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1 Introduction

The finance and insurance industry manipulates increasingly complex contracts.
Here is an example: the contract gives the holder the right to choose on 30 June
2000 between

D; Both of:

Di1 Receive £100 on 29 Jan 2001.
Dy> Pay £105 on 1 Feb 2002.

D, An option exercisable on 15 Dec 2000 to choose one of:

D5 Both of:
D511 Receive £100 on 29 Jan 2001.
D515 Pay £106 on 1 Feb 2002.

D55 Both of:
Ds31 Receive £100 on 29 Jan 2001.
Dsyys Pay £112 on 1 Feb 2003.

The details of this contract — call it C' — are not important, but it is a simplified
but realistic example of the sort of contract that is traded in financial derivative
markets. What is important is that complex contracts, such as C, are formed by
combining together simpler contracts, such as Dy, which in turn are formed from
simpler contracts still, such as Dy, Dis.

At this point, any red-blooded functional programmer should start to foam at
the mouth, yelling “build a combinator library”. And indeed, that turns out to be
not only possible, but tremendously beneficial.

The finance industry has an enormous vocabulary of jargon for typical com-
binations of financial contracts (swaps, futures, caps, floors, swaptions, spreads,
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straddles, captions, European options, American options, ...the list goes on). Treat-
ing each of these individually is like having a large catalogue of prefabricated com-
ponents. The trouble is that someone will soon want a contract that is not in the
catalogue.

If, instead, we could define each of these contracts using a fixed, precisely-
specified set of combinators, we would be in a much better position than having a
fixed catalogue. For a start, it becomes much easier to describe new, unforeseen,
contracts. Beyond that, we can systematically analyse, manipulate and perform
computations over these new contracts, because they are described in terms of a
fixed, well-understood set of primitives.

The major thrust of this chapter is to draw insights from the study of functional
programming to illuminate the world of financial contracts. More specifically, our
contributions are the following;:

e We define a carefully-chosen set of combinators, and, through an extended
sequence of examples in Haskell, we show that these combinators can indeed
be used to describe a wide variety of contracts (Section 3).

e Our combinators can be used to describe a contract, but we also want to
process a contract. Notably, we want to be able to find the value of a contract.
In Section 4 we describe how to give an abstract valuation semantics to our
combinators. A fundamentally-important property of this semantics is that
it is compositional; that is, the value of a compound contract is given by
combining the values of its sub-contracts.

e We sketch an implementation of our valuation semantics, using as an example
a simple interest-rate model and its associated lattice (Section 5).

Stated in this way, our work sounds like a perfectly routine application of the
idea of using a functional language to define a domain-specific combinator library,
thereby effectively creating an application-specific programming language. Such
languages have been defined for parsers, music, animations, hardware circuits, and
many others [van Deursen et al., 2000]. However, from the standpoint of financial
engineers, our language is truly radical: they acknowledge that the lack of a precise
way to describe complex contracts is “the bane of our lives”?.

It has taken us a long time to boil down the immense soup of actively-traded
contracts into a reasonably small set of combinators; but once that is done, new
vistas open up, because a single formal description can drive all manner of auto-
mated processes. For example, we can generate schedules for back-office contract
execution, perform risk analysis optimisations, present contracts in new graphical
ways (e.g. “time-lined” decision trees), provide animated simulations, and so on.

This chapter is addressed to a functional programming audience. We will
introduce any financial jargon as we go.
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Figure 1: Notational conventions

2 Getting started

In this section we will informally introduce our notation for contracts, and show
how we can build more complicated contracts out of simpler ones. We use the
functional language Haskell throughout.

2.1 A simple contract

Consider the following simple contract, which might serve as a modest birthday
present for Richard: “receive £100 on 13th February 2003”. (A contract of this
form is known to the industry as zero-coupon discount bond.) We can specify this
contract, which we name ¢, thus:

c1 = Contract
c¢1 = zcb t; 100 GBP

Figure 1 summarises the notational conventions we use throughout the chapter for
variables, such as ¢; and # in this definition.
The combinator zch used in ¢;’s definition has the following type:

zeb :: Date — Double — Currency — Contract

The first argument to zcb is a Date, which specifies a particular moment in
time (i.e. both date and time). We provide a function, mkDate, that converts a
date expressed as a friendly character string to a Date.

mkDate :: String — Date
Now we can define Richard’s birthdays in 2003 and 2004 like this:

t1,t> 2 Date

1The quote is from an informal response to a draft of our work.
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t1 = mkDate “0800GMT 13 Feb 2003”
iy mkDate “0800GMT 13 Feb 2004”

2.2 Combining contracts

So zcb lets us build a simple contract. We can also combine contracts to make
bigger contracts. A good example of such a combining form is and, whose type is:

and :: Contract — Contract — Contract
Using and we can define ¢z, a contract that involves two payments:

¢, c3 :: Contract
co = zcb t5 200 GBP
c3 = c1 ‘and’ ¢

That is, if Richard holds the contract c3 he will benefit from a payment of £100
on his 2003 birthday, and another payment of £200 on his 2004 birthday.

