a task
can be described in the task structure. More efficient methods can be provided for particular task structures.
Reflectors are used to describe how to operationalize (execute) a component. The executable components
can turn the knowledge level models of an application into a working system. In addition, explicit
representation of knowledge level componeats makes the application systems easier to be extended, adapted,
and maintained.

2. The Components of Expertise

A cliche model is designed to uniformly represent knowledge level components. From a knowledge
level perspective, there are at least three types of components currently being identified as important
elements; there are problem-solving methods, task structures, and computational reflectors. Furthermore,
the methods, tasks, and reflectors must be integrated in an open-ended and coherent way. For taking into
account all aspects, three essential pieces information are described in our cliche model shown below: (1)
template description and composition; (2) template instantiation and interpretation; and (3) meaning
function. The cliche model provides a modular way for both composition and interpretation of cliches.

A cliche is a specialized GLISP structured object description as shown below[Novak, 83a, 83b]. A
GLISP object description is a description of the structure of an object in terms of named substructures,
together with definitions of ways of referencing the object.

(<cliche-name> (<structured-descriptions>)
SUPERS (<list-of-cliche-names>)
PROP ‘
((interpretation <cliche-name>)
(interpreter <cliche-name>)

(<cliche-type specific properties>)
(<other properties descriptions>))
MSG i
((meaning <message description for intensional semantics>)))

The object description defines the lisp data structure for the object and the optional properties. The
SUPERS property describes a list of cliches from which the PROP and MSG properties can be inherited.

ThePROPandMSGproperﬁesspecifyﬂ\ccomputablepmpem
example of the task multiplying-two-real-numbers is used t0 illustrate how to instantiate the

A simple
three types of components.
Task:multiply

Decomposed by Methods
block1

x | x1 log x2

z1 q : z

block2 add [| 2T

y x1 log x2 22 we

X
2
y *
x1
get-decimal 21
y1 1 3 | 2
put-decimal
. X2 accumulator A
y 4
y y2
2

4

| I i L]

Task Structure: for modeling the problem/subproblems relationships and applicable methods.

(<task-name> (<list-of-default-subtasks> <list-of-task-I/0-ports>)
SUPERS (<list-of-task-nwnes>)
PROP
((interpretation <reflectors>)
(in <reflectors>)
(block <list-of-submsk—nms>)
(connection <inter-sub¢asks~comction>)
(model <list-oﬁmsk—l/0—pon-ms>)
(<task-specific properties>))
MSG
((meaning <problem-solving~methods>)))

<problem-solving-mthods> can be a GLISP expression or function name for describing a single method.
If there are multiple methods that can be applied to the task structure, then <problem-solving-methods> isa
list of method names. These method names denote the cliches that describe the problem-solving methods.

Example-1 (Task Structures):

(multiply (listobject (block1 (transparent log))
(block2 (transparent log))
(block3 (transparent add})
(block4 (transparent anti-log))
(x realXy real)(z real)
PROP

((interpretation CPRODUCTgé)N-SEMANT'ICS))

(interpreter y)

(block ((blockl block?2 block3 block4)))

(connection ((x (block1 x 1))y (block2 x1))
((block1 x2) 21){((block2 x2) 22)
(z3 wi}w22)))

(model ((multiply(x yX2)))))

((meaning ((by-logarithm by-accumulator operator-*)))))

Problem-Solving Method: for specifying how a task can be solved. It can be either a primitive
problem solution or a decomposition method that describes the problem solving sequence of the subtasks.

(<method-name> (listobject (task atom)(instance anything))
SUPERS (dist-oﬁmduod—namep)

MSG

(condition <predicate>)
(<properties for method-specific decomposed subtasks>))

MSG
((meaning <operator, control, or problan-spacc-searcb)))

Method Spectrum: It is worth mentioning that the methods are associated with task structures.
Thatis.dlemmodsmtask-speciﬁc. Amsk-speciﬁcmmodcandwcribehowitstaskisspeciﬁcally
decomposedand,hcnce,mbemaecfﬁciem. Atﬁ\eotberexnelne.memenno&canbemmgenaic
or domain-specific. Theymusedfotmotcd\anonctaskordomain. The default task decomposition
is defined in the task strucwure.

