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Abstract— Expertise in solving physics problems is characterized by
the ability to sef up or represent a problem. An expert’s representation
employs idealized formal models, such as a point mass or the principle
of uniform circular motion, for modeling objects and relationships in the
problem. A computer program, APEX, has been developed to investigate
such models. Two types of models are defined: canonical physical objects
and physical models. During problem solving, the problem is represented
as a data connection network, which is progressively augmented by these
models in the form of additional network elements. APEX employs views
as a representational framework for connecting the initially informal
objects to the formal models of the domain. The view framework supports
multiple representations (e.g., viewing many objects as a single canonical
physical object), handling of incompletely specified problems, and inverr-
ibility of the views. This computational framework provides a powerful
representational mechanism that allows a finite set of physical principles
to be applied to a potentially infinite variety of problems. As a knowledge
engineering technique, views allow general principles to be applied to a
variety of objects whose representations differ.

Index Terms— Canonical objects, knowledge engineering, knowledge
representation, physical models, physics problem solving, views.

I. INTRODUCTION

HYSICS problems are often presented in terms of informal,

real-world objects and relationships among them. An impor-
tant task of a problem solver is to obtain a formal representation
of the problem by interpreting these objects and relationships
into formal, abstract models of physics. Competence in solving
a physics problem derives mainly from the skill of setting up
the problem in terms of these models, rather than from mere
mathematical skill [13]. An expert in physics is believed to
possess a finite set of such models that may be applied to solve
a large number of complex problems.

We have been investigating a machine problem solver in
physics with representation and model-building as the primary
research issues [11]. APEX (A Physics Expert) is a computer
program built in an object-oriented programming environment
[21]} for solving physics problems in a model-based representa-
tional framework. Two types of models are employed in APEX:
canonical physical objects and physical models. Canonical phys-
ical objects are idealized objects that are meaningful in physics
or mathematics, such as a point mass, a circle, or an ideal rope.
Physical models are data structures for representing the laws and
principles of physics.

APEX extends the work in ISAAC [18], [19], a program
that solves physics problems stated in English, with the main
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research issue shifted from natural language understanding to
representational aspects of physics problem solving. Many un-
derlying ideas in APEX are supported by psychological research
[5], in which experts and novices were compared in categorizing
a given set of problems. Other studies of performance differences
between experts and novices [14], [15] suggest the importance
of model-building behavior of experts. {1] and [17] describe the
use of graphs that relate physical models, with edges of a graph
representing differences in the assumptions of the models. {16]
describes abstraction models in the domain of programming. [2]
includes descriptions of several approaches to qualitative reason-
ing about physical systems, including qualitative process theory
[7], confluences [6], and qualitative simulation [12]. Whether the
models used are purely quantitative or are qualitative, a central
issue is the model formulation process that we address; it is
crucial when dealing with problems that are presented in the
informal terms of the real world, often incompletely specified.

II. Overview oF APEX

The organization of the program and its data is shown in Fig. 1.
In the diagram, programs are represented by boxes with double
lines, and data structures and rules by plain boxes; links between
boxes represent data flow.

A physics problem is input as a semantic network describing
features of objects and their relationships. The inputs used
in testing APEX were hand-simulations of the output of a
hypothetical English parser similar to those of ISAAC [18] and
BEATRIX [22], [3], [4]. In one case, the output of BEATRIX
was mechanically reformatted to serve as input to APEX.

Given an initial representation of a problem, the process of
solving it occurs in several steps. First, guided by an inference
system that reasons about the objects and their interactions,
APEX transforms the initial problem into a representation in
terms of canonical physical objects, such as a point mass, selected
from a library. ThiS transformation is performed by constructing a
data connection network between the two objects that provides a
computational facility for viewing an object as another (canonical
physical) object. Therefore, the problem representation resulting
from this stage (labeled canonical representation in the diagram)
actually consists of a group of views that inherit all the properties
of corresponding canonical physical objects.