In general, the contracts we can describe are between two parties, the holder of
the contract, and the counter-party. Notwithstanding Biblical advice (Acts 20.35),
by default the owner of a contract receives the payments, and makes the choices,
specified in the contract. This situation can be reversed by the give combinator:

giwe :: Contract — Contract

The contract give ¢ is simply ¢ with rights and obligations reversed, a statement
we will make precise in Section 4.2. Indeed, when two parties agree on a contract,
one acquires the contract ¢, and the other simultaneously acquires give c; each is
the other’s counter-party. For example, ¢4 is a contract whose holder receives £100
at time ¢;, and pays £200 at time f5:

¢y = ¢ ‘and’ give c

So far, each of our definitions has defined a new contract (¢, c2, etc.). It is also
easy to define a new combinator (a function that builds a contract). For example,
we could define andGive thus:

andGive :: Contract — Contract — Contract
andGive ¢ d = c ‘and’ give d

Now we can give an alternative definition of ¢4 (which we built earlier):
e = ¢ ‘andGive’ ¢y

This ability to define new combinators, and use them just as if they were built in,
is quite routine for functional programmers, but not for financial engineers.



Peyton Jones and Eber 5

zero :: Contract
zero is a contract that has no rights and no obligations.

one :: Currency — Contract
If you acquire (one k) you immediately receive one unit of the currency k.

give :: Contract — Contract
To acquire (give c) is to acquire all ¢’s rights as obligations, and vice versa.
Note that for a bilateral contract ¢ between parties A and B, A acquiring
¢ implies that B acquires (give q).

and :: Contract — Contract — Contract
If you acquire (c1 ‘and‘ c2), you immediately acquire both ci1 and co.

or :: Contract — Contract — Contract
If you acquire (c¢1 ‘or c2) you must immediately acquire your choice of either
¢1 or ¢z (but not both).

cond :: Obs Bool — Contract — Contract — Contract
If you acquire (cond b c1 c2), you acquire c; if the observable b is true at
the moment of acquisition, and c2 otherwise.

scale :: Obs Double — Contract — Contract
If you acquire (scale o c¢), then you acquire ¢ at the same moment, except
that all the payments of ¢ are multiplied by the value of the observable o
at the moment of acquisition.

when :: Obs Bool — Contract — Contract
If you acquire (when o c), you must acquire ¢ as soon as observable o subse-
quently becomes True. It is therefore worthless in states where o will never
again be True.

anytime :: Obs Bool — Contract — Contract
Once you acquire (anytime o c), you may acquire ¢ at any time the ob-
servable o is True. The compound contract is therefore worthless in states
where o will never again be True.

until :: Obs Bool — Contract — Contract
Once acquired, (until o c) is exactly like ¢ except that it must be aban-
doned when observable o becomes True. In states in which o is True, the
compound contract is therefore worthless, because it must be abandoned
immediately.
Figure 2: Primitives for defining contracts

3 Building contracts

We have now completed our informal introduction. In this section we will give the
full set of primitives, and show how a wide variety of other contracts can be built
using them. For reference, Figure 2 gives the primitive combinators over contracts;
we will introduce these primitives as we need them.
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konst :: a — Obs a
(konst z) is an observable that has value z at any time.

lift = (a—b) — Obsa — Obsbh
(lift f 0) is the observable whose value is the result of applying f to
the value of the observable o.

lift = (a—>b—¢) - Obsa — Obsb — Obs ¢
(lifts f 01 02) is the observable whose value is the result of applying f
to the values of the observables 01 and 0.

date :: Obs Date
The value of the observable date at date s is just s.

instance Num a => Num (Obs a)
All numeric operations lift to the Obs type. The implementation is
simple, using lift and lift,.

Figure 3: Primitives over observables

3.1 Acquisition date and observables

Figure 2 gives an English-language, but quite precise, description of each combina-
tor. To do so, it uses two concepts that we must introduce first: the notions of an
acquisition date, and an observable.

Our language describes what a contract is. However, the consequences for the
holder of the contract depend on the date at which the contract is acquired; that
is, its acquisition date. (By “consequences for the holder” we mean the payments,
rights and obligations that the contract confers on the holder of a contract.) For
example, the contract “receive £100 on 1 Jan 2000 and receive £100 on 1 Jan 2001”
is worth a lot less if acquired after 1 Jan 2000, because, by definition, any rights
and obligations that fall due before the acquisition date are simply discarded.

The second fundamental concept is that of an observable. A real contract often
depends on measurable quantities. For example, a contract might say “receive an
amount in dollars equal to the noon Centigrade temperature in Los Angeles”;
or “pay an amount in pounds sterling equal to the 3-month LIBOR spot rate?
multiplied by 100”. We use the term observable for an objective, but possibly
time-varying, even perhaps unknown at contracting time quantity. By “objective”
we mean that both parties to the contract will agree on the value of the observable
at any particular time. The time of day, or the temperature in Los Angeles, can
be objectively measured; but the value to a home-owner of insuring his house is
subjective, and is not an observable. Observables are thus a different “kind of
thing” from contracts, so we give them a different type:

date :: Obs Date
2The T.IBOR spot rate is published daily in the financial press.
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tempInLA :: Obs Double

In general, a value of type Obs d represents a time-varying quantity of type d. We
will often use the observable date :: Obs Date in what follows.

Observables and their operations are, of course, reminiscent of Fran’s be-
haviours [Elliott and Hudak, 1997]. Like Fran, we provide combinators for lifting
functions to the observable level, lift, lift,, etc. Figure 3 gives the primitive com-
binators over observables for reference; we will introduce them as we encounter
them.

With these notions in hand, we now explore the combinators described in
Figure 2.

3.2 Discount bonds

Earlier, we described the zero-coupon discount bond: “receive £100 at time #”
(Section 2.1). At that time we assumed that zch was a primitive combinator, but
in fact it isn’t. It is obtained by composing no fewer than four more primitive
combinators. We begin with the one combinator:

¢cs = one GBP

Figure 2 gives a careful, albeit informal, definition of one: if you acquire
(one GBP), you immediately receive £1.

