Deductive Composition of
Astronomical Software
from Subroutine Libraries *

Mark Stickel and Richard Waldinger?
Artificial Intelligence Center
SRI International
Menlo Park, CA 94025

Michael Lowry, Thomas Pressburger, and Ian Underwood?
Artificial Intelligence Research Branch
Recom Technologies
NASA Ames Research Center
Moffett Field, CA 94035

August 16, 1995

Abstract

Automated deduction techniques are being used in a system called
Amphion to derive, from graphical specifications, programs composed
from a subroutine library. The system has been applied to construct
software for the planning and analysis of interplanetary missions.

The library for that application is a collection of subroutines written
in FORTRAN-77 at JPL to perform computations in solar-system kine-
matics. An application domain theory has been developed that describes

*A preliminary version of this appears in the proceedings of the Twelfth International
Conference on Automated Deduction, Nancy, France, June 1994, pages 341-355.

t[stickel,waldinger } @ai.sri.com

Hlowry, pressburger,underwood }@ptolomy.arc.nasa.gov

the procedures in a portion of the library, as well as some basic properties
of solar-system astronomy, in the form of first-order axioms.

Specifications are elicited from the user through a menu-driven graph-
ical user interface; space scientists have found the graphical notation con-
genial. The specification is translated into a theorem, which is proved
constructively in the astronomical domain theory by an automated theo-
rem prover, SNARK. An applicative program is extracted from the proof
and converted to FORTRAN-77. By the method of its construction, the
program is guaranteed to meet the given specification and requires no
further verification, provided, of course, that the specification, domain
theory, and system itself are correct.

Amphion has successfully constructed more than a hundred programs
to solve problems, formulated at NASA Ames, JPL, and Stanford, which
involve typical computations involving the sun, planets, moons, and
spacecraft. The system is currently being alpha tested at JPL.

1 Introduction

Automatic deductive program synthesis has been studied for many years but
has never been used in practice. By restricting our attention to the construction
of programs composed from subroutine libraries, rather than the primitive in-
structions of a programming language, and by adapting domain-specific control
strategies, we have applied deductive methods to construct useful software.

Subroutine Libraries

Subroutine libraries are one of the most prevalent forms of software reuse, par-
ticularly within the scientific programming community. However, end users
often do not make effective use of libraries. Sometimes this happens because
the subroutines are not adequately documented. But even when excellent doc-
umentation is provided, users often have neither the time nor the inclination
to familiarize themselves with it. In either case, the result is that most users
lack the expertise to properly identify and compose the routines appropriate to
their application. In domains with mature subroutine libraries, one can greatly
improve the productivity and quality of software engineering by automating the
effective use of those libraries.

Subroutines are commonly accessed by indexing key words in their documen-
tation, a very approximate method. In the work of Rollins and Wing [RW 91},

logic programming techniques are invoked to retrieve appropriate subroutines,
according to their specifications, but composing them is left up to the user.
In this work, deductive methods—that is, methods of automated reasoning or
theorem proving—are applied to the composition of subroutines into software.
In that sense it most closely resembles the work of Tyugu and his associates
[Tyu 88], in which software is also composed from subroutine libraries, to meet
specifications expressed in intuitionistic propositional logic.

Although deductive methods are independent of the application domain, we
discuss their application to the construction of software for performing com-
putations in solar-system astronomy. Such computations are necessary in the
planning and data analysis for interplanetary scientific missions. For example,
observing the location of a moon of a nearby planet is often the best way of
determining the position of the observing spacecraft.

Amphion

The Intelligent Software Project of the Artificial Intelligence Research Branch
at NASA Ames, led by Michael Lowry, has been developing a system called
Amphion® to automate the composition of software from subroutine libraries.
Software requirements are specified in a graphical notation. An interactive
interface, which is domain-independent but employs the vocabulary of the do-
main, presents the user with a menu of alternatives and elicits the specification
gradually. The user need not know the contents of the library, the syntax of
the specification language, or the target programming language.

