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1 Introdu
tion

The �nan
e and insuran
e industry manipulates in
reasingly 
omplex 
ontra
ts.

Here is an example: the 
ontra
t gives the holder the right to 
hoose on 30 June

2000 between

D

1

Both of:

D

11

Re
eive $100 on 29 Jan 2001.

D

12

Pay $105 on 1 Feb 2002.

D

2

An option exer
isable on 15 De
 2000 to 
hoose one of:

D

21

Both of:

D

211

Re
eive $100 on 29 Jan 2001.

D

212

Pay $106 on 1 Feb 2002.

D

22

Both of:

D

221

Re
eive $100 on 29 Jan 2001.

D

222

Pay $112 on 1 Feb 2003.

The details of this 
ontra
t | 
all it C | are not important, but it is a simpli�ed

but realisti
 example of the sort of 
ontra
t that is traded in �nan
ial derivative

markets. What is important is that 
omplex 
ontra
ts, su
h as C , are formed by


ombining together simpler 
ontra
ts, su
h as D

1

, whi
h in turn are formed from

simpler 
ontra
ts still, su
h as D

11

, D

12

.

At this point, any red-blooded fun
tional programmer should start to foam at

the mouth, yelling \build a 
ombinator library". And indeed, that turns out to be

not only possible, but tremendously bene�
ial.

The �nan
e industry has an enormous vo
abulary of jargon for typi
al 
om-

binations of �nan
ial 
ontra
ts (swaps, futures, 
aps, 
oors, swaptions, spreads,
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straddles, 
aptions, European options, Ameri
an options, ...the list goes on). Treat-

ing ea
h of these individually is like having a large 
atalogue of prefabri
ated 
om-

ponents. The trouble is that someone will soon want a 
ontra
t that is not in the


atalogue.

If, instead, we 
ould de�ne ea
h of these 
ontra
ts using a �xed, pre
isely-

spe
i�ed set of 
ombinators, we would be in a mu
h better position than having a

�xed 
atalogue. For a start, it be
omes mu
h easier to des
ribe new, unforeseen,


ontra
ts. Beyond that, we 
an systemati
ally analyse, manipulate and perform


omputations over these new 
ontra
ts, be
ause they are des
ribed in terms of a

�xed, well-understood set of primitives.

The major thrust of this 
hapter is to draw insights from the study of fun
tional

programming to illuminate the world of �nan
ial 
ontra
ts. More spe
i�
ally, our


ontributions are the following:

� We de�ne a 
arefully-
hosen set of 
ombinators, and, through an extended

sequen
e of examples in Haskell, we show that these 
ombinators 
an indeed

be used to des
ribe a wide variety of 
ontra
ts (Se
tion 3).

� Our 
ombinators 
an be used to des
ribe a 
ontra
t, but we also want to

pro
ess a 
ontra
t. Notably, we want to be able to �nd the value of a 
ontra
t.

In Se
tion 4 we des
ribe how to give an abstra
t valuation semanti
s to our


ombinators. A fundamentally-important property of this semanti
s is that

it is 
ompositional ; that is, the value of a 
ompound 
ontra
t is given by


ombining the values of its sub-
ontra
ts.

� We sket
h an implementation of our valuation semanti
s, using as an example

a simple interest-rate model and its asso
iated latti
e (Se
tion 5).

Stated in this way, our work sounds like a perfe
tly routine appli
ation of the

idea of using a fun
tional language to de�ne a domain-spe
i�
 
ombinator library,

thereby e�e
tively 
reating an appli
ation-spe
i�
 programming language. Su
h

languages have been de�ned for parsers, musi
, animations, hardware 
ir
uits, and

many others [van Deursen et al., 2000℄. However, from the standpoint of �nan
ial

engineers, our language is truly radi
al: they a
knowledge that the la
k of a pre
ise

way to des
ribe 
omplex 
ontra
ts is \the bane of our lives"

1

.

It has taken us a long time to boil down the immense soup of a
tively-traded


ontra
ts into a reasonably small set of 
ombinators; but on
e that is done, new

vistas open up, be
ause a single formal des
ription 
an drive all manner of auto-

mated pro
esses. For example, we 
an generate s
hedules for ba
k-oÆ
e 
ontra
t

exe
ution, perform risk analysis optimisations, present 
ontra
ts in new graphi
al

ways (e.g. \time-lined" de
ision trees), provide animated simulations, and so on.

This 
hapter is addressed to a fun
tional programming audien
e. We will

introdu
e any �nan
ial jargon as we go.
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, d , u Contra
t

o Observable

t , s Date, time

k Curren
y

x Dimensionless real value

p Value pro
ess

v Random variable

Figure 1: Notational 
onventions

2 Getting started

In this se
tion we will informally introdu
e our notation for 
ontra
ts, and show

how we 
an build more 
ompli
ated 
ontra
ts out of simpler ones. We use the

fun
tional language Haskell throughout.

2.1 A simple 
ontra
t

Consider the following simple 
ontra
t, whi
h might serve as a modest birthday

present for Ri
hard: \re
eive $100 on 13th February 2003". (A 
ontra
t of this

form is known to the industry as zero-
oupon dis
ount bond.) We 
an spe
ify this


ontra
t, whi
h we name 


1

, thus:




1

:: Contra
t




1

= z
b t

1

100GBP

Figure 1 summarises the notational 
onventions we use throughout the 
hapter for

variables, su
h as 


1

and t

1

in this de�nition.

The 
ombinator z
b used in 


1

's de�nition has the following type:

z
b :: Date ! Double ! Curren
y ! Contra
t

The �rst argument to z
b is a Date, whi
h spe
i�es a parti
ular moment in

time (i.e. both date and time). We provide a fun
tion, mkDate , that 
onverts a

date expressed as a friendly 
hara
ter string to a Date.

mkDate :: String ! Date

Now we 
an de�ne Ri
hard's birthdays in 2003 and 2004 like this:

t

1

; t

2

:: Date

1

The quote is from an informal response to a draft of our work.
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t

1

= mkDate \0800GMT 13 Feb 2003"

t

2

= mkDate \0800GMT 13 Feb 2004"

2.2 Combining 
ontra
ts

So z
b lets us build a simple 
ontra
t. We 
an also 
ombine 
ontra
ts to make

bigger 
ontra
ts. A good example of su
h a 
ombining form is and , whose type is:

and :: Contra
t ! Contra
t ! Contra
t

Using and we 
an de�ne 


3

, a 
ontra
t that involves two payments:




2

; 


3

:: Contra
t




2

= z
b t

2

200GBP




3

= 


1

`and ` 


2

That is, if Ri
hard holds the 
ontra
t 


3

he will bene�t from a payment of $100

on his 2003 birthday, and another payment of $200 on his 2004 birthday.