But the bond we want pays £100, not £1. We use the combinator scale to
“scale up” the contract, thus:

cg = scale (konst 100) cs

To acquire (scale o ¢) is to acquire the contract ¢, but all the payments and receipts
in ¢ are multiplied by the value of observable o. In this case, we want to scale by the
constant 100, so we use the combinator konst (from Figure 3) to lift the constant
100 to an observable whose value is always 100. You may wonder why scale takes an
observable, rather than simply a constant; we discuss that in the next sub-section.

We are not finished with our zero-coupon bond, however. cg pays the right
amount, but at the wrong time: it pays at the moment of acquisition, whereas
it should pay at date ¢ and no earlier. To obtain this effect we use the when
combinator (Figure 2):

cr = when (at ty) cg

If you acquire the contract (when o c¢), where o is a boolean observable, then noth-
ing happens until 0 becomes True; when that happens, you immediately acquire
¢. So (at t;) should be a boolean observable that becomes True at time ¢;. We
can define at like this:

at :: Date — Obs Bool
at t = lifts (==) date (konst t) — True when (date == t)
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The lift, takes (==), which compares two Dates and retuns a Bool, to a function
that takes two Obs Date arguments and returns an Obs Bool (Figure 3). We use
konst again, to lift the date ¢ to an observable.

Notice that if we acquire ¢; after #; we get nothing, because (at ¢1) is True at
the time ¢, but then becomes False and stays False forever.

Putting all this together, we can finally define zecb correctly:

zcb 2 Date — Double — Currency — Contract
zcb tx k = when (at t) (scale (konst z) (one k))

These definitions of zcb and at effectively extend our repertoire of combinators,
just as andGive did in Section 2.2, only more usefully. We will continually extend
our library of combinators in this way.

Why did we go to the trouble of defining zch in terms of four combinators,
rather than making it primitive? Because it turns out that scale, when, lift, lifts,
and one are all independently useful. Each embodies a distinct piece of functional-
ity, and by separating them we significantly simplify the semantics and enrich the
algebra of contracts (Section 4). The combinators we present are the result of an
extended, iterative process of refinement, leading to an interlocking set of decisions
— programming language designers will be quite familiar with this process.

3.3 Observables and scaling

In the previous section we used scale to scale a contract by a fixed quantity. But, as
we saw, scale scales a contract by an observable, that is, by a time-varying, maybe
unknown in advance, value:

scale :: Obs Double — Contract — Contract

Why do we want this generality? So-called “weather derivatives” are a good exam-
ple; a holiday resort might insure against bad weather by buying a contract that
pays out an amount depending on the amount of rain:

cs = scale rainInCyprus (one USD)
Here we assume that rainInCyprus is a primitive observable:

rainInCyprus :: Obs Double — Rainfall over a 24 hr period in
— Cyprus, measured in centimetres

If you acquire this contract you receive an amount in dollars equal to the 24-hr
rainfall in Cyprus, expressed in centimetres. Again, we have to be very precise in
our definitions. Exactly when is the rainfall sampled? Answer (in Figure 2): when
you acquire (scale o ¢) you immediately acquire ¢, scaling all the payments and
receipts in ¢ by the value of the observable o sampled at the moment of acquisition.
So we sample the observable at a single, well-defined moment (the acquisition date)
and then use that single number to scale the subsequent payments and receipts in
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c¢. The when combinator is often used to define precisely an acquisition date, but
we will see other possibilities in the next sections.

It is not long before one wants to perform arithmetic on observables. For
example, suppose you want to receive $1,000 for every centimetre of rainfall over
7cm. We can easily do that, using the lifts combinator we used earlier:

co = scale (lifts (%)
(lifts (=) rainInCyprus (konst 7))

(konst 1000))
(one USD)

This is all rather clumsy, but fortuntely Haskell’s type-class overloading mechanism
allows us to use the arithmetic operators — and * directly on observables, thus:

co = scale ((rainInCyprus — 7) * 1000) (one USD)
To achieve this, we simply need to make Obs into an instance of Num, thus:

instance Num a => Num (Obs a) where

fromInteger i = konst (fromInteger 1)

(+) = lift2 (+)

(=) = lifts ()

...etc...
Unfortunately, Haskell’s type system does not work quite so smoothly for relational
operators, such as (<). To reduce notational clutter, we will define a family of
relational operators, thus:

(%<), (%<=), (%=), (%>=), (%>) :: Orda => Obsa — Obsa — Obs Bool
(%<) = lift (<)
(%o<=) = lifts (<=) ...etc...

The scale combinator allows an observable to control the size, but not the character,
of a contract. The cond combinator allows an observable to select which of two
contracts is acquired:

cond :: Obs Bool — Contract — Contract
For example, the contract

ci0 = cond (rainInCyrus %> 10) (one GBP) (one USD)
If the rainfall in Cyprus, sampled on the date when ¢y is acquired, is more than
10cm, you receive £1, otherwise you receive $1.
3.4 Option contracts

Much of the subtlety in financial contracts arises because the participants can
exercise choices. We encapsulate choice in three primitive combinators, cond, or
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and anytime. The first two allow one to choose which of two contracts to acquire,
while the last allows one to choose when to acquire a contract.
First, we consider the choice between two contracts:

or » Contract — Contract — Contract

When you acquire the contract (¢; ‘or‘ cp), you must immediately acquire either
¢1 or ¢o (but not both). For example, the contract

zch t; 100 GBP ‘or® zeb t» 110 GBP

gives the holder the right, to choose immediately to receive either £100 at #;, or
£110 at to.