The graphical specification is translated automatically into a first-order-logic
theorem, and a program is developed from the logical form of the specification
using SRI’s automated deduction system SNARK, which has been implemented
by Mark Stickel. The resulting program is subjected to common-subexpression
elimination and translated into FORTRAN-T7. The translation package invokes
RefineT™ transformations from Kestrel’s KIDS system [Smi 90]. It would be a
relatively small change to produce a final program in a language other than
FORTRAN.

SPICE

Amphion’s first application domain is software for planning and interpreting
space-science observations. The software is based on SPICELIB, a library of

! Amphion built a wall around Thebes by charming the stones into place with a magic lyre.

3

procedures for solar-system geometry. These routines, written in FORTRAN-77
at the Navigation Ancillary Information Facility (NAIF) at JPL, perform ba-
sic computations involving the sun, planets, moons, and spacecraft. Various
systems of time measurement (e.g., ephemeris time, which is used in astronom-
ical tables, and spacecraft clock time) and multiple frames of reference come
into play. Light is not assumed to travel instantaneously across astronomical
distances.

The NAIF library procedures are used by astronomers and researchers as
primitives to build more complex software. The subroutines embody consider-
able expertise and cannot easily be recreated. Although the routines are well
documented, users seem reluctant to invest the time and effort to learn about
them. They frequently attempt to reimplement routines that already exist in
SPICELIB because they did not find them in the documentation, or if they are
sufficiently influential, they prevail on the authors of the library to retrieve the
appropriate routines and compose them into the required software.

2 Deductive Component

The emphasis of this paper is on the role of SNARK, the deductive subsystem,
in Amphion. Other papers will focus on the astronomical aspects of the system
and on the graphical interface.

Deductive Approach

A program is developed from the logical form of the specification by a deductive
approach, which is based on work of Zohar Manna, of Stanford University, and
Richard Waldinger [MW 92]. We prove a mathematical theorem that expresses
the existence of an output that meets the specified conditions. The graphical
specification language corresponds to only a subset of predicate logic, but in
principle knowledgeable users can introduce logical specifications directly.

The proof is conducted in a classical logic but is restricted to be construc-
tive—in other words, in proving the existence of the required output, we are
forced to indicate a method for finding it. That method becomes the ba-
sis for-a program to compute the output, which may be extracted from the
proof. This program is guaranteed, by the way it was constructed, to meet the
specification—it requires no further verification.

The structure of the program reflects the proof from which it was extracted.

If the proof relies on reasoning by cases (e.g., by application of the resolution
rule [Rob 65]), the resulting program may contain a conditional expression. If
the proof depends on the mathematical induction principle, the program may
invoke recursion or other repetitive constructs.

The theorem is proved valid in an application domain theory that provides
the knowledge on which the software depends. The specifications of the avail-
able subroutines, the constructs of the specification language, and properties
of the application domain are expressed by axioms in the domain theory. The
application domain theory also determines the options offered to the user by
the graphical interface.

Program synthesis differs in its technical emphasis when its output is ex-
pressed in terms of subroutine calls rather than the primitives of a programming
language. When most of the recursive and iterative constructs are embedded in
subroutines, the major technical challenge is to effectively decompose the prob-
lem and glue together subroutines. While general program synthesis imposes
severe demands on a deductive system, the theorems that arise when software
is composed from a subroutine library appear to be within the range of existing
deductive technology.

SNARK

To automate a deductive approach requires an automated deduction system,
or theorem prover. SNARK is especially suitable for program synthesis and
other applications in artificial intelligence and software engineering. SNARK is
invoked as a subsystem of Amphion, but it can also be used independently or
as a component of other systems.