In general, the 
ontra
ts we 
an des
ribe are between two parties, the holder of

the 
ontra
t, and the 
ounter-party. Notwithstanding Bibli
al advi
e (A
ts 20.35),

by default the owner of a 
ontra
t re
eives the payments, and makes the 
hoi
es,

spe
i�ed in the 
ontra
t. This situation 
an be reversed by the give 
ombinator:

give :: Contra
t ! Contra
t

The 
ontra
t give 
 is simply 
 with rights and obligations reversed, a statement

we will make pre
ise in Se
tion 4.2. Indeed, when two parties agree on a 
ontra
t,

one a
quires the 
ontra
t 
, and the other simultaneously a
quires give 
; ea
h is

the other's 
ounter-party. For example, 


4

is a 
ontra
t whose holder re
eives $100

at time t

1

, and pays $200 at time t

2

:




4

= 


1

`and ` give 


2

So far, ea
h of our de�nitions has de�ned a new 
ontra
t (


1

, 


2

, et
.). It is also

easy to de�ne a new 
ombinator (a fun
tion that builds a 
ontra
t). For example,

we 
ould de�ne andGive thus:

andGive :: Contra
t ! Contra
t ! Contra
t

andGive 
 d = 
 `and ` give d

Now we 
an give an alternative de�nition of 


4

(whi
h we built earlier):




4

= 


1

`andGive` 


2

This ability to de�ne new 
ombinators, and use them just as if they were built in,

is quite routine for fun
tional programmers, but not for �nan
ial engineers.
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zero :: Contra
t

zero is a 
ontra
t that has no rights and no obligations.

one :: Curren
y ! Contra
t

If you a
quire (one k) you immediately re
eive one unit of the 
urren
y k .

give :: Contra
t ! Contra
t

To a
quire (give 
) is to a
quire all 
's rights as obligations, and vi
e versa.

Note that for a bilateral 
ontra
t q between parties A and B , A a
quiring

q implies that B a
quires (give q).

and :: Contra
t ! Contra
t ! Contra
t

If you a
quire (


1

`and ` 


2

), you immediately a
quire both 


1

and 


2

.

or :: Contra
t ! Contra
t ! Contra
t

If you a
quire (


1

`or ` 


2

) you must immediately a
quire your 
hoi
e of either




1

or 


2

(but not both).


ond :: Obs Bool ! Contra
t ! Contra
t ! Contra
t

If you a
quire (
ond b 


1




2

), you a
quire 


1

if the observable b is true at

the moment of a
quisition, and 


2

otherwise.

s
ale :: Obs Double ! Contra
t ! Contra
t

If you a
quire (s
ale o 
), then you a
quire 
 at the same moment, ex
ept

that all the payments of 
 are multiplied by the value of the observable o

at the moment of a
quisition.

when :: Obs Bool ! Contra
t ! Contra
t

If you a
quire (when o 
), you must a
quire 
 as soon as observable o subse-

quently be
omes True . It is therefore worthless in states where o will never

again be True .

anytime :: Obs Bool ! Contra
t ! Contra
t

On
e you a
quire (anytime o 
), you may a
quire 
 at any time the ob-

servable o is True . The 
ompound 
ontra
t is therefore worthless in states

where o will never again be True.

until :: Obs Bool ! Contra
t ! Contra
t

On
e a
quired, (until o 
) is exa
tly like 
 ex
ept that it must be aban-

doned when observable o be
omes True. In states in whi
h o is True, the


ompound 
ontra
t is therefore worthless, be
ause it must be abandoned

immediately.

Figure 2: Primitives for de�ning 
ontra
ts

3 Building 
ontra
ts

We have now 
ompleted our informal introdu
tion. In this se
tion we will give the

full set of primitives, and show how a wide variety of other 
ontra
ts 
an be built

using them. For referen
e, Figure 2 gives the primitive 
ombinators over 
ontra
ts;

we will introdu
e these primitives as we need them.
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konst :: a ! Obs a

(konst x ) is an observable that has value x at any time.

lift :: (a ! b) ! Obs a ! Obs b

(lift f o) is the observable whose value is the result of applying f to

the value of the observable o.

lift

2

:: (a ! b ! 
) ! Obs a ! Obs b ! Obs 


(lift

2

f o

1

o

2

) is the observable whose value is the result of applying f

to the values of the observables o

1

and o

2

.

date :: Obs Date

The value of the observable date at date s is just s .

instan
e Num a => Num (Obs a)

All numeri
 operations lift to the Obs type. The implementation is

simple, using lift and lift

2

.

Figure 3: Primitives over observables

3.1 A
quisition date and observables

Figure 2 gives an English-language, but quite pre
ise, des
ription of ea
h 
ombina-

tor. To do so, it uses two 
on
epts that we must introdu
e �rst: the notions of an

a
quisition date, and an observable.

Our language des
ribes what a 
ontra
t is. However, the 
onsequen
es for the

holder of the 
ontra
t depend on the date at whi
h the 
ontra
t is a
quired; that

is, its a
quisition date. (By \
onsequen
es for the holder" we mean the payments,

rights and obligations that the 
ontra
t 
onfers on the holder of a 
ontra
t.) For

example, the 
ontra
t \re
eive$100 on 1 Jan 2000 and re
eive$100 on 1 Jan 2001"

is worth a lot less if a
quired after 1 Jan 2000, be
ause, by de�nition, any rights

and obligations that fall due before the a
quisition date are simply dis
arded.

The se
ond fundamental 
on
ept is that of an observable. A real 
ontra
t often

depends on measurable quantities. For example, a 
ontra
t might say \re
eive an

amount in dollars equal to the noon Centigrade temperature in Los Angeles";

or \pay an amount in pounds sterling equal to the 3-month LIBOR spot rate

2

multiplied by 100". We use the term observable for an obje
tive, but possibly

time-varying, even perhaps unknown at 
ontra
ting time quantity. By \obje
tive"

we mean that both parties to the 
ontra
t will agree on the value of the observable

at any parti
ular time. The time of day, or the temperature in Los Angeles, 
an

be obje
tively measured; but the value to a home-owner of insuring his house is

subje
tive, and is not an observable. Observables are thus a di�erent \kind of

thing" from 
ontra
ts, so we give them a di�erent type:

date :: Obs Date

2

The LIBOR spot rate is published daily in the �nan
ial press.
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tempInLA :: Obs Double

In general, a value of type Obs d represents a time-varying quantity of type d . We

will often use the observable date :: Obs Date in what follows.

Observables and their operations are, of 
ourse, reminis
ent of Fran's be-

haviours [Elliott and Hudak, 1997℄. Like Fran, we provide 
ombinators for lifting

fun
tions to the observable level, lift , lift

2

, et
. Figure 3 gives the primitive 
om-

binators over observables for referen
e; we will introdu
e them as we en
ounter

them.

With these notions in hand, we now explore the 
ombinators des
ribed in

Figure 2.

3.2 Dis
ount bonds

Earlier, we des
ribed the zero-
oupon dis
ount bond: \re
eive $100 at time t

1

"

(Se
tion 2.1). At that time we assumed that z
b was a primitive 
ombinator, but

in fa
t it isn't. It is obtained by 
omposing no fewer than four more primitive


ombinators. We begin with the one 
ombinator:




5

= one GBP

Figure 2 gives a 
areful, albeit informal, de�nition of one: if you a
quire

(one GBP), you immediately re
eive $1.

