Conversion of Units of Measurement

Gordon S. Novak Jr. *
Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712

August 1, 1997

Copyright (©)1995 by IEEE.

Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted component of this
work in other works must be obtained from the IEEE.

This article appears in IEFE Transactions on Software FEngineering, vol. 21, no. 8, 1995,
pp- 651-661.

Abstract

Algorithms are presented for converting units of measurement from a given form to
a desired form. The algorithms are fast, are able to convert any combination of units
to any equivalent combination, and perform dimensional analysis to ensure that the
conversion is legitimate. Algorithms are also presented for simplification of symbolic
combinations of units. Application of these techniques to perform automatic unit
conversion and unit checking in a programming language is described.

Index Terms — unit conversion, unit of measurement, dimensional analysis, data type.

1 Introduction

Although many programming languages are described as “strongly typed”, in most languages
the types of numeric quantities are described only in terms of the numeric representation
(real, integer, etc.) but not in terms of the units of measurement (meters, feet, etc.) of
the quantity represented by a variable. The assignment of a value represented in one unit to

*Computer equipment used in this research was furnished by Hewlett Packard and IBM.

a variable that is assumed to be in a different unit is clearly an error, but such errors cannot
be detected if the type system does not include units of measurement. Conversion of units
must be done explicitly by the programmer; this can be both burdensome and error-prone,
since the conversion factors used by the programmer might be entered incorrectly or might
have limited accuracy. Failure to represent units explicitly within program code is a serious
shortcoming in specification of the program, since later modification of the program might
be performed under the assumption of the wrong units. Hundreds of units of measurement
are in general use; entire books [2] [13] [25] [27] [29] are devoted to tables of unit conversions.

This paper presents methods for symbolic representation of units of measurement. Effi-
cient algorithms are presented that can convert any combination of units to any equivalent
combination, while verifying the legitimacy of the conversion by dimensional analysis. Algo-
rithms are also presented for simplification of combinations of symbolic units. Applications
of these techniques in programming languages and in data conversion are discussed.

2 Related Work

2.1 Units and Unit Conversion

[18] and [14] describe the Systéme International or International System of Units, abbreviated
SI; these are the definitive references on SI. [4] provides style guidelines for use of SI units
and tables of conversion factors.

Several books provide conversion factors and algorithms for use in unit conversion. The
available books differ widely in the number of units covered, the accuracy of the conversion
factors, and the algorithms that some books present for unit conversion. Although one might
think that unit conversion is easy and “everyone knows how to do it”, the number of books
and the variety of methodologies and algorithms they present suggest otherwise.

Horvath [13] has an especially complete coverage of different units, as well as an extensive
bibliography. The tables in this book give conversion factors from a given unit to a single SI
unit; this is similar to the approach taken in the present paper, although Horvath does not
present conversion algorithms per se.

Semioli and Schubert [27] present voluminous tables that combine multiplication of the
conversion factor by the quantity of the source unit to be converted. They also present
somewhat complex methods for obtaining additional accuracy and shifting the decimal place
of the result. This book has the flavor of a book of logarithm tables, although it was published
in 1974, when pocket calculators were available.

Wildi [29] presents a series of directed acyclic graphs; each node of a graph is a unit,
and arcs between nodes are labeled with conversion factors. The nodes are ordered by size
of the unit. In order to convert from one unit to another, the user traverses the graph from
the source unit to the goal unit, multiplying together all the conversion factors encountered
along the way (or dividing if moving against the directed graph arrows). Although this

technique presents many conversions together in a compact structure, its use involves many
steps and thus many opportunities for error and loss of accuracy.

Karr and Loveman [15] outline a computational method for finding conversion factors.
Their method involves writing dimensional quantities and conversion factors in terms of
logarithms, making a matrix of the equations in logarithmic form, and solving the matrix by
linear algebra. Since the size of the matrix is the number of units involved in the conversion
multiplied by the number of units the system knows about, both the matrix and the time
required to solve it could quickly become large.