The current implementation of SNARK, in COMMON LISP, includes the reso-
lution [Rob 63] and paramodulation [WR 69] rules for handling the constructs
of first-order logic with equality, like McCune’s OTTER [McC 90]. It also will
employ the principle of mathematical induction, like Boyer and Moore’s NQTHM
[BM 88]. Proofs are developed within Manna and Waldinger’s deductive tableau
framework [MW 93] and can be restricted to be constructive so that programs
can be extracted. Clause form is optional—if the user prefers, formulas may
employ a full set of logical connectives in arbitrary form.

It is intended that the SNARK user will be able to introduce new inference
rules, but in the current implementation the user chooses among a fixed set of
rules. An indexing mechanism allows the system to retrieve from its memory
only those formulas that are syntactically relevant.

SNARK (like OTTER) is agenda-driven—it draws conclusions from a formula
when that formula reaches the top of its agenda. The user does have the ability
to influence the strategy adopted by the system, for example, by providing
the function used to order the agenda. Although interactive handles are being
attached to SNARK, the system is fundamentally automatic.

3 The Astronomical Domain

For the astronomical application, the specifications of a portion of the sub-
routines of the SPICELIB library are represented by axioms in the application
domain theory. Other axioms describe properties of the specification constructs
and the geometry and space kinematics on which the construction of the soft-
ware depends. At this moment the domain theory consists of more than 200
axioms, all of which are available when we attempt to prove the specification
theorem. It is beside the point of this paper to describe the domain theory
(largely the work of Lowry and Pressburger) in any detail. But let us present
enough of the theory to suggest its contents.

The Astronomical Domain Theory

A fundamental entity in the domain theory is a space-time location (sometimes
called an event), a position in space at a certain time; for two events to be
identical, they must correspond to the same position and time.

The relation lightlike? (€1, e2) holds if a photon could leave the position cor-
responding to event ey, at the time corresponding to that event, and arrive
at the position and time corresponding to event ey; the symbol lightlike? is a
specification construct, not a subroutine in the library.

The function ephemeris-object-and-time-to-event yields an event correspond-
ing to the position of a given astronomical object (e.g., a planet or spacecraft) at
a given time; this is also a specification concept. Objects and times are abstract
entities, independent of any representation system for designating astronomical
objects or units for measuring time.

The specification function a-sent(o,d,ta) computes the time a photon must
leave the origin object o in order to arrive at the destination object d at time
ta. This function is defined in part by the axiom lightlike ?-of-a-sent:

(all (o 4 ta)
(lightlike? (ephemeris-object-and-time-to-event o

6

(a-sent o d ta))
(ephemeris-object-and-time-to-event d ta)))

(The axioms and theorems are written in LISP notation, e.g., (a-sent o d ta)
instead of a-sent(o,d,ta).) In other words, a photon could leave object o at time
(a-sent o d ta) and arrive at object d at time ta.

The specification constructs deal mainly with abstract entities. But each
abstract entity corresponds to one or more concrete entities, which depend on a
particular representation scheme or system of units. In particular, an abstract
astronomical body such as Jupiter is assigned a NAIF library symbol, called its
NAIF id; the NAIF id of Jupiter is 599. Each abstract time corresponds to a
concrete ephemeris time and to a concrete spacecraft clock time. The function
abs(fn,c) is used to denote the abstract entity corresponding to the concrete
entity c; here, fn is the abstraction function that maps concrete entities into
abstract ones. (For technical reasons, abstraction functions are reified; that is,
they are denoted by constants and terms rather than by function symbols.) For
example, (abs ephemeris-time-to-time et) stands for the abstract time cor-
responding to the ephemeris time et, and (abs naif-id-to-body 599) stands
for Jupiter.

The subroutines in the library apply to concrete entities, not abstractions.
For example, the subroutine (sent onid dnid eta) is analogous to the ab-
stract function (a-sent o d t) but applies to concrete NAIF ids for origin and
destination bodies, onid and dnid, respectively, and a concrete arrival time eta
in ephemeris-time units, rather than their abstract counterparts. The precise
relationship between the specification function a-sent and the subroutine sent
is expressed by the following a-sent-to-sent axiom:

(all (onid dnid eta)
(= (a-sent (abs naif-id-to-body onid)
(abs naif-id-to-body dnid)
(abs ephemeris-time-to-time eta))
(abs ephemeris-time-to-time (sent onid dnid eta)))).