But the bond we want pays $100, not $1. We use the 
ombinator s
ale to

\s
ale up" the 
ontra
t, thus:




6

= s
ale (konst 100) 


5

To a
quire (s
ale o 
) is to a
quire the 
ontra
t 
, but all the payments and re
eipts

in 
 are multiplied by the value of observable o. In this 
ase, we want to s
ale by the


onstant 100, so we use the 
ombinator konst (from Figure 3) to lift the 
onstant

100 to an observable whose value is always 100. You may wonder why s
ale takes an

observable, rather than simply a 
onstant; we dis
uss that in the next sub-se
tion.

We are not �nished with our zero-
oupon bond, however. 


6

pays the right

amount, but at the wrong time: it pays at the moment of a
quisition, whereas

it should pay at date t

1

and no earlier. To obtain this e�e
t we use the when


ombinator (Figure 2):




7

= when (at t

1

) 


6

If you a
quire the 
ontra
t (when o 
), where o is a boolean observable, then noth-

ing happens until o be
omes True; when that happens, you immediately a
quire


. So (at t

1

) should be a boolean observable that be
omes True at time t

1

. We


an de�ne at like this:

at :: Date ! Obs Bool

at t = lift

2

(==) date (konst t) | True when (date == t)
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The lift

2

takes (==), whi
h 
ompares two Dates and retuns a Bool , to a fun
tion

that takes two Obs Date arguments and returns an Obs Bool (Figure 3). We use

konst again, to lift the date t to an observable.

Noti
e that if we a
quire 


7

after t

1

we get nothing, be
ause (at t

1

) is True at

the time t

1

, but then be
omes False and stays False forever.

Putting all this together, we 
an �nally de�ne z
b 
orre
tly:

z
b :: Date ! Double ! Curren
y ! Contra
t

z
b t x k = when (at t) (s
ale (konst x ) (one k))

These de�nitions of z
b and at e�e
tively extend our repertoire of 
ombinators,

just as andGive did in Se
tion 2.2, only more usefully. We will 
ontinually extend

our library of 
ombinators in this way.

Why did we go to the trouble of de�ning z
b in terms of four 
ombinators,

rather than making it primitive? Be
ause it turns out that s
ale , when , lift , lift

2

,

and one are all independently useful. Ea
h embodies a distin
t pie
e of fun
tional-

ity, and by separating them we signi�
antly simplify the semanti
s and enri
h the

algebra of 
ontra
ts (Se
tion 4). The 
ombinators we present are the result of an

extended, iterative pro
ess of re�nement, leading to an interlo
king set of de
isions

| programming language designers will be quite familiar with this pro
ess.

3.3 Observables and s
aling

In the previous se
tion we used s
ale to s
ale a 
ontra
t by a �xed quantity. But, as

we saw, s
ale s
ales a 
ontra
t by an observable, that is, by a time-varying, maybe

unknown in advan
e, value:

s
ale :: Obs Double ! Contra
t ! Contra
t

Why do we want this generality? So-
alled \weather derivatives" are a good exam-

ple; a holiday resort might insure against bad weather by buying a 
ontra
t that

pays out an amount depending on the amount of rain:




8

= s
ale rainInCyprus (one USD)

Here we assume that rainInCyprus is a primitive observable:

rainInCyprus :: Obs Double | Rainfall over a 24 hr period in

| Cyprus, measured in 
entimetres

If you a
quire this 
ontra
t you re
eive an amount in dollars equal to the 24-hr

rainfall in Cyprus, expressed in 
entimetres. Again, we have to be very pre
ise in

our de�nitions. Exa
tly when is the rainfall sampled? Answer (in Figure 2): when

you a
quire (s
ale o 
) you immediately a
quire 
, s
aling all the payments and

re
eipts in 
 by the value of the observable o sampled at the moment of a
quisition.

So we sample the observable at a single, well-de�ned moment (the a
quisition date)

and then use that single number to s
ale the subsequent payments and re
eipts in
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. The when 
ombinator is often used to de�ne pre
isely an a
quisition date, but

we will see other possibilities in the next se
tions.

It is not long before one wants to perform arithmeti
 on observables. For

example, suppose you want to re
eive $1,000 for every 
entimetre of rainfall over

7
m. We 
an easily do that, using the lift

2


ombinator we used earlier:




9

= s
ale (lift

2

(�)

(lift

2

(�) rainInCyprus (konst 7))

(konst 1000))

(one USD)

This is all rather 
lumsy, but fortuntely Haskell's type-
lass overloading me
hanism

allows us to use the arithmeti
 operators � and � dire
tly on observables, thus:




9

= s
ale ((rainInCyprus � 7) � 1000) (one USD)

To a
hieve this, we simply need to make Obs into an instan
e of Num, thus:

instan
e Num a => Num (Obs a) where

fromInteger i = konst (fromInteger i)

(+) = lift

2

(+)

(�) = lift

2

(�)

:::et
:::

Unfortunately, Haskell's type system does not work quite so smoothly for relational

operators, su
h as (<). To redu
e notational 
lutter, we will de�ne a family of

relational operators, thus:

(%<); (%<=); (%=); (%>=); (%>) :: Ord a => Obs a ! Obs a ! Obs Bool

(%<) = lift

2

(<)

(%<=) = lift

2

(<=) :::et
:::

The s
ale 
ombinator allows an observable to 
ontrol the size, but not the 
hara
ter,

of a 
ontra
t. The 
ond 
ombinator allows an observable to sele
t whi
h of two


ontra
ts is a
quired:


ond :: Obs Bool ! Contra
t ! Contra
t

For example, the 
ontra
t




10

= 
ond (rainInCyrus %> 10) (one GBP) (one USD)

If the rainfall in Cyprus, sampled on the date when 


10

is a
quired, is more than

10
m, you re
eive $1, otherwise you re
eive $1.

3.4 Option 
ontra
ts

Mu
h of the subtlety in �nan
ial 
ontra
ts arises be
ause the parti
ipants 
an

exer
ise 
hoi
es. We en
apsulate 
hoi
e in three primitive 
ombinators, 
ond , or
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and anytime. The �rst two allow one to 
hoose whi
h of two 
ontra
ts to a
quire,

while the last allows one to 
hoose when to a
quire a 
ontra
t.

First, we 
onsider the 
hoi
e between two 
ontra
ts:

or :: Contra
t ! Contra
t ! Contra
t

When you a
quire the 
ontra
t (


1

`or ` 


2

), you must immediately a
quire either




1

or 


2

(but not both). For example, the 
ontra
t

z
b t

1

100GBP `or ` z
b t

2

110GBP

gives the holder the right, to 
hoose immediately to re
eive either $100 at t

1

, or

$110 at t

2

.