Example-2 (Problem-Solving Methods):

ggc-)lsygarith (listobject (task atom)(instance anything))
(CINTERPRE

(interpreter TER))
(condition (false)))

MSG
((meaning task-sequence)))

The above method decomposes the task multiply by default. The default decomposition is defined in the
task itself as shown in the first example. That is, the subtasks consist of two tasks of log, one task of
add, and one task of anti-log. Those subtasks are primitive tasks without further decomposing.

(by-accumulator (listobject (task atom)instance anything))
PROP

)
(block (((block1 get-decimal)
_ (block?2 accumulator)(block3 put-decimal))))
(connection (x x1Xy YIXx ¥2)Y ¥2)
(z1 wiX22 w2)Xz3 2)))
(model ((multiply(x yXz)))))
MSG
((meaning task-sequence)))

In the method by-accumulator, the task multiply is explicitly decomposed into three primitive
subtasks: (1) get-decimal for totaling number of digits after decimal points in both inputs, (2)
accumulator for accumulating the first input a number of times that is equal to the second input,
ignoring the decimal points, and (3) put-decimal for getting a value from the first input and replacing the
decimalpointauhatvalminapositionaccordingtomesecondinpun

Reflector: for specifying how the cliche evaluates its meaning.
(<reflector-name> (<formal-arguments>)
SUPERS (<Iist-of-rq‘lector-ums>)

PROP
((interpretation <reflectors>)
(interpreter <rq"lgctors>))
(<reflector-specific properties>))

MSG
((meaning <a GLISP message form>)))

These cliches are executable and the executions are based on their meanings and reflectors in
properties interpretation and interpreter which explicitly describe how the cliche meaning is executed. The
default execution of a cliche, by using reflectors MEANING and INTERPRETER, is to send the message
liche. The reflector "pmdmﬁon-semantics" in task multiply describes that the method

meaning to the C!
selection from multiple choices is based on the type of production systems and method conditions. For

example, we can execute multiply with inputs x equals to 4.0 and y equals to 5.0.

(DO multiply with x = 40y=50)or
(DO multiply with $Instance (A multiply with x =40y = 5.0)=>20.0

Thetaskmuldplyisexecuwdbyoneofthcmteepossiblcmemodsdependingmconditionsofmethods.
Eachmed\odspeciﬁesadecomposiﬁmofdntask. The executi
be generated by the same meaning function task-sequence from method descriptions of by-logarithm and
by-accumulator, respectively, if they are chosen. In this particular case, the execution program from
by-accumulator is actually generated since the method ition is "true”. Note that the operator DO is
recursively called in both execution sequences until reaching the primitive tasks.

“FEEEREBEEEEEEEEEEEREES

There are several interesting points in using this kind of implementation technique for developing such a
knowledge level component library:

(1) Task structures can be recursively decomposed by the associated problem-solving methods. That is,
a method decomposes its task into subtasks, which are solved by their own respective methods. If
subtasks are not the primitives, then they can be decomposed again by associated methods.

(2) There can be multiple ways to describe task decomposition. The way that is used for
decomposition at task execution depends on which methods are chosen. The selection of associated
methods depends on run-time context and condition of methods. For instance, the above example uses
a constant Boolean value in the condition of methods.

(3) Computational reflectors provide user-definable execution aspects of each type of component. For
example, execution semantics of multiple methods in a task structure can be sequential, production
system, eic.

In addition, a framework of a cliche-based environment can be built by a set of cliches that embodies
an abstract design for solutions to a family of related problems and supports reuse at a larger granularity
than the individual cliche does. In [Chang, 91], the cliches as the building blocks to construct more

complex programs from problem descriptions. The reusable components can be selected from an object-
oriented cliche library.