A so-called Furopean option gives the right to choose, at a particular date,
whether or not to acquire an “underlying” contract:

european :: Date — Contract — Contract

For example, consider the contract cs:

c11 = european (date “1200GMT 24 Apr 2003”) (
zch (mkDate “1200GMT 12 May 2003”) 0.4 GBP ‘and’
zch (mkDate “1200GMT 12 May 2004”) 9.3 GBP ‘and’
zcb (mkDate “1200GMT 12 May 2005”) 109.3 GBP ‘and‘
give (zcb (mkDate “1200GMT 26 Apr 2003”) 100 GBP)

)

This contract gives the right to choose, on 24 Apr 2003, whether or not to acquire an
underlying contract consisting of three receipts and one payment. In the financial
industry, this kind of contract is described as a “call on a coupon bond”. As with
zch, we define european in terms of simpler elements:

european :: Date — Contract — Contract
european t u = when (at t) (u ‘or‘ zero)

You can read this definition as follows:

e The primitive contract zero has no rights or obligations (see Figure 2).

e The contract (u ‘or‘ zero) expresses the choice between acquiring u and ac-
quiring nothing,.

e The when (at t) construct means that the choice must be made exactly at date
t. If you acquire the European contract after ¢, you get nothing.

The or combinator lets us choose which of two contracts to acquire. Let us
now consider the choice of when to acquire a contract:

anytime :: Obs Bool — Contract — Contract
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Acquiring the contract anytime o u gives the right to acquire the “underlying”
contract » at any time that the observable o is True.

An American option offers more flexibility than a European option. Typically,
an American option confers the right to acquire an underlying contract at any time
between two dates (or not to do so at all).

american (t1, t2) v = anytime (between ty t2) u
Here we use another simple combinator for observables:

between :: Date — Date — Obs Bool
— True on dates in the specified window
between t ta = lifty (&&) (date %>= t1) (date %<= 1)

3.5 Limit contracts

The last form of contract we define is a “limit contract”. Such contracts say “such-
and-such happens unless interest rates go above 6%”, or “unless the temperature
falls below freezing”. To accomodate such contracts we need a way to abandon a
contract, and that is the purpose of the until combinator. For example:

c12 = until (interestRate %> konst 6) (american (t, t2) c)

When you acquire ¢;2 you immediately acquire the underlying American option,
but as soon as interest rates go above 6% you must abandon the option, whether
or not you have by then exercised the option and acquired c. If you have exercised
the option, and ¢ has paid out some money, you get to keep that, but you abandon
any future benefits of c.

3.6 Summary

We have now given the flavour of our approach to defining contracts. The combi-
nators we have defined so far are not enough to describe all the contracts that are
actively traded, and we are extending the set in ongoing work. However, our main
conclusions are unaffected:

¢ Financial contracts can be described in a purely declarative way.

e A huge variety of contracts can be described in terms of a small number of
combinators.

Identifying the “right” primitive combinators is quite a challenge. For example,
it was a breakthrough to identify and separate the two forms of choice, or and
anytime, and encapsulate those choices (and nothing else) in two combinators.
Another breakthrough was to use boolean observables to describe the
which one can acquire a contract.

“region” in
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4 Valuation

We now have at our disposal a rich language for describing financial contracts.
This is already useful for communicating between people — the industry lacks
any such precise notation. But in addition, a precise description lends itself to
automatic processing of various sorts. From a single contract description we may
hope to generate legal paperwork, pictures, schedules and more besides. The most
immediate question one might ask about a contract is, however, what is it worth?
That is, what would I pay to own the contract? It is to this question that we now
turn.

We will express contract valuation in two “layers”:

Abstract valuation semantics. First, we will show how to translate an arbitrary
contract, written in our language, into a value process, together with a handful
of operations over these processes. These processes correspond directly to the
mathematical and stochastic machinery used by financial experts.

Concrete implementation. A process is an abstract mathematical value. To make
a computer calculate with processes we have to represent them somehow —
this is the step from abstract semantics to concrete implementation. An im-
plementation will consist of a financial model, together with some discrete
numerical method. A tremendous number of different financial models are
used today (e.g. Black-Scholes, Ho-Lee, etc.); but only three families of nu-
merical methods are widely used in industry: partial differential equations
[Willmot et al., 1993], Monte Carlo [Boyle et al., 1997] and lattice methods
[Cox et al., 1979].

This approach is strongly reminiscent of the way in which a compiler is typi-
cally structured. The program is first translated into a low-level but machine-
independent intermediate language; many optimisations are applied at this level;
and then the program is further translated into the instruction set for the desired
processor (Pentium, Sparc, or whatever).

In a similar way, we can transform a contract into a value process, apply
meaning-preserving optimising transformations to this intermediate representation,
before computing a value for the process. This latter step can be done interpre-
tatively, or one could imagine generating specialised code that, when run, would
perform the valuation.