A so-
alled European option gives the right to 
hoose, at a parti
ular date,

whether or not to a
quire an \underlying" 
ontra
t:

european :: Date ! Contra
t ! Contra
t

For example, 
onsider the 
ontra
t 


5

:




11

= european (date \1200GMT 24Apr 2003") (

z
b (mkDate \1200GMT 12May 2003") 0:4GBP `and `

z
b (mkDate \1200GMT 12May 2004") 9:3GBP `and `

z
b (mkDate \1200GMT 12May 2005") 109:3GBP `and `

give (z
b (mkDate \1200GMT 26Apr 2003") 100GBP)

)

This 
ontra
t gives the right to 
hoose, on 24 Apr 2003, whether or not to a
quire an

underlying 
ontra
t 
onsisting of three re
eipts and one payment. In the �nan
ial

industry, this kind of 
ontra
t is des
ribed as a \
all on a 
oupon bond". As with

z
b, we de�ne european in terms of simpler elements:

european :: Date ! Contra
t ! Contra
t

european t u = when (at t) (u `or ` zero)

You 
an read this de�nition as follows:

� The primitive 
ontra
t zero has no rights or obligations (see Figure 2).

� The 
ontra
t (u `or ` zero) expresses the 
hoi
e between a
quiring u and a
-

quiring nothing.

� The when (at t) 
onstru
t means that the 
hoi
e must be made exa
tly at date

t . If you a
quire the European 
ontra
t after t , you get nothing.

The or 
ombinator lets us 
hoose whi
h of two 
ontra
ts to a
quire. Let us

now 
onsider the 
hoi
e of when to a
quire a 
ontra
t:

anytime :: Obs Bool ! Contra
t ! Contra
t
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A
quiring the 
ontra
t anytime o u gives the right to a
quire the \underlying"


ontra
t u at any time that the observable o is True.

An Ameri
an option o�ers more 
exibility than a European option. Typi
ally,

an Ameri
an option 
onfers the right to a
quire an underlying 
ontra
t at any time

between two dates (or not to do so at all).

ameri
an (t

1

; t

2

) u = anytime (between t

1

t

2

) u

Here we use another simple 
ombinator for observables:

between :: Date ! Date ! Obs Bool

| True on dates in the spe
i�ed window

between t

1

t

2

= lift

2

(&&) (date %>= t

1

) (date %<= t

2

)

3.5 Limit 
ontra
ts

The last form of 
ontra
t we de�ne is a \limit 
ontra
t". Su
h 
ontra
ts say \su
h-

and-su
h happens unless interest rates go above 6%", or \unless the temperature

falls below freezing". To a

omodate su
h 
ontra
ts we need a way to abandon a


ontra
t, and that is the purpose of the until 
ombinator. For example:




12

= until (interestRate %> konst 6) (ameri
an (t

1

; t

2

) 
)

When you a
quire 


12

you immediately a
quire the underlying Ameri
an option,

but as soon as interest rates go above 6% you must abandon the option, whether

or not you have by then exer
ised the option and a
quired 
. If you have exer
ised

the option, and 
 has paid out some money, you get to keep that, but you abandon

any future bene�ts of 
.

3.6 Summary

We have now given the 
avour of our approa
h to de�ning 
ontra
ts. The 
ombi-

nators we have de�ned so far are not enough to des
ribe all the 
ontra
ts that are

a
tively traded, and we are extending the set in ongoing work. However, our main


on
lusions are una�e
ted:

� Finan
ial 
ontra
ts 
an be des
ribed in a purely de
larative way.

� A huge variety of 
ontra
ts 
an be des
ribed in terms of a small number of


ombinators.

Identifying the \right" primitive 
ombinators is quite a 
hallenge. For example,

it was a breakthrough to identify and separate the two forms of 
hoi
e, or and

anytime , and en
apsulate those 
hoi
es (and nothing else) in two 
ombinators.

Another breakthrough was to use boolean observables to des
ribe the \region" in

whi
h one 
an a
quire a 
ontra
t.
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4 Valuation

We now have at our disposal a ri
h language for des
ribing �nan
ial 
ontra
ts.

This is already useful for 
ommuni
ating between people | the industry la
ks

any su
h pre
ise notation. But in addition, a pre
ise des
ription lends itself to

automati
 pro
essing of various sorts. From a single 
ontra
t des
ription we may

hope to generate legal paperwork, pi
tures, s
hedules and more besides. The most

immediate question one might ask about a 
ontra
t is, however, what is it worth?

That is, what would I pay to own the 
ontra
t? It is to this question that we now

turn.

We will express 
ontra
t valuation in two \layers":

Abstra
t valuation semanti
s. First, we will show how to translate an arbitrary


ontra
t, written in our language, into a value pro
ess, together with a handful

of operations over these pro
esses. These pro
esses 
orrespond dire
tly to the

mathemati
al and sto
hasti
 ma
hinery used by �nan
ial experts.

Con
rete implementation. A pro
ess is an abstra
t mathemati
al value. To make

a 
omputer 
al
ulate with pro
esses we have to represent them somehow |

this is the step from abstra
t semanti
s to 
on
rete implementation. An im-

plementation will 
onsist of a �nan
ial model, together with some dis
rete

numeri
al method. A tremendous number of di�erent �nan
ial models are

used today (e.g. Bla
k-S
holes, Ho-Lee, et
.); but only three families of nu-

meri
al methods are widely used in industry: partial di�erential equations

[Willmot et al., 1993℄, Monte Carlo [Boyle et al., 1997℄ and latti
e methods

[Cox et al., 1979℄.

This approa
h is strongly reminis
ent of the way in whi
h a 
ompiler is typi-


ally stru
tured. The program is �rst translated into a low-level but ma
hine-

independent intermediate language; many optimisations are applied at this level;

and then the program is further translated into the instru
tion set for the desired

pro
essor (Pentium, Spar
, or whatever).

In a similar way, we 
an transform a 
ontra
t into a value pro
ess, apply

meaning-preserving optimising transformations to this intermediate representation,

before 
omputing a value for the pro
ess. This latter step 
an be done interpre-

tatively, or one 
ould imagine generating spe
ialised 
ode that, when run, would

perform the valuation.

Indeed, our abstra
t semanti
s serves as our referen
e model for what it means

for two 
ontra
ts to be \the same". For example, here are two 
laims:




1

`and ` (


2

`or ` 


3

) = (


1

`and ` 


2

) `or ` (


1

`and ` 


3

)

give (


1

`or ` 


2

) = give 


1

`or ` give 


2

In fa
t, the �rst is true, and the se
ond is not, but how do we know for sure?