3. Cliche-Based Reflective Architecture

Thcmﬂectors,MEANNG,INTERPRETER.oranyspecializationofmescprimitivem,areusedm o

describe the computational aspects of components. These user-definable computations cause closer
relationships between knowledge-level models and implementations. In object-oriented programming, the
computation can be based on either (1) message sending such as SMALLTALK[Goldberg 831, (2) generic
function dispatching such as CLOS[Bobrow, 88a], or (3) referent computing such as KRS[Steels,
88][Marke, 88]. Many object-oriented reflection systems[Briot, 87][Cointe, 87][Graube, 88][Ferber, 89]
focus on the process of message sending, i.e., reifying entities during the process of message sending.
CLOS/MOP{Bobrow, 88b][des Rivieres, 90] does reflection during the process of dispatching generic
function. 3-KRS[Maes, 87] is built on KRS. Although it presents a framework of computational
reflection during the process of message sending, the reflection cannot dynamically modify its own referent
computing. The referent computing of KRS/3-KRS is rather fixed and hardwired in the system. In our
system, the meaning computation of a cliche by reflectors is based on reflective referent computing. The
reflective meaning computation provides a framework of customizable and user-definable referent
computing.

3.1. Self-Representation of the Cliche Interpreter

The interpreter for cliche evaluation must be able to construct an explicit representation of the evaluation
process and its current status. It is on this base of its self representation that the interpreter is able to
reflect, i.¢..to reason about itself and to support actions upon itself. The meta circular interpreter for cliche
evaluation is defined as shown below. In each cliche, property interpreter and property interpretation specify
cliche names such as MEANING and INTERPRETER that actually provide the explicit representation of
the evaluation process.

(DO cliche with p)
(If (cliche.interpreter = INTERPRETER)
then (If (cliche.interpretation = 'MEANING)
then (send (a MEANING with class = ‘cliche args='(p)) meaning)
else (DO cliche.interpretation with class = ‘cliche args = '(p)))
else (DO cliche.interpreter with class = ‘cliche args = '(p)))
In GLISP, (a cliche with field] = valuel field2 = value2 ...) generates an instance of structured object

cliche. Cliche.property is used to access the value of property in cliche. Cliches MEANING and
INTERPRETER are defined below. They are kernel cliches for default interpretation process. Users can

modify the ipterp_rqtaﬁon process by giving different values in property interpretation ox interpreter of the
cliche or by inheriting one in an object-oriented way.

(MEANING (st (class atom)(args (listof atom)))
PROP
((interpretation (MEANING))
(interpreter (INTERPRETER)))

((meaning (send (cval *(a class with @args)) meaning))))

MSG

(INTERPRETER (list (class atom)(args (listof atom)))
PROP

((interpretation (MEANING))

(interpreter (INTERPRETERY)))

((meaning (eval “(DO class.interpretation with class= ,(kwote class) args= ,(kwote args))))))

MSG

Two kinds of entities shown here (interpreter and interpretation) can be reified in the entire process of
cliche evaluation. The first reification entity is cliche description and composition. The second entity is
the cliche interpretation itself and cliche instantiation.

3.2. Reflection on Meaning Computation _
The meaning computation is invoked by executing (DO cliche with ...). It is based on computational
reflection. (DO cliche with ...) recursively calls (DO interpreter-1 with ...) if cliche interpreter is not
INTERPRETER. Otherwise, it recursively calls (DO interpretation-1 with ...) if cliche.interpretation is
not MEANING. If both default cliches, INTERPRETER and MEANING, are used, then it simply executes
(send (a MEANING with class = ‘cliche args = ...) meaning) or (send an-instance-of-cliche meaning). Note
that the recursive calls stop when the default interpreter and interpretation are reached. Computational
reflection is triggered at recursive calls according to the properties Interpreter and Interpretation in the
cliches. If non-default computation is used, then the reflection will happen at meta levels according to the
names in these two properties. Thenamesaredtherspeciﬁedbymemasorinheritedﬁunsupers. There
can be a reflective computation tower. Customization of reflectors can be done along the tower. The effects
ofﬂnereﬂectiminﬂuemehowthemningofﬂwcﬁcheiscompmed.

4. Conclusions

A new type of components, based on computational reflection, is designed for knowledge level
modeling. Together with task structures and problem-solving methods, these components are used to model
a problem-solving process from a knowledge level perspective. The reflectors are used to make knowledge
level models executable in a user-definable way. We believe that an object-oriented programming
environment should be able to provide programmers with libraries of commonly used knowledge-level
models that could be domain-specific and task-specific and from which they can pick suitable models
whenever needed for designing knowledge-based systems.