Schulz [26] describes COMET, an APL program for converting measurements from the
English system used in the U.S. to the metric system. COMET focuses on conversion of
machine part specifications that include allowable tolerances.

Gruber and Olsen [9] describe an ontology for engineering mathematics, including rep-
resentation of units of measurement as an Abelian group. Their system can convert units,
presumably by a process of logical deduction that would be significantly slower than the
methods we describe.

2.2 Units in Programming Languages

Units of measurement are allowed in the ATLAS language [5], although ATLAS allows only
a limited set of units and a limited language for constructing combinations of units.

Cunis [8] describes Lisp programs for converting units. These programs combine units
with numeric measurements at runtime and perform runtime conversion. While this is
consistent with the Lisp tradition of runtime type checking, it does not allow detection
of conversion errors at compile time. Gehani [10] argues in favor of compile-time checking.

Hilfinger [12] describes methods for including units with numeric data using Ada packages
and discusses modifications of Ada compilers that would be required to make use of these
packages efficient and allow compile-time checking of correctness of conversions.

Karr and Loveman [15] propose incorporation of units into programming languages; they
discuss methods of unit conversion, dimensional analysis, and language syntax issues. We
believe that the unit conversion algorithms described in the present paper are simpler: our
methods require only one scalar operation per unit for conversion and one scalar operation
per unit for checking, whereas the methods of [15] are based on manipulation of matrices
that could be large.

2.3 Data Translation

Reusing an existing procedure may require that data be translated into the form expected
by that procedure; we describe in [21] some methods for semi-automatic data translation.
If a procedure requires that its data be presented in particular units, then unit conversion
may also be required. The unit conversion methods of this paper can be combined with the

methods of [21] to accomplish this.

Unit conversion may also be required in preparing data for transmission to a remote site
over a network, or for use in a remote procedure call. IDL (Interface Description Language)
[16] allows exchange of large structured data, possibly including structure sharing, between
separately written components of a large software system such as a compiler. Use of IDL
requires that the user write precise specifications of the source and target data structures.
Herlihy and Liskov [11] describe a method for transmission of structured data over a network,
with a possibly different data representation at the destination. Their method employs user-
written procedures to encode and decode the data into transmissible representations.

3 Unit Representation

We use the term simple unit to refer to any named unit for which an appropriate conversion
factor and dimension (as described later) have been defined. Simple units include the
base units of a system of measurement, such as meter and kilogram, named units such
as horsepower that can be defined in terms of other units, and the SI prefixes such as nano
that are used for scaling. Positive, nonzero numeric constants are also allowed as simple
units. In addition, common abbreviations may be defined as synonyms for the actual units,

e.g., kg is defined as a synonym for kilogram.'

A composite unit is a product or quotient of units, and a wunit is either a simple unit or
a composite unit. We represent units in Lisp syntax, so that composite units are written
within parentheses, preceded by an operator that is * or /. Thus, the syntax of units is as

follows:
simple-unit = symbol | number
unit = simple-unil | composite-unit
composile-unit = (¥ unity ... unit,) | (/ unity unity)

We say that a unit is normalized if nested product and quotient terms have been removed
as far as possible, so that the unit will be at most a quotient of two products. Clearly, any
unit can be normalized; algorithms for simplification of units are described later.

flat-unait = simple-unil | (% simple-unity ... simple-unit,)
normalized-unit = flat-unit | (/ flat-unit; flat-unity)

4 Unit Conversion

A single numeric conversion factor is associated with each simple unit. The conversion factor
is the number by which a quantity expressed in that unit must be multiplied in order to be
expressed in the equivalent unit in the standard system of units. We have chosen as our

!Treating abbreviations as synonyms, rather than giving them a conversion factor and dimension and
treating them as units, avoids the possibility that slightly different numeric factors might be specified for
the same unit under different names.

standard the SI (Systéme International d’Unités) system of units [18] [14] [1]; a different
standard system could be chosen without affecting the algorithms described here. Thus,
the conversion factor for meter is 1.0, while the conversion factor for foot is 0.3048 since
1 foot = 0.3048 meter. The conversion factor for a numeric constant is just the constant

itself.