Answer: we 
ompare their valuation semanti
s, as we shall see in Se
tion 4.6.
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E

k

[[ � ℄℄ : Contra
t ! PR R

(E1) E

k

[[zero℄℄ = K(0)

(E2) E

k

[[one k

2

℄℄ = ex
h

k

(k

2

)

(E3) E

k

[[give 
℄℄ = � E

k

[[
℄℄

(E4) E

k

[[o `s
ale` 
℄℄ = V [[o℄℄ � E

k

[[
℄℄

(E5) E

k

[[


1

`and ` 


2

℄℄ = E

k

[[


1

℄℄ + E

k

[[


2

℄℄

(E6) E

k

[[


1

`or ` 


2

℄℄ = max (E

k

[[


1

℄℄; E

k

[[


2

℄℄)

(E7) E

k

[[
ond o 


1




2

℄℄ = if (V [[o℄℄; E

k

[[


1

℄℄; E

k

[[


2

℄℄)

(E8) E

k

[[when o 
℄℄ = dis


k

(V [[o℄℄; E

k

[[
℄℄)

(E9) E

k

[[anytime o 
℄℄ = snell

k

(V [[o℄℄; E

k

[[
℄℄)

(E10) E

k

[[until o 
℄℄ = absorb

k

(V [[o℄℄; E

k

[[
℄℄)

Figure 4: Compositional valuation semanti
s for 
ontra
ts

4.1 Value pro
esses

De�nition 1 (Value pro
ess.) A value pro
ess, p, over type a, is a (total) fun
tion

from time to a random variable of type a. The random variable p(t) des
ribes the

possible values for p at time t . We write the informal type de�nition

PR a = Date ! RV a

2

(We use 
aligraphi
 font for types at the semanti
 level.) Be
ause we need to

work with di�erent pro
esses de�ned on the same \underlying spa
e" (te
hni
ally,

�ltration), su
h a value pro
ess is more pre
isely des
ribed as an adapted sto
has-

ti
 pro
ess, given a �ltration. Su
h pro
esses 
ome equipped with a sophisti
ated

mathemati
al theory [Revuz and Yor, 1991, Musiela and Rutkowski, 1997℄, but it

is unlikely to be familiar to 
omputer s
ientists, so we only present informal, in-

tuitive notions. We usually abbreviate \value pro
ess" to simply \pro
ess". Be

warned, though: \pro
ess" and \variable" mean quite di�erent things to their


onventional 
omputer s
ien
e meanings.

Both 
ontra
ts and observables are modeled as pro
esses. The underlying in-

tuitions are as follows:

� The value pro
ess for an observable o maps a time t to a random variable

des
ribing the possible values of o at t . For example, the value pro
ess for

the observable \IBM sto
k pri
e in US$" is a fun
tion that maps a time to a

real-valued random variable that des
ribes the possible values of IBM's sto
k

pri
e in US$.
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V [[ � ℄℄ : Obs a ! PR a

V [[konst x ℄℄ = K(x )

V [[date℄℄ = date

V [[lift f o℄℄ = lift(f ; V [[o℄℄)

V [[lift

2

f o

1

o

2

℄℄ = lift

2

(f ; V [[o

1

℄℄; V [[o

2

℄℄)

Figure 5: Valuation semanti
s for observables

The following primitives are independent of the valuation model

K : a ! PR a

The pro
ess K(x ) is de�ned at all times to have value x .

date : PR Date

The pro
ess date has as its value the date.


ond : PR Bools ! PR a ! PR a ! PR a

Conditional 
hoi
e between the latter two pro
esses, based on the �rst.

lift : (a ! b)! PR a ! PR b

Apply the spe
i�ed fun
tion to the argument pro
ess point-wise.

lift

2

: (a ! b ! 
)! PR a ! PR b ! PR 


Combine the two argument pro
esses point-wise with the spe
i�ed

fun
tion.

+; �; : : : : PR R! PR R! PR R

Add, or multiply (et
.) the two pro
esses. Equivalent to lift

2

(+), et
.

Figure 6: Pro
ess primitives

� The value pro
ess for a 
ontra
t 
, expressed in 
urren
y k is a fun
tion from a

time, t , to a random variable des
ribing the value, in 
urren
y k , of a
quiring

the 
ontra
t 
 at time t .

These intuitions are essential to understand the rest of the 
hapter.

4.2 From 
ontra
ts to pro
esses

How, then, are we to go from 
ontra
ts and observables to pro
esses? Figure 4

gives the 
omplete translation from 
ontra
ts to pro
esses, while Figure 5 does

the same for observables. These Figures do not look very impressive, but that is
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The following primitives are dependent on the parti
ular model

ex
h

k

(�) : Curren
y ! PR R

ex
h

k

1

(k

2

) is a real-valued pro
ess representing the value of one unit of

k

2

, expressed in 
urren
y k

1

. This is simply the pro
ess representing

the quoted ex
hange rate between the 
urren
ies.

dis


k

(�; �) : PR B�PR R! PR R

Given a boolean-valued pro
ess o, the primitive dis


k

(o; p) transforms

the real-valued pro
ess p, expressed in 
urren
y k , into another real-

valued pro
ess. In states where o is True, the result is the same as p;

elsewhere, the result is its \fair" equivalent sto
hasti
 value pro
ess in

the same 
urren
y k .

snell

k

(�; �) : PR B�PR R! PR R

The primitive snell

k

(o; p) 
al
ulates the Snell envelope of its argument

p, under observable o. It uses the probability measure asso
iated with

the 
urren
y k .

absorb

k

(�; �) : PR B�PR R! PR R

Given a boolean-valued pro
ess o, the primitive absorb

k

(o; p) trans-

forms the real-valued pro
ess p, expressed in 
urren
y k , into another

real-valued pro
ess. For any state, the result is the expe
ted value of

re
eiving p's value if the region o will never be True, and re
eiving

zero in the 
ontrary. In states where o is True, the result is therefore

zero.

Figure 7: Model primitives

the whole point! Everything so far has been leading up to this point; our entire

design is organised around the desire to give a simple, tra
table, modular valuation

semanti
s. Let us look at Figure 4 in more detail.

The fun
tion E

k

[[
℄℄ takes a 
ontra
t, 
, and maps it to a pro
ess des
ribing,

for ea
h moment in time, the value in 
urren
y k of a
quiring 
 at that moment.

For example, the equation for give (E3) says that the value pro
ess for give 
 is

simply the negation of E

k

[[
℄℄, the value pro
ess for 
. Aha! What does \negation"

mean? Clearly, we need not only the notion of a value pro
ess, but also a 
olle
tion

of operations over these pro
esses. Negating a pro
ess is one su
h operation; the

negation of a pro
ess p is simply a fun
tion that maps ea
h time, t , to the negation

of p(t). It is an absolutely straightforward exer
ise to \lift" all operations on real

numbers to operate point-wise on pro
esses. (This, in turn, requires us to negate a

random variable, but doing so is simple.) We will need a number of other operations

over pro
esses. They are summarised in Figures 6 and 7, but we will introdu
e ea
h

one as we need it.

Next, 
onsider equation (E5). The and of two 
ontra
ts is modeled simply by
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taking the sum of their two value pro
esses. Equation (E6) does the same for the

or 
ombinator. Again, by design, the 
ombinator maps to a simple mathemati
al

operation, max .