Then, the canonical representation is again used as input
for reasoning by the inference system, which guides APEX
in building a physical representation of the problem in which
the underlying physical principles and laws involved in the
problem are explicitly represented. APEX’s physical models can
be divided into two subgroups based on their operational goals:
those specialized for making inferences about implicit forces, and
those specialized for writing equations. Accordingly, this stage
of problem solving is performed in two distinct steps; the first
step is to select and instantiate physical models involving forces,
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Fig. 1. Overall program organization.

and the second step is to select and instantiate physical models
involving equations.

Next, a mathematical representation of the problem is formu-
lated by collecting equations from the physical model instances
in the physical representation. Finally, the equations, which may
contain symbolic constants as well as numbers (with units) and
variables, are sent to a symbolic manipulation package designed
to solve simultaneous equations.

As outlined above, APEX solves a physics problem by a series
of stepwise rerepresentation processes involving invocations of
models to the initial problem representation. This process aug-
ments the previous problem representation rather than replacing
it. Therefore, the final problem representation may be considered
a representation of the problem with full specification of its
underlying structures that were initially implicit. At each stage,
APEX must be guided to select proper canonical objects or
physical models. This guidance may be provided by a human,
through a user-friendly interface, or by an expert system. MISA
(Mini Inference System for APEX) is a small expert system that
has been developed to demonstrate APEX in a limited number of
problem-solving sessions without human intervention. MISA is
comprised of a set of inference rules that a human physics expert
might consider when selecting proper models.

III. CanonicaL OBIECTS AND VIEWS

A. Canonical Objects

Canonical objects such as a point mass, a lever, or an ideal rope
serve as the vocabulary for physics; problem solving requires
interpreting the objects in the initial problem into these canonical
objects. A group of canonical objects has been predefined in
APEX’s permanent knowledge base; each is an object class

class: PtMass

attributes: mass

superclass: CanonicalObj

class: Rope

attributes: rotation
tension

superclass: CanonicalObj

class: Circle

attributes: radius

properties: diameter « 2.radius
area « 7-radius?
perimeter « 7w-diameter

superclass: CanonicalObj

Fig. 2. Example canonical object classes.

in an object-oriented programming environment. A canonical
object class is defined with intrinsic attributes and methods
for computing properties from the attributes. Fig. 2 shows the
definitions for some canonical object classes.

B. Views

We regard the process of abstracting an initial object as a
canonical physical object as a data conversion process, accom-
plished by views. A view serves as a hybrid data structure
facilitating bidirectional mapping of the features of the objects
in the two representations. Viewing an input object as a canon-
ical object is achieved by constructing a collection of network
elements within the object-oriented programming environment of
APEX. The network consists of five kinds of data elements:

object class: The real-world object class.

object instance: An instance of the object class defined with
a set of property—value pairs.

canonical object class: The target canonical object class that
the object instance is modeled as.

view class: A hybrid data object class that makes the object
class look like the canonical object. It is defined with a set of
methods for deriving the attributes of the target canonical object
class in terms of the properties of the object instance.

view instance: An instance of the view class created for
viewing the object instance.

To illustrate view networks, consider the following problem
({10, p. 114, #27)).

A car is moving on a circular racetrack with a curvature-radius
of 60 m. If the banking of the racetrack is 30 degrees from the
horizontal, what is the uniform speed of the car to keep it moving
in the circle without friction?

In solving the problem, MISA (Mini Inference System for
APEX) suggests a circle view of the track, among other views.
Fig. 3 shows the view network constructed by APEX for that
effect. In the diagram, a real-world object instance, Race-
trackl, is abstracted as a canonical object class, Circle.
A new view class, CircleViewl, is constructed with an
originalobj attribute and a radius property. The map-
ping instruction for deriving the feature of the target canonical
object, i.e., radius, is given by MISA as (GETV Race-
trackl curvature-radius).' The mapping instruction is

1 (GETV <obj> <slot>) retrieves the value of <slot> from <obj>.