. . what i
Indeed, our abstract semantics serves as our reference model for what it means
for two contracts to be “the same”. For example, here are two claims:

¢ fand’ (e ‘ortc3) = (e ‘and’ ) ‘or' (¢ ‘and’ ¢3)
give (¢1 ‘ort ca) = give ¢ ‘or give ¢y

In fact, the first is true, and the second is not, but how do we know for sure?
Answer: we compare their valuation semantics, as we shall see in Section 4.6.
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&l[-] : Contract — PRR

(E1) Elzero] = K(0)

(E2) Elone k)] = exchy(k:)

(E3) Elgivec] = —&]c]

(E4) Eclo‘scale‘ c] = V[o] * &[]

(E5) Efe fand’ o] = &le] + &le]

(E6) Elen‘ort o] = maz(&fea], Elea])
(E7) Eleond o cy o] = if(V[o], &leil, Elez])
(E8) EcJwhen o c] = discg(V[o], E[c])

(E9) Eclanytime o ¢] = snelly(V]o], E[c])
(E10) Efuntiloc] = absorby(V[o], &[c])

Figure 4: Compositional valuation semantics for contracts

4.1 Value processes

Definition 1 (Value process.) A wvalue process, p, over type a, is a (total) function
from time to a random variable of type a. The random variable p(t) describes the
possible values for p at time ¢. We write the informal type definition

PR a = Date - RV a

O

(We use caligraphic font for types at the semantic level.) Because we need to
work with different processes defined on the same “underlying space” (technically,
filtration), such a value process is more precisely described as an adapted stochas-
tic process, given a filtration. Such processes come equipped with a sophisticated
mathematical theory [Revuz and Yor, 1991, Musiela and Rutkowski, 1997], but it
is unlikely to be familiar to computer scientists, so we only present informal, in-
tuitive notions. We usually abbreviate “value process” to simply “process”. Be
warned, though: “process” and “variable” mean quite different things to their
conventional computer science meanings.

Both contracts and observables are modeled as processes. The underlying in-
tuitions are as follows:

e The value process for an observable o maps a time ¢ to a random variable
describing the possible values of o at t. For example, the value process for
the observable “IBM stock price in US$” is a function that maps a time to a
real-valued random variable that describes the possible values of IBM’s stock
price in USS$.
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V[-]: Obsa — PRa

V[konstz] = K(x)
V[date] = date
VIliftf o] = lift(f, V[o])
V[lifts f 01 0o] = lifta(f, V][o1], V]o2])

Figure 5: Valuation semantics for observables

The following primitives are independent of the valuation model

K:a—PRa
The process K(z) is defined at all times to have value z.

date : PR Date
The process date has as its value the date.

cond : PR Bools -+ PR a =+ PR a =+ PR a
Conditional choice between the latter two processes, based on the first.

lift : (a—b) >PR a—PR Db
Apply the specified function to the argument process point-wise.

lifta :(a > b—=¢)>PRa—-PRO—>PRc
Combine the two argument processes point-wise with the specified
function.

+,%....PRR=>PRR—=-PRR
Add, or multiply (etc.) the two processes. Equivalent to lifta(+), etc.

Figure 6: Process primitives

e The value process for a contract ¢, expressed in currency & is a function from a
time, ¢, to a random variable describing the value, in currency k, of acquiring
the contract ¢ at time t.

These intuitions are essential to understand the rest of the chapter.

4.2 From contracts to processes

How, then, are we to go from contracts and observables to processes? Figure 4
gives the complete translation from contracts to processes, while Figure 5 does
the same for observables. These Figures do not look very impressive, but that is
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The following primitives are dependent on the particular model

exchi(-) : Currency - PR R
exchy, (ko) is a real-valued process representing the value of one unit of
ks, expressed in currency k;. This is simply the process representing
the quoted exchange rate between the currencies.

disci(-,) : PR BXxPR R —- PR R
Given a boolean-valued process o, the primitive discy (0, p) transforms
the real-valued process p, expressed in currency k, into another real-
valued process. In states where o is True, the result is the same as p;
elsewhere, the result is its “fair” equivalent stochastic value process in
the same currency k.

snelly(,-) : PR BXxPRR—>PRR
The primitive snelli (o, p) calculates the Snell envelope of its argument
p, under observable o. It uses the probability measure associated with
the currency k.

absorbi(-,-) : PR Bx PR R —-PRR
Given a boolean-valued process o, the primitive absorby (o, p) trans-
forms the real-valued process p, expressed in currency k, into another
real-valued process. For any state, the result is the expected value of
receiving p’s value if the region o will never be True, and receiving
zero in the contrary. In states where o is True, the result is therefore
ZeT0.

Figure 7: Model primitives

the whole point! Everything so far has been leading up to this point; our entire
design is organised around the desire to give a simple, tractable, modular valuation
semantics. Let us look at Figure 4 in more detail.

The function &[c] takes a contract, ¢, and maps it to a process describing,
for each moment in time, the value in currency k of acquiring ¢ at that moment.
For example, the equation for give (E3) says that the value process for give ¢ is
simply the negation of &[c], the value process for ¢c. Aha! What does “negation”
mean? Clearly, we need not only the notion of a value process, but also a collection
of operations over these processes. Negating a process is one such operation; the
negation of a process p is simply a function that maps each time, ¢, to the negation
of p(t). It is an absolutely straightforward exercise to “lift” all operations on real
numbers to operate point-wise on processes. (This, in turn, requires us to negate a
random variable, but doing so is simple.) We will need a number of other operations
over processes. They are summarised in Figures 6 and 7, but we will introduce each
one as we need it.

Next, consider equation (E5). The and of two contracts is modeled simply by



16 How to write a financial contract

taking the sum of their two value processes. Equation (E6) does the same for the
or combinator. Again, by design, the combinator maps to a simple mathematical
operation, maz.