In other words, the result of first translating the concrete entities into abstrac-
tions and then computing a-sent is the same as the result of computing sent
on the concrete entities and then translating to abstract time.

(3

.i-.-lni.illliii---g----’-ipf'ﬁ;“.

wa
] -, sl
av? Hoscamd
E - ® N
R

Voyager 2
Figure 1: Where is the shadow of Io on Jupiter?

The Sample Problems

With the assistance of astronomers at JPL and Stanford, and based on his own
experience, Underwood assembled a collection of fifteen sample problems rep-
resentative of what might be requested of a NAIF consultant. The problems
require solar-system computations typical of those required for scientific mis-
sions; some were from software that had been developed for the Hubble Space
Telescope Science Institute. Although a NAIF expert would be able to construct
programs to solve these problems in less than half an hour, NAIF experts are
in short supply; a programmer unfamiliar with the NAIF library might require
several days to learn its contents before composing the software.

Amphion was able to construct programs for all fifteen sample problems
completely automatically, without user interaction. Once the specifications were
elicited from the user, the system required less than three minutes to construct
each program.

Let us look at one of the sample problems.

Shadow of Io

The first problem we considered involved determining the location of the shadow
cast on Jupiter by its moon lo, as observed at a given time on Voyager 2
(Figure 1). The point pi indicates the shadow.

The corresponding graphical specification (Figure 2) may appear confusing,
but would be much clearer if we could show the step-by-step interaction between
user and system. After a one-hour tutorial, a novice user may require a half
hour to construct such a specification; an experienced user can do it in a few
minutes.

In Figure 2, PHOTON-SUN-IO designates a photon that passes from the
sun at a certain time and reaches Io at another; the purpose of speaking about
photons is to specify times. Similarly PHOTON-IO-JUPITER is perhaps the

E » TIME-JUPITER
Py {Unknovwn)

-,/SHA%&SOINT ~{on I suprren-ELLIPSOD ~[og}e- JUPITER

$L
[on]
4_..-/-"" *
,-ﬁw_mwIo et
[fromm | fowards}
10-SPACETIME-LOC

SUN_SPACETIME-LOC s) JUPITER-SPACETIME-LOC
- oy e - PITERS:
fomiomef|[a] ~ Eem). - B) Jad [fem] T -
PHOTON-SUN-10 PHOTON-IO-JUPITER
SUN TIME-SUN 0 TIME-IO
{Constant} {Unknown) {Constant) (Unknown) .

s
s’

PHOTON-JUPITER-VOYAGER-2
AN

VOYAGER-2-SPACETIME-LOC
A

VOYAGER-2 TIME-VOYAGER-2
{Constant) {Input)

Figure 2: Shadow of Io Graphical Specification

same photon as it leaves Io and reaches Jupiter, and PHOTON-JUPITER-
VOYAGER-2 is the photon as it leaves Jupiter and arrives at Voyager 2. The
input to the program (indicated at the lower right) is the time that photon
reaches Voyager 2.

RAY-SUN-to-I0 is a ray (that is, a half-infinite line) that originates at the
sun and passes through Io. JUPITER-ELLIPSOID is the surface of Jupiter
at the time the photon reaches Jupiter; because Jupiter rotates and moves, its
surface changes with time. SHADOW-POINT, the output of the program, is
the first intersection of the ray with the surface of Jupiter.

The reader may observe that the user has chosen certain simplifications and
approximations in specifying this problem. For instance, the sun and Io are
regarded as points, and though Jupiter is sometimes regarded as a spheroid,
PHOTON-IO-JUPITER. arrives at the center of Jupiter, not its surface. The
decision as to which simplifications may be made is left up to the user.