The conversion factor for a product or quotient of units is, respectively, the product
or quotient of the factors for the component units. Based on these definitions, it is easy
to define a recursive algorithm that computes the conversion factor for any unit, whether
simple or composite. This algorithm is shown in pseudo-code form in Fig. 1. Assuming that
the definitions of units are acyclic, the algorithm is guaranteed to terminate and requires
time proportional to the size of the unit expression tree.

function factor(unit)

1. if unit is a simple unit (number or symbol),

(
(

a) if unit is a number, return unat;

)
b) if unit is a synonym of unit’, return factor(unit');
(c) if unit has a predefined conversion factor f, return f;
)

(d) else, error: unit is undefined.
2. otherwise,

(a) if unit is a product, (* wuy ... u,), return [1~, factor(u;)
(b) if unit is a quotient, (/ wuy ug), return factor(uy)/ factor(uz)

(c) else, error: unit has improper form.

Figure 1: Conversion Factor Algorithm

Our system provides facilities for defining named simple units with specified numeric
conversion factors and for defining units in terms of previously defined units. Examples of
unit definitions are shown in Fig. 2. In the first example, each unit is defined by its name,
numeric conversion factor, and a list of synonyms. In the second example, the conversion
factor is specified as an expression in terms of previously defined units.

We now consider conversion from a source unit, units, to a desired unit, unity. Let g
be the numeric quantity expressed in the source unit, gs; be the equivalent quantity in the
standard (SI) system, and g4 be the quantity in the desired unit. Let f; = factor(units) be
the conversion factor of the source unit and f; = factor(unity) be the conversion factor of
the desired unit. Then we have the equations:

gs fs = qs1 = qa- fa

"= gL
Sfd

(defsimpleunits ’length

' ((meter 1.0 (m meters))
(foot 0.3048 (ft feet))
(angstrom 1.0e-10 (a angstroms))
(parsec 3.083e16 (parsecs))))

(defderivedunits ’force
' ((newton

(/ (* kilogram meter) (* second second))
(nt newtons))

(pound-force
(/ (* slug foot) (* second second))
(1bf))))

(ounce-force
(/ pound-force 16)
0))

Figure 2: Unit Definitions

Thus, conversion to a desired unit is accomplished by multiplying the source quantity by a

factor f, where
;= E _ factor(unit,)
~ fi factor(unity)

For example, to convert a measurement in terms of feet to centimeters, the factor would be

= 30.48

= factor(foot) ~0.3048
~ factor(centimeter) — 0.01

Given the factor algorithm shown in Fig. 1 that computes the factor for any simple or
composite unit, it is easy to convert any combination of units to any equivalent combination.
Since a number is also defined as a unit, a numeric quantity of a given unit can also be
converted. The convert function takes as arguments the source unit and desired unit; it
returns the conversion factor f, or NIL if the conversion is undefined or incorrect.

>(convert ’'foot ’centimeter)
30.48

>(convert ’'meters ’'feet)
3.280839895013123

>(convert '(/ pi 6) ’degrees)
30.000000000005663

>(convert ’(/ (* atto parsec)

(* micro fortnight))
'(/ inch sec))
1.0034552972545099

>(convert ’(* acre foot) ’tablespoons)
8.3419459476381853E7

>(convert ’(/ (* mega pound-force) acre)
’kilopascals)
1.0991794990738932

>(convert ’kilograms ’meters)
NIL

The last example, an attempt to make an incorrect conversion from kilograms to meters,
gives a result of NIL. Dimensional analysis, as described in the next section, is used to verify
that a requested conversion is correct; if not, a result of NIL is returned rather than a numeric
conversion factor.