Equation (E4) is ni
e and simple. To s
ale a 
ontra
t 
 by a time-varying

observable o, we simply multiply the value pro
ess for the 
ontra
t E

k

[[
℄℄ by the

value pro
ess for the observable | remember that we are modeling ea
h observable

by a value pro
ess. We express the latter as V [[o℄℄, de�ned in Figure 5 in a very

similar fashion to E

k

[[
℄℄. At �rst this seems odd: how 
an we s
ale point-wise,

when the s
aling applies to future payments and re
eipts in 
? Re
all that the

value pro
ess for 
 at a time t gives the value of a
quiring 
 at t . Well, if this value

is v then the value of a
quiring the same 
ontra
t with all payments and re
eipts

s
aled by x is 
ertainly v � x . Our de�nition of s
ale in Figure 2 was in fa
t driven

dire
tly by our desire to express its semanti
s in a simple way. Simple semanti
s

gives rise to simple algebrai
 properties (Se
tion 4.6).

The equations for zero and 
ond are also easy. Equation (E1) delivers the


onstant zero pro
ess, while Equation (E7) uses the underlying 
onditional.

4.3 Ex
hange rates

The operations over value pro
esses de�ned in Figure 6 are generi
 { they are

unrelated to a parti
ular �nan
ial model. But we 
an't get away with that forever.

The primitives in Figure 7 are spe
i�
 to �nan
ial 
ontra
ts, and they are used in

the remaining equations of Figure 4.

Consider equation (E2) in Figure 4. It says that the value pro
ess for one unit

of 
urren
y k

2

, expressed in 
urren
y k , is simply the ex
hange-rate pro
ess be-

tween k

2

and k namely ex
h

k

(k

2

) (Figure 7). Where do we get these ex
hange-rate

pro
esses from? When we 
ome to implementation, we will need some (numeri-


al) assumption about future evolution of ex
hange rates, but for now it suÆ
es

to treat the ex
hange-rate pro
esses as primitives. However, there are important

relationships between them! Notably:

(A1) ex
h

k

(k) = K(1)

(A2) ex
h

k

2

(k

1

) * ex
h

k

3

(k

2

) = ex
h

k

3

(k

1

)

That is, the ex
hange-rate pro
ess between a 
urren
y and itself is everywhere

unity; and it makes no di�eren
e whether we 
onvert k

1

dire
tly into k

3

or whether

we go via some intermediate 
urren
y k

2

. These are parti
ular 
ases of no-arbitrage


onditions

3

.

You might also wonder what has be
ome of the bid-o�er spread en
ountered by

every traveller at the foreign-ex
hange 
ounter. In order to keep things te
hni
ally

tra
table, �nan
e theory assumes most of the time the absen
e of any spreads: one

typi
ally �rst 
omputes a \fair" pri
e, before �nally adding a pro�t margin. It

is the latter whi
h gives rise to the spread, but our modeling applies only to the

former.

3

A no-arbitrage 
ondition is one that ex
ludes a risk-free opportunity to earn money. If su
h

an opportunity were to exist, everyone would take it, and the opportunity would soon go away!
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4.4 Interest rates

Next, 
onsider equation (E8). The 
ontra
t (when o 
) a
quires the underlying


ontra
t 
 as soon as the observable o be
omes True, or immediately if o is True

at the moment (when o 
) is a
quired. In states where o is True, the value of

(when o 
) is therefore the same as the value of 
. What is the value of (when o 
)

in states where o is False? To answer that question we need a spe
i�
ation of

future evolution of interest rates, that is an interest-rate model.

Let's 
onsider a 
on
rete example:


 = when (at t) (s
ale (konst 10) (one GBP))

where t is one year from today. The underlying 
ontra
t pays out $10 immediately

when it is a
quired; the when a
quires it at t . So the value of 
 at t is just $10.

Before t , though, it is not worth as mu
h. If I expe
t interest rates to average

4

(say) 10% over the next year, a fair pri
e for 
 today would be about $9.

Just as the primitive ex
h en
apsulates assumptions about future ex
hange-

rate evolution, so the primitive dis


k

(o; p) en
apsulates an interest-rate evolution

(Figure 7). Here o is a boolean-valued pro
ess that de�nes a region that we 
all

the a
quisition region. Inside this region | in states where o has value True

| dis


k

(o; p) is equal to p. But elsewhere the value of dis


k

(o; p) is obtained

by 
omputing the \dis
ounted expe
ted value" of p. For example, suppose p is

everywhere equal to 100, and o is True at all times greater than 1 Jan 2003. Then

the value of dis


$

(o; p) at 1 Feb 2003 is 100. However, its value at 1 Jan 2002

depends on sterling interest rates: we must 
ompute the value at 1 Jan 2002 of

a
quiring $100 on 1 Jan 2003.

Like ex
h, there are some properties that any no-arbitrage �nan
ial model

should satisfy. Notably:

(A3) dis


k

(K(True); p) = p

(A4) ex
h

k

1

(k

2

) � dis


k

2

(o; p) = dis


k

1

(o; ex
h

k

1

(k

2

) � p)

(A5) dis


k

(o; p

1

+ p

2

) = dis


k

(o; p

1

) + dis


k

(o; p

2

)

The �rst equation says that dis
 should be the identity when the a
quisition region

is the entire spa
e; the se
ond says that the interest-rate evolution of di�erent


urren
ies should be 
ompatible with the assumption of evolution of ex
hange rates.

The third

5

is often used in a right-to-left dire
tion as an optimisation: rather than

perform dis
ounting on two random variables separately, and then add the resulting

pro
esses, it is faster to add the random variables and then dis
ount the result.

Just as in an optimising 
ompiler, we may use identities like these to transform

(the meaning of) our 
ontra
t into a form that is faster to exe
ute.

One has to be 
areful, though. Here is a plausible property that does not hold:

dis


k

(o;max (p

1

; p

2

)) = max (dis


k

(o; p

1

); dis


k

(o; p

2

))

4

For the asso
iated risk-neutral probability, but we will not go in these �nan
ial details here.

5

The �nan
ially edu
ated reader should note that we assume here impli
itly what are 
alled


omplete markets.
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It is plausible be
ause it would hold if p

1

; p

2

were single numbers and dis
 were a

simple multipli
ative fa
tor. But p

1

and p

2

are random pro
esses, and the property

is false.

Equation (E9) uses the snell operator to give the meaning of anytime . This

operator is mathemati
ally subtle, but it has a simple 
hara
terisation: snell

k

(o; p)

is the smallest pro
ess q (under an ordering relation we mention brie
y at the end

of Se
tion 4.6) su
h that

8o

0

: (o ) o

0

) ) q � snell

k

(o

0

; q)

That is, an Ameri
an option is the least upper bound of any of the deterministi


a
quisition 
hoi
es spe
i�ed by o

0

, where o

0

is a sub-region of o.