The theorem obtained from this specification is given in Figure 3.

(all (time-voyager-2-c)
(find (shadow-point-c)
(exists

(time-sun sun-spacetime-loc time-io io-spacetime-loc
time-jupiter jupiter-spacetime-loc time-voyager-2
voyager-2-spacetime-loc shadow-point jupiter-ellipsoid
ray-sun-to-io)

(and
(= ray-sun-to-io

(two-points-to-ray

(event-to-position sun-spacetime-loc)

(event-to-position io-spacetime-loc)))
(= jupiter-ellipsoid

(body-and-time-to-ellipsoid jupiter

time-jupiter))

(= shadow-point

(intersect-ray-ellipsoid ray-sun-to-io jupiter-ellipsoid))
(lightlike? jupiter-spacetime-loc voyager-2-spacetime-loc)
(lightlike? io-spacetime-loc jupiter-spacetime-loc)
(lightlike? sun-spacetime-loc io-spacetime-loc)
(= voyager-2-spacetime-loc

(ephemeris-object-and-time-to-event voyager-2 time-voyager-2))
(= jupiter-spacetime-loc

(ephemeris-object-and-time-to-event jupiter time-jupiter))
(= io-spacetime-loc

(ephemeris-object-and-time-to-event io time-io))
(= sun-spacetime-loc

(ephemeris-object-and-time-to-event sun time-sun))
(= shadow-point (abs (coords-to-point j2000) shadow-point-c))
(= time-voyager-2

(abs ephemeris-time-to-time time-voyager-2-c))))))

Figure 3: Shadow of Io Theorem

The quantifier £ind is a constructive version of the existential quantifier
exists; in proving the existence of shadow-point-c (which corresponds to
SHADOW-POINT in the graphical specification), the system is forced to indi-
cate a method for finding it.

Although this and the other theorems required for the astronomical applica-
tion are not mathematically deep, some of the authors of this paper will confess

10

to being unable to prove them from the axioms by hand. SNARK required about
40 seconds (on a Sun 670MP) to prove this one. The program extracted from
the proof, as translated by Amphion into FORTRAN-77, is given in Figure 4.

SUBROUTINE SHADOW (TIMEVO, SHADOW)

C Input Parameters
DOUBLE PRECISION TIMEVO

C Output Parameters
DOUBLE PRECISION SHADOW (3)

C Function Declarations
DOUBLE PRECISION SENT

C Parameter Declarations
INTEGER JUPITE
PARAMETER (JUPITE = 599)
INTEGER VOYGR2
PARAMETER (VOYGR2 = -32)

INTEGER SUN
PARAMETER (SUN = 10)
INTEGER IO
PARAMETER (IO = 501)

C Variable Declarations
DOUBLE PRECISION RADJUP (3)
DOUBLE PRECISION TJUPIT
DOUBLE PRECISION PJUPIT (3)
DOUBLE PRECISION TIO
DOUBLE PRECISION MJUPIT (3, 3)
DOUBLE PRECISION PIO (3)
DOUBLE PRECISION TSUN
DOUBLE PRECISION PSUN (3)
DOUBLE PRECISION DPSPI (3)
DOUBLE PRECISION DPJPS (3)
DOUBLE PRECISION XDPSPI (3)

11

DOUBLE PRECISION XDPJPS (3)
DOUBLE PRECISION P (3)
DOUBLE PRECISION DPJUPP (3)

c Dummy Variable Declarations
INTEGER DMYO
DOUBLE PRECISION DMY20 (3)
DOUBLE PRECISION DMY30 (3)
DOUBLE PRECISION DMY40 (3)
LOGICAL DMY90

CALL BODVAR (JUPITE, ’RADII’, DMYO, RADJUP)
TJUPIT = SENT (JUPITE, VOYGR2, TIMEVO)