Equation (E4) is nice and simple. To scale a contract ¢ by a time-varying
observable o, we simply multiply the value process for the contract &[c] by the
value process for the observable — remember that we are modeling each observable
by a value process. We express the latter as V[o], defined in Figure 5 in a very
similar fashion to &[c]. At first this seems odd: how can we scale point-wise,
when the scaling applies to future payments and receipts in ¢? Recall that the
value process for ¢ at a time ¢ gives the value of acquiring ¢ at . Well, if this value
is v then the value of acquiring the same contract with all payments and receipts
scaled by z is certainly v % 2. Our definition of scale in Figure 2 was in fact driven
directly by our desire to express its semantics in a simple way. Simple semantics
gives rise to simple algebraic properties (Section 4.6).

The equations for zero and cond are also easy. Equation (E1) delivers the
constant zero process, while Equation (E7) uses the underlying conditional.

4.3 Exchange rates

The operations over value processes defined in Figure 6 are generic — they are
unrelated to a particular financial model. But we can’t get away with that forever.
The primitives in Figure 7 are specific to financial contracts, and they are used in
the remaining equations of Figure 4.

Consider equation (E2) in Figure 4. It says that the value process for one unit
of currency ko, expressed in currency k, is simply the exchange-rate process be-
tween k, and k namely exchy(k2) (Figure 7). Where do we get these exchange-rate
processes from? When we come to implementation, we will need some (numeri-
cal) assumption about future evolution of exchange rates, but for now it suffices
to treat the exchange-rate processes as primitives. However, there are important
relationships between them! Notably:

(A1) exchy(k) = K@)
(A2)  exchy, (ki) * exchy, (k) = exchy, (ki)

That is, the exchange-rate process between a currency and itself is everywhere
unity; and it makes no difference whether we convert k; directly into k3 or whether
we go via some intermediate currency k. These are particular cases of no-arbitrage
conditions®.

You might also wonder what has become of the bid-offer spread encountered by
every traveller at the foreign-exchange counter. In order to keep things technically
tractable, finance theory assumes most of the time the absence of any spreads: one
typically first computes a “fair” price, before finally adding a profit margin. It
is the latter which gives rise to the spread, but our modeling applies only to the
former.

3A no-arbitrage condition is one that excludes a risk-free opportunity to earn money. If such
an opportunity were to exist, everyone would take it, and the opportunity would soon go away!
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4.4 Interest rates

Next, consider equation (E8). The contract (when o ¢) acquires the underlying
contract ¢ as soon as the observable o becomes True, or immediately if o is True
at the moment (when o ¢) is acquired. In states where o is True, the value of
(when o ¢) is therefore the same as the value of ¢. What is the value of (when o c)
in states where o is False? To answer that question we need a specification of
future evolution of interest rates, that is an interest-rate model.

Let’s consider a concrete example:

¢ = when (at t) (scale (konst 10) (one GBP))

where £ is one year from today. The underlying contract pays out £10 immediately
when it is acquired; the when acquires it at ¢. So the value of ¢ at ¢ is just £10.
Before ¢, though, it is not worth as much. If I expect interest rates to average?
(say) 10% over the next year, a fair price for ¢ today would be about £9.

Just as the primitive ezch encapsulates assumptions about future exchange-
rate evolution, so the primitive disci (0, p) encapsulates an interest-rate evolution
(Figure 7). Here o is a boolean-valued process that defines a region that we call
the acquisition region. Inside this region — in states where o has value True
— disci(0,p) is equal to p. But elsewhere the value of disci(o,p) is obtained
by computing the “discounted expected value” of p. For example, suppose p is
everywhere equal to 100, and o is True at all times greater than 1 Jan 2003. Then
the value of disce(o,p) at 1 Feb 2003 is 100. However, its value at 1 Jan 2002
depends on sterling interest rates: we must compute the value at 1 Jan 2002 of
acquiring £100 on 1 Jan 2003.

Like ezch, there are some properties that any no-arbitrage financial model
should satisfy. Notably:

(A3) discy,(K(True),p) = »p
(A4) exchy, (k) * discy,(0,p) = discy, (0, exchy, (k) * p)
(A5) disci,(0,p1 + p2) = disci(0,p1) + disci (0, p2)

The first equation says that disc should be the identity when the acquisition region
is the entire space; the second says that the interest-rate evolution of different
currencies should be compatible with the assumption of evolution of exchange rates.
The third® is often used in a right-to-left direction as an optimisation: rather than
perform discounting on two random variables separately, and then add the resulting
processes, it is faster to add the random variables and then discount the result.
Just as in an optimising compiler, we may use identities like these to transform
(the meaning of) our contract into a form that is faster to execute.

One has to be careful, though. Here is a plausible property that does not hold:

discy (0, maz(p1, p2)) = maz(discy (o, p1), disci (0, p2))

4For the associated risk-neutral probability, but we will not go in these financial details here.
5The financially educated reader should note that we assume here implicitly what are called
complete markets.
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It is plausible because it would hold if p;, p2 were single numbers and disc were a
simple multiplicative factor. But p; and ps are random processes, and the property
is false.

Equation (E9) uses the snell operator to give the meaning of anytime. This
operator is mathematically subtle, but it has a simple characterisation: snelly (o, p)
is the smallest process ¢ (under an ordering relation we mention briefly at the end
of Section 4.6) such that

Vo'. (0 = 0') = ¢q > snellg(o,q)

That is, an American option is the least upper bound of any of the deterministic
acquisition choices specified by o', where o’ is a sub-region of o.

4.5 Observables

We can only value contracts over observables that we can model. For example, we
can only value a contract involving the temperature in Los Angeles if we have a
model of the temperature in Los Angeles. Some such observables clearly require
separate models. Others, such as the LIBOR rate and the price of futures, can
incestuously be modeled as the value of particular contracts. We omit all the
details here; Figure 5 gives the semantics only for the simplest observables. This is
not unrealistic, however. One can write a large range of contracts with our contract
combinators and only these simple observables.