50 [EEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 3, NO. 1, MARCH 1991

CIRCLE
RADIUS
AREA «~ -RADIUS?
PERINETER «— 2.7-RADIUS

super class

CIRCLE.VIEW1
ORIGINALOBJ

original object

RADIUS o
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0BJ

class
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CONTACTS « (CONTACI1)

Fig. 3. An example view network structure.

class: CircleViewl
attributes: originalobj
viewdescription
properties:
superclass: Circle
View

radius « (GETV originalobj curvature-radius)

Fig. 4. Data structure for Circleviewl.

then stored, in a more general form, (GETV originalobj
curvature-radius), in the CircleViewl class as the
method for computing its radius property. The internal data
structure for the CircleViewl class is shown in Fig. 4. Finally,
an instance of the view class, CircleViewl. 1, is created with
its originalobj attribute defined as Racetrackl.

‘The resulting view instance, once constructed, enables APEX
to treat it as if it were a “real” Circle, i.e., properties of a
Circle (e.g., area, perimeter) are directly accessible to
the view instance thanks to the property inheritance mechanism
of the object-oriented programming environment. In APEX, the
final physical representation of a problem is obtained in terms of
a collection of such view instances.

C. Bidirectionality of Data Conversion

Physics problems are often incompletely specified. Such under-
specification is effectively dealt with by the proposed represen-
tational framework. APEX’s canonical representations provide
bidirectional data conversion between the initial and canonical
representations of a problem. In the forward direction (from
initial to canonical, and to physical representation), the derivation
methods are stored only in symbolic forms specifying where
and how to derive data. Actual values are not retrieved until
after building the final physical representation of the problem,
at which point values are retrieved by evaluating these forms in
order to write equations involving only constants and variables.
In the backward direction, intermediate results obtained from the
canonical (or physical) representation are transmitted into the
missing slots of the original representation, eventually resulting
in full specification of the problem. An example of backward
data propagation would be when external forces acting on the car
(viewed as a point mass) in the previous example are considered.
In order to derive the gravitational force exerted on the car,
it is necessary to consider the gravitational field in which the
car resides. For this, APEX decides to create a field instance
with default gravitational constant; the newly created instance is

attached to the car in the initial representation.? In an analogous
way, backward data propagations are also effectively used for
specifying an object’s structural attributes (e.g., the tension of a
rope), or even attributes of an environment (e.g., the acceleration
of a motion).

D. Multiple views

[20] suggested the importance of multiple representations in
solving physics problems. In the previous section, we discussed
viewing a single object as a single canonical object. As problem
complexity increases, however, there are cases in which a one-
to-one view strategy alone is not adequate. This occurs when an
object plays multiple roles in the problem; for example, in the
racetrack problem, the track’s geometry must be abstracted as a
canonical circle and viewed as a canonical incline as well. This
type of multiple view (one-to-many view) is handled in APEX
without any difficulty, since once a canonical view representation
is constructed, its internal data connections to initial objects are
transparent to the problem solver.

Another type of multiple view is viewing many objects as
a single canonical object. Representation of many-to-one views
requires additions to the view framework we have presented. We
will describe the extensions to the proposed view framework by
considering the following problem [15].

What constant horizontal force F must be applied to the

large cart in Fig. 5 (of mass M) so that the smaller carts

(masses m; and m, ) do not move relative to the large cart?

Neglect friction.

In solving this problem, the problem solver must take a single
point mass view of all objects in motion (three carts, pulley,
and string) as a preliminary step to writing a force equation
about the total mass with respect to the external force (F). When
advised by the infefence system to view these objects as a point
mass, APEX’s canonical representation builder first recognizes

2 A field is an environment of an object. In APEX, there are four kinds of
environments: field, contact, motion, and external force.
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this as advice to build a many-to-one view network and makes
an instance of CompositeObj class in the current context.
CompositeObj is a special object class that is designed to
bridge between a target canonical view and multiple objects in the
initial representation. An instance of the CompositeObj class
is essentially an encapsulation of multiple objects, with pointers
to those objects involved in the view. Once such an instance
is set up, it is treated by APEX as a single object instance for
the later stages of problem solving. Fig. 6 shows the problem
representation after a multiple view is taken (the initial problem
representation is shown in the dashed box). Fig. 7 shows the
data structures for the added nodes.