CALL FINDPV (JUPITE, TJUPIT, PJUPIT, DMY20)
CALL BODMAT (JUPITE, TJUPIT, MJUPIT)

TIO = SENT (IO, JUPITE, TJUPIT)

CALL FINDPV (IO, TIO, PIO, DMY30)

TSUN = SENT (SUN, IO, TIO)

CALL FINDPV (SUN, TSUN, PSUN, DMY40)

CALL VSUB (PIO, PSUN, DPSPI)

CALL VSUB (PSUN, PJUPIT, DPJPS)

CALL MXV (MJUPIT, DPSPI, XDPSPI)

CALL MXV (MJUPIT, DPJPS, XDPJPS)

CALIL SURFPT (XDPJPS, XDPSPI, RADJUP (1), RADJUP (2),
.RADJUP (3), P, DMY90)

CALL VSUB (P, PJUPIT, DPJUPP)

CALL MTXV (MJUPIT, DPJUPP, SHADOW)

END
Figure 4: Shadow of Io Program

Again there is little point to reading the entire program; we printed it to em-
phasize the difference between the program and its specification. After the long
sequence of declarations and initializations, the program invokes the SPICELIB
procedure bodvar, which computes the radii of Jupiter; because the surface of
Jupiter is an ellipsoid, it has three radii, which are stored in an array. Then
the library function sent computes the time tjupit a photon must have left

12

Jupiter to reach Voyager 2 at input time timev0. The procedures findpv
and bodmat then compute the position and the orientation of Jupiter at time
tjupit. The orientation of Jupiter is represented by a three-by-three matrix of
double-precision numbers. And so on.

In short, the specification deals with abstract entities, such as planets, times,
and ellipsoids; the program deals with integers, double-precision numbers, and
matrices.

4 Strategic Considerations

We do not provide a systematic description of SNARK here, but we do describe
some of the heuristic features that SNARK employed to solve the astronomical

problems.

Recursive Path Ordering

SNARK employs term rewriting and the paramodulation rule [WR. 69] for rea-
soning about equality. It has been found possible to avoid replacing one term
with another if the second term is greater than the first with respect to a cer-
tain kind of ordering, a recursive-path ordering [Der 82]. The recursive-path
orderings are syntactic relations defined on the terms of our language. SNARK
allows the user to declare a recursive-path ordering before beginning a proof.
The user provides an ordering on the constants and function symbols of the
language, and that determines a corresponding ordering on the terms, which
is used to control the paramodulation rule. It has been established [HR 91]
that the recursive-path-ordering strategy is complete for first-order logic with
equality. If a sentence has a proof, it can be proved with the strategy, regardless
of the choice of ordering.

SNARK’s success in this domain depends on its use of the recursive-path-
ordering strategy and on the choice of a particular ordering. Indeed, there are
examples in which SNARK found a proof in less than a minute with a plausible
ordering, but failed to find a proof in a reasonable time if that ordering was
reversed or if ordering information was omitted altogether.

We found that a good heuristic for ordering the terms was, roughly speaking,
to direct SNARK to replace abstract, noncomputable symbols with concrete,
computable ones, which could appear in the final program extracted from the
proof. With little effort, it was possible to declare an ordering that would enable

13

SNARK to construct a program. A single ordering sufficed for all the problems
in the astronomical domain. In general, we do not expect Amphion users to
have to supply a recursive path ordering—that is done when the application
domain theory is formulated.

The SricE Agenda-Ordering Function

We have remarked that SNARK is an agenda-driven theorem prover. When it
infers a new formula, it places it on an agenda, a list of formulas, to wait its
turn to be processed. A formula is not processed until it reaches the head of the
agenda; then it is removed from the agenda and all its immediate consequences
are added.