4.5 Observables

We 
an only value 
ontra
ts over observables that we 
an model. For example, we


an only value a 
ontra
t involving the temperature in Los Angeles if we have a

model of the temperature in Los Angeles. Some su
h observables 
learly require

separate models. Others, su
h as the LIBOR rate and the pri
e of futures, 
an

in
estuously be modeled as the value of parti
ular 
ontra
ts. We omit all the

details here; Figure 5 gives the semanti
s only for the simplest observables. This is

not unrealisti
, however. One 
an write a large range of 
ontra
ts with our 
ontra
t


ombinators and only these simple observables.

4.6 Reasoning about 
ontra
ts

Now we are ready to use our semanti
s to answer the questions we posed at the

beginning of Se
tion 4. First, is this equation valid?




1

`and ` (


2

`or ` 


3

) = (


1

`and ` 


2

) `or ` (


1

`and ` 


3

)

By taking the meaning of the left hand side, we get

E

k

[[LHS ℄℄ = 


1

+ (max (


2

; 


3

))

= max (


1

+ 


2

; 


1

+ 


3

))

= E

k

[[RHS ℄℄

where 


1

= E

k

[[


1

℄℄ et
. In a similar way, we 
an argue this plausible equation is

false:

give (


1

`or ` 


2

)

?

= give 


1

`or ` give 


2

The proof is routine, but its 
ore is the observation that

�max (a; b) 6= max (�a;�b)

Ba
k in the real world, the point is that the left hand side gives the 
hoi
e to the


ounter-party, whereas in the right hand side the 
hoi
e is made by the holder of

the 
ontra
t.
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Our 
ombinators satisfy a ri
h set of equalities, su
h as that given for or and

and above. Some of these equalities have side 
onditions. For example:

s
ale o (


1

`or ` 


2

) = s
ale o 


1

`or ` s
ale o 


2

holds only if o � 0, for exa
tly the same reason that give does not 
ommute with

or . Hang on! What does it mean to say that \o � 0"? We mean that o is positive

for all time. More generally, as well as equalities between 
ontra
ts, there is a

simple notion of ordering between 
ontra
ts, 


1

� 


2

, pronoun
ed \


1

dominates




2

": 


1

� 


2

if it is never at any time preferable to a
quire 


2

than to a
quire




1

. The ordering is de�ned by simply 
omparing the value pro
esses of the two


ontra
ts; that is, 


1

� 


2

i� E[[


1

℄℄ � E[[


2

℄℄. One value pro
ess is greater than

another i� it is greater in all states of the world. (The ordering is only a partial

one.)

Equalities, su
h as the ones given above, 
an be used as optimising transfor-

mations in a valuation engine. A \
ontra
t 
ompiler" 
an use these identities to

transform a 
ontra
t, expressed in the intermediate language of value pro
esses

(see the introdu
tion to Se
tion 4), into a form that 
an be valued more eÆ
iently.

4.7 Summary

This 
ompletes our des
ription of the abstra
t valuation semanti
s. From a

programming-language point of view, everything is quite routine, in
luding our

proofs. But we stress that it is most unusual to �nd formal proofs in the �nan
e

industry at this level of abstra
tion. We have named and tamed the 
ompli
ated

primitives (dis
, ex
h, et
.): the laws they must satisfy give us a way to prove iden-

tities about 
ontra
ts without having to understand mu
h about random variables.

The mathemati
al details are ar
ane, believe us!

5 Implementation

Our valuation semanti
s is not only an abstra
t beast. We 
an also regard Figures 4

and 5 as a translation from our 
ontra
t language into a lower-level language of

pro
esses, whose 
ombinators are the primitives of Figures 6 and 7. Then we 
an

optimise the pro
ess-level des
ription, using identities su
h as (A1)-(A5). (We use

dozens of su
h identities as transformation rules.) Finally, all we need to do is to

implement the pro
ess-level primitives, and we will be able to value an arbitrary


ontra
t.

The key de
ision is, of 
ourse, how we implement a value pro
ess. A value

pro
ess has to represent un
ertainty about the future in an expli
it way. There

are numerous ways to model this un
ertainty. For the sake of 
on
reteness, we

will simply pi
k the Ho and Lee model, and use a latti
e method to evaluate


ontra
ts with it [Ho and Lee, 1986℄. We 
hoose this model and numeri
al method

for their te
hni
al simpli
ity and histori
al importan
e, but mu
h of this se
tion is

also appli
able to other models (e.g. Bla
k-Derman-Toy). Changing the numeri
al
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Figure 8: A short term interest-rate evolution

method (e.g. to Monte Carlo) would entail bigger 
hanges, but nothing in our

language or its semanti
s (Se
tions 1-4) would be a�e
ted. Indeed, it is entirely

possible to use di�erent numeri
al methods for di�erent parts of a single 
ontra
t.

5.1 An interest-rate model

In the typi
al Ho and Lee numeri
al s
heme, the interest-rate evolution is repre-

sented by a latti
e (or \re
ombining tree"), as depi
ted in Figure 8. Ea
h 
olumn

of the tree represents a dis
rete time step, and time in
reases from left to right.

Time zero represents \now". As usual with dis
rete models, there is an issue of

how long a time step will be; we won't dis
uss that further here, but we note in

passing that the time steps need not be of uniform size.

At ea
h node of the tree is asso
iated a one-period short-term interest rate,

shortly denominated the interest rate from now on. We know today's interest

rate, so the �rst 
olumn in the tree has just one element. However, there is some

un
ertainty of what interest rates will evolve to by the end of the �rst time step.

This is expressed by having two interest-rate values in the se
ond 
olumn; the idea

is that the interest rate will evolve to one of these two values with equal probability.

In the third time step, the rates split again, but the down/up path joins the up/down

path, so there are only three rates in the third 
olumn, not four. This is why the

stru
ture is 
alled a latti
e; it makes the whole s
heme 
omputationally feasible by

giving only a linear growth in the width of the tree with time. Of 
ourse, the tree

is only a dis
rete approximation of a 
ontinuous pro
ess; its re
ombining nature

is just a 
hoi
e for eÆ
ien
y reasons. We write R

t

for the ve
tor of rates in time-
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Figure 9: A Ho and Lee valuation latti
e

step t , and R

t;i

for the i 'th member of that ve
tor, starting with 0 at the bottom.

Thus, for example, R

2;1

= 5%. The a
tual numbers in Figure 8 are unrealisti
ally

regular: in more elaborate interest-rate models, they will not be evenly spa
ed but

only monotoni
ally distributed in ea
h 
olumn.