4.6 Reasoning about contracts

Now we are ready to use our semantics to answer the questions we posed at the
beginning of Section 4. First, is this equation valid?

c1 ‘and’ (co ‘ort c3) = (c1 ‘and’ ¢2) ‘or' (¢1 ‘and’ c3)

By taking the meaning of the left hand side, we get

E[LHS] = e + (maz(e,c3))
= maz(c1 + 2,1 + ¢3))
where ¢; = &[ei1] ete. In a similar way, we can argue this plausible equation is

false:
give (¢1 ‘ort c2) z give c1 ‘ort give co
The proof is routine, but its core is the observation that
—maz(a,b) # maz(—a, —b)

Back in the real world, the point is that the left hand side gives the choice to the
counter-party, whereas in the right hand side the choice is made by the holder of
the contract.
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Our combinators satisfy a rich set of equalities, such as that given for or and
and above. Some of these equalities have side conditions. For example:

scale o (¢1 ‘or‘ ea) = scale 0 ¢; ‘or' scale 0 o

holds only if 0 > 0, for exactly the same reason that give does not commute with
or. Hang on! What does it mean to say that “o > 0”7 We mean that o is positive
for all time. More generally, as well as equalities between contracts, there is a
simple notion of ordering between contracts, ¢; > c¢o, pronounced “c; dominates
c2”: ¢1 > co if it is never at any time preferable to acquire ¢ than to acquire
¢1. The ordering is defined by simply comparing the value processes of the two
contracts; that is, ¢; > ¢ iff £[e1] > E[e2]. One value process is greater than
another iff it is greater in all states of the world. (The ordering is only a partial
one.)

Equalities, such as the ones given above, can be used as optimising transfor-
mations in a valuation engine. A “contract compiler” can use these identities to
transform a contract, expressed in the intermediate language of value processes
(see the introduction to Section 4), into a form that can be valued more efficiently.

4.7 Summary

This completes our description of the abstract valuation semantics. From a
programming-language point of view, everything is quite routine, including our
proofs. But we stress that it is most unusual to find formal proofs in the finance
industry at this level of abstraction. We have named and tamed the complicated
primitives (disc, exch, etc.): the laws they must satisfy give us a way to prove iden-
tities about contracts without having to understand much about random variables.
The mathematical details are arcane, believe us!

5 Implementation

Our valuation semantics is not only an abstract beast. We can also regard Figures 4
and 5 as a translation from our contract language into a lower-level language of
processes, whose combinators are the primitives of Figures 6 and 7. Then we can
optimise the process-level description, using identities such as (A1)-(A5). (We use
dozens of such identities as transformation rules.) Finally, all we need to do is to
implement the process-level primitives, and we will be able to value an arbitrary
contract.

The key decision is, of course, how we implement a value process. A value
process has to represent uncertainty about the future in an explicit way. There
are numerous ways to model this uncertainty. For the sake of concreteness, we
will simply pick the Ho and Lee model, and use a lattice method to evaluate
contracts with it [Ho and Lee, 1986]. We choose this model and numerical method
for their technical simplicity and historical importance, but much of this section is
also applicable to other models (e.g. Black-Derman-Toy). Changing the numerical
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Figure 8: A short term interest-rate evolution

method (e.g. to Monte Carlo) would entail bigger changes, but nothing in our
language or its semantics (Sections 1-4) would be affected. Indeed, it is entirely
possible to use different numerical methods for different parts of a single contract.

5.1 An interest-rate model

In the typical Ho and Lee numerical scheme, the interest-rate evolution is repre-
sented by a lattice (or “recombining tree”), as depicted in Figure 8. Each column
of the tree represents a discrete time step, and time increases from left to right.
Time zero represents “now”
how long a time step will be; we won’t discuss that further here, but we note in
passing that the time steps need not be of uniform size.

At each node of the tree is associated a one-period short-term interest rate,
shortly denominated the interest rate from now on. We know today’s interest
rate, so the first column in the tree has just one element. However, there is some
uncertainty of what interest rates will evolve to by the end of the first time step.
This is expressed by having two interest-rate values in the second column; the idea
is that the interest rate will evolve to one of these two values with equal probability.
In the third time step, the rates split again, but the down/up path joins the up/down
path, so there are only three rates in the third column, not four. This is why the
structure is called a lattice; it makes the whole scheme computationally feasible by
giving only a linear growth in the width of the tree with time. Of course, the tree
is only a discrete approximation of a continuous process; its recombining nature
is just a choice for efficiency reasons. We write R; for the vector of rates in time-

. As usual with discrete models, there is an issue of
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Figure 9: A Ho and Lee valuation lattice

step ¢, and R;; for the i’th member of that vector, starting with 0 at the bottom.
Thus, for example, Ry ; = 5%. The actual numbers in Figure 8 are unrealistically
regular: in more elaborate interest-rate models, they will not be evenly spaced but
only monotonically distributed in each column.