IV. Puysicar MODELS

A. Representation of Physical Principles

A physics textbook presents a set of physical principles.
Expertise in problem solving requires the ability to apply a proper
set of physical principles, in order to obtain a set of equations
relevant to the problem. APEX employs physical models as the
data structures for modeling principles of physics. A physical
model is an encapsulation of a single principle or law of physics,
stored in a permanent knowledge base of APEX. Whereas a
canonical physical object is an abstraction of one or more objects,
a physical model is a physical interpretation of a situation
involving objects and their relationships. Each physical model
contains a chunk of physical principle such as:

* A point mass placed on an incline without friction is
subjected to a force exerted in a direction normal from the
incline.

* The net force exerted on a point mass (of mass m) moving in
a circular path (of radius r) with uniform speed (v) equals
mv?/r.

B. Contents of Physical Models

Physical models are implemented as a set of object classes in
an object-oriented programming environment. The following is
the description of the contents of a physical model.

class name: The name of a physical model.

attributes:

components: A list of (canonical physical) objects and their
environments that the physical model is about.

sysvar: An optional system variable whose value influences
subsequent computation of properties.

properties:

locals: Each of the local properties defines the computation
of an intermediate quantity.

OUT: Every physical model has an OUT property whose
method reflects the net effect of instantiating a physical
model.

When the inference system (e.g., MISA) examines the canon-
ical representation of a problem for selecting physical models,
the components of physical models are tested for match with
a certain group of views and their environments. If a physical
model involving a sysvar (e.g., a coordinate system) is selected,
the inference system first computes it by invoking a library
procedure specialized for this task.

After matching contexts (and sysvar, if any) are passed to
programs for instantiating the selected physical models, these
programs first construct an object class called a model class
by copying from the attributes of the selected physical model
with an additional attribute for model description. After making
the new model class a subclass of the selected physical model,
the model-building programs instantiate it in the given context.
The locals of the physical model (which is now a super class
of the model class) are computed in a predefined order using
the methods given in the locals property definitions; this may
involve inference of unspecified data. Suppose, for instance, that
the physical model in Fig. 8 has been selected for instantia-
tion, and that the obj. in question is in contact (Contactl)
with the incline in question. If the normal force acting
at Contactl is initially unknown, the effect of computing

(GETV contact normalforce
(CREATE Vector WITH dir=(normalto in-
cline)))

is to create a vector as prescribed by the (CREATE . . .) procedure
(i.e., with direction = (normalto incline) and magnitude
= a symbolic constant), and to store it as the value of the
normalforce property of Contactl.

The last property of a physical model is always an OUT
property. Computation of an OUT property results in generating
either a set of equations (through an EQNADD operation) or a
new environment for an object (through an ENVADD operation).
When the OUT property is an EQNADD operation, the equations
are stored in a global equation set. An example use of an ENVADD
operation is given in Fig. 8; instantiation of this model will
result in attaching the force (an environment) to the obj. Hence,
the net effect of selecting and instantiating a physical model
is the formulation of a solution model which either explicates
an implicit environment of an object or writes one or more
constraint equations about an underlying structure of the problem.
In APEX, a problem is finally solved by manipulating a set of
constraint equations obtained from a selected set of physical
model instances.