5.2 Value pro
esses

So mu
h for the interest-rate model. A value pro
ess is modeled by a latti
e of

exa
tly the same shape as the interest-rate evolution, ex
ept that we have a value

at ea
h node instead of an interest rate. Figure 9 shows the value pro
ess tree for

our favourite zero-
oupon bond




7

= when (at t) (s
ale (konst 10) (one GBP))

evaluated in pounds sterling (GBP ). Using our valuation semanti
s we have

E

GBP

[[


7

℄℄ = dis


$

(date = t ;K(10) � ex
h

$

($))

= dis


$

(date = t ;K(10) � K(1))

= dis


$

(date = t ;K(10))

In the �gure, we assume that the time t is time step 3. At step 3, therefore,

the value of the 
ontra
t 
 is 
ertainly 10 at all nodes, be
ause 
 un
onditionally

delivers $10 at that time. At time step 2, however, we must dis
ount the $10 by

the interest rate appropriate to that time step. We 
ompute the value at ea
h node

of time-step 2 by averaging the two values in its su

essors, and then dis
ounting
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the average value ba
k one time step using the interest rate asso
iated to that

node

6

. Using the same notation for the value tree V as we used for the rate model

R, we get the equation:

V

t;i

=

V

t+1;i

+V

t+1;i+1

2(1 +R

t;i

�t)

where �t is the size of the time step. Using this equation we 
an �ll in the rest of

the values in the tree, as we have done in Figure 9. The value in time step 0 is the


urrent value of the 
ontra
t, in pounds sterling (i.e. $8:64).

In short, a latti
e implementation works as follows:

� A value pro
ess is represented by a latti
e, in whi
h ea
h 
olumn is a dis
rete

representation of a random variable. The value in ea
h node is one of the

possible values the variable 
an take, and in our very simple setting the number

of paths from the root to the node is proportional to the probability that the

variable will take that value. We will say a bit more about how to represent

su
h a tree in the next subse
tion.

� The generi
 operations, in Figure 6, are easy to implement. K(x ) is a value

pro
ess that is everywhere equal to x . date is a pro
ess in whi
h the values in

a parti
ular 
olumn are all equal to that 
olumn's date. lift(f ; p) applies f to p

point-wise; lift

2

(f ; p

1

; p

2

) \zips together" p

1

and p

2

, 
ombining 
orresponding

values point-wise with f .

� The model-spe
i�
 operations of Figure 7 are a bit harder. We have des
ribed

how to implement dis
, whi
h uses the interest-rate model. ex
h is a
tually

rather easier (multiply the value pro
ess point-wise by a pro
ess representing

the ex
hange rate). The snell and absorb primitives take a bit more work,

and we do not des
ribe them in detail here. Nevertheless, to give the idea,

here is a possible implementation for snell : take the �nal 
olumn of the tree,

dis
ount it ba
k one time step, take the maximum of that 
olumn with the


orresponding 
olumn of the original tree, and then repeat that pro
ess all the

way ba
k to the root.

The remaining high-level question is: in the (big) set of possible interest-rate

models, what is a \good" model? The answer is rather in
estuous. A 
andidate

interest-rate model should pri
e 
orre
tly those 
ontra
ts that are widely traded:

one 
an simply look up the 
urrent market pri
es for them, and 
ompare them with

the 
al
ulated results. So we look for and later adjust the interest-rate model until

it �ts the market data for these simple 
ontra
ts. Now we are ready to use the

model to 
ompute pri
es for more exoti
 
ontra
ts. The entire market is a giganti


feedba
k system, and a
tive resear
h studies the problem of its stability.

6

For evident presentation reasons, we don't 
are about the fa
t that the Ho and Lee model is

a member of a 
lass of models that admit in fa
t a 
losed-form solution for zero-
oupon bonds.
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6 Operational semanti
s

So far we have only dis
ussed valuing a 
ontra
t. Another operation ripe for

automated assistan
e is exe
uting, or managing, a 
ontra
t. Banks hold thousands

of 
ontra
ts, and it is no simple matter to remember when to pay out money, when

money is due in, and when 
hoi
es (for options) 
ould be made.

Contra
ts evolve over time. For example, a 
ontra
t that started life as

when (at t) (


1

`or ` 


2

)

evolves at time t into (


1

`or ` 


2

), and hen
e either into 


1

or into 


2

. This evolution

is reminis
ent of the way in whi
h a program evolves over its exe
ution run. Indeed,

we 
an regard exe
uting a 
ontra
t as rather like running a program. Programming

language folk use operational semanti
s to des
ribe the evolution of a running

program in a pre
ise way, and we 
an do the same for 
ontra
ts.

Spa
e pre
ludes a full treatment here. SuÆ
e it to say that it is relatively easy

to give rules that des
ribe how a 
ontra
t evolves over time, and implementing

those rules in an automati
 system is straightforward. The very same 
ontra
t

des
ription that drives the 
ontra
t valuation engine 
an also drive the 
ontra
t

management engine. As in the 
ase of the valuation engine, the management engine

must be enhan
ed only when new primitive 
ombinators are added | it 
an deal

automati
ally with arbitrary 
ontra
ts built from the primitives it knows about.

Not only that, but the state of a partly-exe
uted 
ontra
t is still a 
ontra
t

term, and as su
h it 
an be fed into the 
ontra
t valuation engine. Thus the bank


an at any time value its entire \book" of partly-exe
uted 
ontra
ts simply by

feeding them into its valuation engine.

7 Putting our work in 
ontext

At �rst sight, �nan
ial 
ontra
ts and fun
tional programming do not have mu
h

to do with ea
h other. It has been a surprise and delight to dis
over that many of

the insights useful in the design, semanti
s, and implementation of programming

languages 
an be applied dire
tly to the des
ription, valuation, and management

of 
ontra
ts. The original idea was to apply fun
tional programming to a realisti


problem, and to 
ompare our resulting programwith the existing imperative version

| but we have ended up with a radi
al re-thinking of how to des
ribe and evaluate


ontra
ts.

Though there is a great deal of work on domain-spe
i�
 programming lan-

guages (see [Hudak, 1996, van Deursen et al., 2000℄ for surveys), our work is vir-

tually the only attempt to give a formal des
ription to �nan
ial 
ontra
ts. An ex-


eption is the RISLA language developed at CWI [van Deursen and Klint, 1998℄,

an obje
t-oriented domain-spe
i�
 language for �nan
ial 
ontra
ts. RISLA is de-

signed for an obje
t-oriented framework, and appears to be more stateful and less

de
larative than our system.

We have presented our design as a 
ombinator library embedded in Haskell,

and indeed Haskell has proved an ex
ellent host language for prototyping both
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the library design and various implementation 
hoi
es. However, our design is

absolutely not Haskell-spe
i�
. The big payo� 
omes from a de
larative approa
h

to des
ribing 
ontra
ts. As it happens we also used a fun
tional language for

implementing the 
ontra
t language, but that is somewhat in
idental. It 
ould

equally well be implemented as a free-standing domain-spe
i�
 language, using

domain-spe
i�
 
ompiler te
hnology.

Many appli
ation areas use one or more ad ho
 languages to spe
ify domain

obje
ts, although su
h languages are usually thought of as \data �le formats"

rather than a \language". The work we des
ribe here is a good example of the

power of the linguisti
 approa
h: not only 
an we des
ribe a mu
h ri
her family of


ontra
ts than any 
ommer
ial system, but the language stru
ture leads dire
tly

to a modular and robust software framework. Prin
ipled thinking has a pra
ti
al

payo�.
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