References

Bobrow, D., L. DeMichiel, R. Gabriel, S. Keene, G. Kiczales, and D. Moon, 1988a, Common Lisp Object
System Specification X3JI3 Document 88-002R, Special Issue of SIGPLAN Notices, 2X(9).

Bobrow, D., and G. Kiczales, 1988b, The Common Lisp Object System Metaobject Kernel: A Status
Repont, Proceedings of the 1988 ACM Conference on Lisp and Functional Programming, Snowbird, Utah.

Booch, G., 1990, The Design of the C++ Booch Components, Proceedings of the Conference on Object-
Oriented Programming: Systems, Languages, and Applications and European Conference on Object-
Oriented Programming (OOPSLA/IECOOP-90), Ottawa, Canada.

Breuker, J., and B. Wielinga, 1986, Models of Expertise, Proceedings of the 1986 European Conference on
Artificial Intelligence (ECAI-86), Brighton, England.

Briot, J., and P. Cointe, 1987, A Uniform Model for Object-Oriented Languages Using The Class
Abstraction, Proceedings of the Tenth International Joint Conference on Artificial Intelligence (IJCAI-87),
Milan, Italy.

Chang, R.J., 1991 Analyst's Workbench: A Cliche-Based Programming Paradigm, The University of Texas
at Austin, Ph.D. Thesis(In preparation).

Chandrasekaran, B., 1989, Task Structures, Knowledge Acquisition, and Leaming, Machine Learning,
4(3,4).

Cointe, P., 1987, Metaclasses are First Class: the ObjVLisp model, Proceedings of the 1987 ACM
Conference on Object-Oriented Programming: Systems, Languages and Applications (OOPSLA-87), New
Orleans, Louisiana. :

des Rivieres, J., 1990, The Secret Tower of CLOS, Proceedings of the ECOOP/OOPSLA '90 Workshop on
Reflection and Metalevel Architectures in Object-Oriented Programming, Ottawa, Canada.

Ferber, J., 1989, Computational Reflection in Class Based Object Oriented Languages, Proceedings of the
1989 ACM Conference on Object-Oriented Programming: Systems, Languages and Applications
(OOPSLA-89), New Orleans, Louisiana.

Goldberg, A. and Robson, D. 1983 , Smalltalk-80: The Language and its Implementation, Addison-Wesley,
Reading, MA.

Graube, N., 1988, Reflective Architecture: From ObjVLisp to CLOS, Proceedings of the 1988 European
Conference on Object-Oriented Programming (ECOOP-88), Oslo, Norway.

Foote, B., and R. Johnson, 1989, Reflective Facilities in Smalltalk-80, Proceedings of the 1989 ACM
Conference on Object-Oriented Programming: Systems, Languages and Applications (OOPSLA-89), New
Orleans, Louisiana.

Maes, P., 1987, "Computational Reflection,” Ph.D. Thesis, Laboratory for Artifitial Intelligence, Vrije
Universiteit Brussels.

Marke, K.V., 1988, "The Use and Implementation of the Representation Language KRS”, Ph.D. Thesis,
Laboratory for Artifitial Intelligence, Vrije Universiteit Brussels.

Steels, L., 1988, "Meaning in Knowledge Representation™ in Meta-Level Architectures and Reflection,
Maes, P., and D. Nardi (ed.), North-Holland, Amsterdam.

Novak, G., 1983a, "GLISP User's Manual,” TR-83-25, Artificial Intelligence Laboratory, The University
of Texas at Austin.

Novak, G., 1983b, Knowledge-Based Programming Using Abstract Data Types, Proceedings of the Third
National Conference on Artificial Intelligence (AAAI-83), Washington, DC.

Vanwelkenhuysen, J., and P. Rademakers, 1990, Mapping a Knowledge Level Analysis onto a
Computational Framewark, Proceedings of the 1990 European Conference on Artificial Inselligence (ECAI-
90), Stockholm, Sweden.

P