V. INFERENCE

Selecting proper physical models requires what is sometimes
called physical intuition [24]; the problem solver, human or
machine, may not rely merely on the surface features of the
problem statement but often is required to reason about the
underlying structures and principles of the given system [5]. In
APEX, such expertise is captured in a collection of inference
rules, MISA (Mini Inference System for APEX), that reasons
about the features and the contexts (e.g., environments) of
objects in order to guide APEX in selecting views and physical
models. MISA is a relatively small-scale rule base designed to
work on a small number of selected physics problems for the
purpose of demonstrating the ideas of APEX’s representation

[11].
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view descriptions and model descriptions as data structures for
keeping track of the system’s inference history. View and model
descriptions are defined as object classes, which are instantiated
for specific viewing or modeling operations and attached to the
resulting view or physical model. They record what rule has been
applied to what kind of situations, and what initially-unspecified
quantities have been derived and how. During or after solving
a problem, they allow APEX to answer questions about the
system’s reasoning behavior. For instance, a user might want to
ask the system why a specific view has been taken; through the
menu-driven graphic interface, the user can obtain the answer
in the form of a rule, instantiated in its matching context and
translated into English.

instance: PtMassViewl.2
attributes: originalobj « CompositeObji
viewdescription « ViewDescl
properties: mass « (GETV originalobj mass)
superclass: PtMass
View
instance:  CompositeObji
attributes:
properties: mass « M+ m + m
Fig. 7. Data structures for the elements of multiple view.
class: NormalforceModel
components: obj
incline
property: contact «— (CONTACTBETWEEN obj incline)
loc « (LOCATIONOF obj contact)
force.vect -
(GETV contact normalforce
(CREATE Vector WITH
dir = (normalto incline)))
force.env « (CREATE ExtForce WITH
force = force.vect
obj = obj
loc = loc
agent = incline)
OUT « (ENVADD obj force.env)
superclass: PhysicalModel

Fig. 8. Physical model class NormalforceModel.

In addition to automatic selection of models, a user-friendly
interface to APEX has been developed to allow manual selection.
When APEX is running in human-guided inference mode, MISA
is turned off, and the representation choices for a problem
are made according to instructions from the human user. The
interface package also provides graphical presentations of the
current state of APEX’s internal representation of the problem,
in which a graph node (e.g., a view or a physical model instance)
may be further inspected in a menu-driven way. Fig. 9 shows the
screen image while solving the racetrack problem.

As APEX solves a problem, the representation does not
explicitly reflect the system’s inference history that brought
about the present state of problem representation. APEX employs

VI. CoNcCLUSION

This paper presents an advanced representation mechanism for
physics problems. By isolating representation from inference, it
allows the problem solver to choose which representations to use;
these choices can be made by the human user or by an expert
system. Accomplishments of this research include development
of formal representations -for the conceptual entities [9] and
relations of physics. The proposed representation separates views
from actual objects in a way that facilitates invertibility of the
view and multiple representations.

In this scheme, the internal representation of a problem is
obtained as a collection of physical models which are constructed
from the views and which are, in turn, connected to the informal
representations of the original objects. Due to the transparency of
the linkage between the physical models and the original objects,
the physical models are made independent of the representations
of the actual objects, which might contain a variety of informal
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features and relations of the real world. This scheme achieves
an important goal of a computational model! for solving physics
problems: how can a finite set of physical principles suffice to
solve an infinite set of problems?

The APEX system has been tested on five physics problems;
details are given in [11]. We believe that the representational
framework of APEX would be sufficient for a variety of physics
problems and for engineering domains in which problem solving
is based on interaction of discrete canonical models of real-world
objects; it would not be suitable for problems involving, e.g.,
fields that vary over space or time and that could not be modeled
as discrete interactions among objects. The MISA expert system
used to choose the models to be used for a given problem is a
small one, and it would need considerable expansion to handle a
wide variety of problems; this is an area of current research.

The representational methodologies and system design prin-
ciples of this research can be useful for knowledge engineering
in many application areas. As knowledge-based systems become
larger and more widespread, the problem of reuse of knowledge
becomes critical: How can general knowledge developed for one
application be used for a different application, which may involve
different representations for the objects? The view mechanism
we describe allows the separation of the canonical view taken
in coding the general principles from the representations of the
objects to which those principles are applied. Because the views
are bidirectional, it is possible not only to derive properties of
objects as needed for reasoning, but to return the results of the
reasoning to the original objects in the appropriate form. Views
can therefore allow the development of expert knowledge to be
decoupled from the applications to which it is applied.
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