The place at which a new formula is added to the agenda is determined by
the agenda-ordering function. Although a default agenda-ordering function is
provided with the system, the SNARK user may choose another or provide a new
one, written in COMMON LISP. One of the ways SNARK has been specialized to
the astronomical domain is with a new SPICE agenda-ordering function, writ-
ten by Pressburger. This strategy gives special attention to goals with literals
containing the predicate symbol 1ightlike? for which one of the arguments
is ground (variable-free) and the other contains a variable; there are axioms in
the domain theory, such as the axiom lightlike?-of-a-sent given previously, that
are capable of solving any such literals. To a lesser extent, the strategy favors
goals with fewer abstract function symbols. The effect of this strategy is to first
determine the space-time locations of all the bodies in the problem, and then to
replace all the abstract function symbols with concrete ones, which correspond
to SPICELIB routines.

The choice of agenda-ordering function can be critical. One problem we
have encountered requires less than three minutes with the SPICE agenda or-
dering but more than an hour with the SNARK default agenda ordering. All the
astronomical problems were solved with this same SPICE agenda ordering; we
do not expect Amphion users to have to change this ordering.

The Set-of-Support Strategy

The mathematical applications on which theorem provers are commonly tested
require relatively deep proofs in theories with few axioms. In contrast, the
astronomical domain, like most software-engineering applications, requires us
to find mathematically less sophisticated proofs in theories with a large number

14

of axioms, which represent the subject knowledge of the domain. For such a
problem, it is appropriate to invoke the set-of-support strategy [WRC 65] to
focus attention on the goal—the theorem to be proved—at the expense of the
axioms. This strategy requires that every formula we infer be descended from
the goal. Otherwise, with so many axioms, it is hard to decide in advance which
of them are relevant to the proof. In fact, the set-of-support strategy turned out
to be crucial in the astronomical domain—theorems that are proved in under a
minute with set of support cannot be proved within the available space without
it.

When we employ the set-of-support and the recursive-path-ordering strat-
egies at the same time, however, we lose completeness—there may be some
valid theorems we will be unable to prove without violating the restrictions of
one of the strategies. (In fact, once we combine the recursive-path-ordering
strategy with the constructiveness restriction, which guarantees that we can
extract programs from proofs, we may already have lost completeness.) The
domain theory contains some logically redundant axioms to circumvent this
incompleteness, but this is something of a stopgap measure. In the future,
a hybrid strategy that allows some reasoning forward from axioms and some
reasoning backward from the goal may be employed in combination with the
recursive-path-ordering strategy.

5 Performance

Since the test cases were run, demonstrations of Amphion have been given
by Lowry at NASA Ames, JPL, and other sites. Members of the audience
unfamiliar with the system were invited to specify their own programs. In
almost all cases, the graphical notation was adequate to specify the new program
and SNARK was capable of proving the corresponding theorem and constructing
the specified program.

In all our test cases, including those proposed by participants in NASA and
JPL demonstrations, the specification has been formulated in less than half
an hour; an experienced Amphion user needs just a few minutes. It is often
more convenient to revise the stored specification of a similar problem than to
construct a new specification from scratch. The theorems have required less
than ten minutes—usually less than three minutes—for SNARK to prove, and
the translation into FORTRAN is completed in seconds.

For one problem, the desired program relied on properties of subroutines in

15

SPICELIB that had not yet been axiomatized. It required less than half an hour
to introduce the new axioms; the system was then able to construct the new
program.

Once SNARK has found one proof and extracted the corresponding program,
we can restart it to find other proofs and perhaps other programs. This ability
is not used by Amphion, because we have not found that the various programs
differed in any significant way; they were doing more or less the same things in
different orders.

The system has recently been installed at NAIF so that JPL astronomers
can use the system regularly, on an experimental basis.

6 What Next?

The problems solved so far have been relatively simple, none requiring more
than two of three pages of FORTRAN code and none including if-statements or
loops, except implicitly at the subroutine level. While SNARK does regularly
introduce conditionals, for example by application of the resolution rule, its
ability to introduce iterative or recursive constructs is rudimentary. It currently
contains no induction rule, so we must provide the appropriate well-founded
relation, on which the induction is based, and enter the induction hypothesis
as an axiom. Although none were encountered in the sample problem set or
in demonstrations, there are problems in the domain that do require iterations
that cannot be relegated to subroutines. When we do employ induction, it may
be advisable to use a nonclausal representation of formulas; so far, all formula
have been kept in clausal form.