5.2 Value processes

So much for the interest-rate model. A value process is modeled by a lattice of
exactly the same shape as the interest-rate evolution, except that we have a value
at each node instead of an interest rate. Figure 9 shows the value process tree for
our favourite zero-coupon bond

cr = when (at t) (scale (konst 10) (one GBP))

evaluated in pounds sterling (GBP). Using our valuation semantics we have
Eaprler] = disce(date = t,K(10) x exche(£))
= disce(date = ¢,K(10) = K(1))
= discg(date = t,/(10))

In the figure, we assume that the time ¢ is time step 3. At step 3, therefore,
the value of the contract ¢ is certainly 10 at all nodes, because ¢ unconditionally
delivers £10 at that time. At time step 2, however, we must discount the £10 by
the interest rate appropriate to that time step. We compute the value at each node
of time-step 2 by averaging the two values in its successors, and then discounting
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the average value back one time step using the interest rate associated to that
node®. Using the same notation for the value tree V as we used for the rate model
R, we get the equation:

V.. = Vitt1,i + Vig1,i41
b 2(1 + Ry ;At)

where At is the size of the time step. Using this equation we can fill in the rest of
the values in the tree, as we have done in Figure 9. The value in time step 0 is the
current value of the contract, in pounds sterling (i.e. £8.64).

In short, a lattice implementation works as follows:

e A value process is represented by a lattice, in which each column is a discrete
representation of a random variable. The value in each node is one of the
possible values the variable can take, and in our very simple setting the number
of paths from the root to the node is proportional to the probability that the
variable will take that value. We will say a bit more about how to represent
such a tree in the next subsection.

e The generic operations, in Figure 6, are easy to implement. K(z) is a value
process that is everywhere equal to z. date is a process in which the values in
a particular column are all equal to that column’s date. lift(f, p) applies f to p
point-wise; lifta (f, p1, p2) “zips together” p; and ps, combining corresponding
values point-wise with f.

e The model-specific operations of Figure 7 are a bit harder. We have described
how to implement disc, which uses the interest-rate model. ezch is actually
rather easier (multiply the value process point-wise by a process representing
the exchange rate). The snell and absorb primitives take a bit more work,
and we do not describe them in detail here. Nevertheless, to give the idea,
here is a possible implementation for snell: take the final column of the tree,
discount it back one time step, take the maximum of that column with the
corresponding column of the original tree, and then repeat that process all the
way back to the root.

The remaining high-level question is: in the (big) set of possible interest-rate
models, what is a “good” model? The answer is rather incestuous. A candidate
interest-rate model should price correctly those contracts that are widely traded:
one can simply look up the current market prices for them, and compare them with
the calculated results. So we look for and later adjust the interest-rate model until
it fits the market data for these simple contracts. Now we are ready to use the
model to compute prices for more exotic contracts. The entire market is a gigantic
feedback system, and active research studies the problem of its stability.

8For evident presentation reasons, we don’t care about the fact that the Ho and Lee model is
a member of a class of models that admit in fact a closed-form solution for zero-coupon bonds.
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6 Operational semantics

So far we have only discussed waluing a contract. Another operation ripe for
automated assistance is ezxecuting, or managing, a contract. Banks hold thousands
of contracts, and it is no simple matter to remember when to pay out money, when
money is due in, and when choices (for options) could be made.

Contracts evolve over time. For example, a contract that started life as

when (at t) (¢1 ‘ort c2)

evolves at time ¢ into (¢ ‘or ¢z), and hence either into ¢; or into ¢z. This evolution
is reminiscent of the way in which a program evolves over its execution run. Indeed,
we can regard executing a contract as rather like running a program. Programming
language folk use operational semantics to describe the evolution of a running
program in a precise way, and we can do the same for contracts.

Space precludes a full treatment here. Suffice it to say that it is relatively easy
to give rules that describe how a contract evolves over time, and implementing
those rules in an automatic system is straightforward. The very same contract
description that drives the contract valuation engine can also drive the contract
management engine. As in the case of the valuation engine, the management engine
must be enhanced only when new primitive combinators are added — it can deal
automatically with arbitrary contracts built from the primitives it knows about.

Not only that, but the state of a partly-executed contract is still a contract
term, and as such it can be fed into the contract valuation engine. Thus the bank
can at any time value its entire “book” of partly-executed contracts simply by
feeding them into its valuation engine.

7 Putting our work in context

At first sight, financial contracts and functional programming do not have much
to do with each other. It has been a surprise and delight to discover that many of
the insights useful in the design, semantics, and implementation of programming
languages can be applied directly to the description, valuation, and management
of contracts. The original idea was to apply functional programming to a realistic
problem, and to compare our resulting program with the existing imperative version
— but we have ended up with a radical re-thinking of how to describe and evaluate
contracts.

Though there is a great deal of work on domain-specific programming lan-
guages (see [Hudak, 1996, van Deursen et al., 2000] for surveys), our work is vir-
tually the only attempt to give a formal description to financial contracts. An ex-
ception is the RISLA language developed at CWI [van Deursen and Klint, 1998],
an object-oriented domain-specific language for financial contracts. RISLA is de-
signed for an object-oriented framework, and appears to be more stateful and less
declarative than our system.

We have presented our design as a combinator library embedded in Haskell,
and indeed Haskell has proved an excellent host language for prototyping both
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the library design and various implementation choices. However, our design is
absolutely not Haskell-specific. The big payoff comes from a declarative approach
to describing contracts. As it happens we also used a functional language for
implementing the contract language, but that is somewhat incidental. It could
equally well be implemented as a free-standing domain-specific language, using
domain-specific compiler technology.

Many application areas use one or more ad hoc languages to specify domain
objects, although such languages are usually thought of as “data file formats”
rather than a “language”. The work we describe here is a good example of the
power of the linguistic approach: not only can we describe a much richer family of
contracts than any commercial system, but the language structure leads directly
to a modular and robust software framework. Principled thinking has a practical
payoff.
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