For more complex problems, it will be necessary to decompose the specifica-
tion into subspecifications of more manageable modules. Simple decompositions-
might be achieved automatically, with the help of tactics that could be built into
SNARK itself. Other decompositions will be performed interactively through the
graphical interface. In this way, the user would specify the original problem and
its decomposition into modules with the same mechanism.

Once SNARK has successfully constructed a module, its specification can be
added to the theory as a new axiom. If that axiom is used in a proof, the module
will be invoked by the corresponding program. Thus, if the decomposition is
done appropriately, SNARK will be able to compose the modules to solve the
main problem. Whether the decomposition is accomplished automatically or
with user assistance, the correctness of the resulting program and its modules

16

is guaranteed by the method of their construction, provided that the domain
theory is correct.

Nothing in the techniques we are using restricts us to SPICELIB or to the
astronomical domain. We are currently considering other application domains
in which the same technology would be valuable. Characteristic of a potentially
fruitful domain are the existence of a mature subroutine library, many of whose
users are imperfectly acquainted with its contents. Deductive methods are
particularly attractive when the correctness of the derived software is critical.
In such a domain, it is plausible that existing deductive technology will suffice
to give computationally naive users access to a large library of subroutines and
enable them to compose software of practical power and high reliability.

A cknowledgements

We would like to thank the National Science Foundation for support of some of
this research, under Grant CCR-8922330.

References

[BM 88] R.S. Boyer and J S. Moore, A Computational Logic Handbook, Aca-
demic Press, Boston, MA (1988).

[Der 82] N. Dershowitz, Orderings for Term-Rewriting Systems, Journal of
Theoretical Computer Science, 17,3 (1982), 279-301.

[HR 91] J. Hsiang and M. Rusinowitch, Proving Refutation Completeness
of Theorem-Proving Strategies: The Transfinite Semantic Tree
Method, Journal of the ACM, 38,3 (1991), 559-587.

[McC 90] W. McCune, Otter 2.0 User’s Guide, Technical Report ANL-90/9,
Argonne National Laboratory, Argonne, IL (1990).

[MW 92] Z. Manna and R. Waldinger, Fundamentals of Deductive Program
Synthesis, IEEE Transactions on Software Engineering, 18,8 (1992),
674-704. '

[MW 93] Z. Manna and R. Waldinger, Deductive Foundations of Computer
Programming, Addison-Wesley, Reading, MA (1993).

17

[Rob 65]

[RW 91]

[Smi 90}

[Tyu 88]

[WR. 69]

[WRC 65]

J. A. Robinson, A Machine-Oriented Logic Based on the Resolution
Principle. Journal of the ACM 12 (1965) 23-41.

E. J. Rollins and J. M. Wing, Specifications as Search Keys for
Software Libraries, Fighth International Conference on Logic Pro-
gramming, Paris, June 1991.

D. R. Smith, KIDS: A Semiautomatic Program Development Sys-
tem. IEEE Transactions on Software Engineering 16,9 (1990) 1024-
1043.

E. H. Tyugu, Knowledge-Based Programming, Turing Institute
Press, Glasgow, Scotland, 1988.

L. Wos and G. Robinson, Paramodulation and Theorem Proving in
First-Order Theories with Equality. In B. Meltzer and D. Michie
(editors), Machine Intelligence 4, American Elsevier, New York, NY
(1969) 135-150.

L. Wos, G. A. Robinson, and D. F. Carson, Efficiency and Complete-
ness of the Set-of-Support Strategy in Theorem Proving. Journal of
the ACM, 12,4 (1965), 536-541.

18