There are certain conversions that, while not strictly correct, deserve a special note.
The pound, for example, which is a unit of mass, is often used as the name of the force
unit that is properly called pound-force. [The same confusion exists with other mass units
such as the ounce and the kilogram.] Conversion of pounds to pounds-force involves an
apparent conversion from mass to force. Similarly, in particle physics the mass of a particle
is often described using energy units such as gigaelectronvolts (GeV). As described below,
the dimensional analysis system can either perform strict dimensional checking and prohibit
force-mass and energy-mass conversion, or it can be made to detect and allow these specific
conversions, with strict checking otherwise. In the latter case, the following conversions are
allowed:

>(convert ’pound-force ’'kilogram)
0.45359236999358599

>(convert ’(x 1.67e-27 kg) ’gev)
0.93680115236643324

The conversion from mass units to the corresponding force units requires multiplication
by g, the conventional value for the acceleration of free fall at the earth’s surface (sometimes
called “gravity”), while the conversion from mass units to energy units requires multiplication
by the square of the speed of light. Each of these is a physical constant, expressed in SI
units.

5 Dimensional Analysis

If the above algorithms are to produce meaningful results, it must be verified that the
requested conversion is legitimate; it is clearly impossible, for example, to convert kilograms
to meters. Correctness of unit conversion is verified by the long-established technique of
dimensional analysis [6]: the source and goal units must have the same dimensions.

Formally, we define a dimension as an 8-vector of integral powers of eight base quantities.
The base quantities are shown in Fig. 3 together with the base unit that is used for each
quantity in the ST system [18] [14]. We have added money, which is not part of the ST system,
as a dimension.

Index | Quantity Unit
0 length meter
1 time second
2 temperature | kelvin
3 mass kilogram
4 current ampere
5 substance mole
6 luminosity | candela
7 money dollar

Figure 3: Base Quantities and Units

The dimension of a product of units is the vector sum of the dimensions of its components,
while the dimension of a quotient of units is the vector difference of the dimensions of its
components. It can be verified that conversion from one unit to another is legitimate by
showing that the dimension vectors of the two units are equal, or equivalently, that their
difference is a zero vector.

The powers of base quantities that are encountered in practice are usually small: they
are seldom outside the range +4. While a dimension can be represented as a vector of eight
integer values, with dimension checking done by operations on vectors, this is somewhat
expensive computationally. Since the integers in the vector are small, it might be more
efficient to pack them into bit fields within an integer word. In this section, we describe a
variation of this packing technique. A dimension vector is encoded within a single 32-bit
integer, which we call a dimension integer, using the algorithms presented below. Using this
encoding, dimensions can be added, subtracted, or compared using ordinary scalar integer
arithmetic.

It may be helpful to consider the analogy of doing vector arithmetic by encoding vectors
as decimal integers. For example, the vector operation [1 2 3] + [2 2 4] = [3 4 7] can
be simulated using decimal integers: 123 + 224 = 347 . This technique will work as long as
it can be guaranteed that there will not be a “carry” from one column of the decimal integer
to another. We use a similar method to encode a dimension vector as a 32-bit integer. A

careful justification of the conditions under which use of the integer encoding is correct is
presented following the algorithms. Finally, we argue that these conditions will be satisfied
in practice, so that use of the integer encoding for dimension checking is justified.

We define two 8-vectors and an integer constant (shown in decimal notation) as follows:

dimsizes = [20 20 20 10 10 10 10 10]
dimvals = [1 20 400 8000 80000

800000 8000000 80000000]
dimbias = 444444210

We assume for purposes of this presentation that the 8-vectors are indexed beginning with 0;
the index into an 8-vector for each kind of quantity corresponds to the Index column shown
in Fig. 3. The vector dimsizes gives the size of the field assigned to each quantity; e.g.,
dimsizes[0] is 20, corresponding to a field size of 20 and an allowable value range of +9
for the power of length. The vector dimvals gives multipliers that can be used to move a
vector value to its proper field position; it is defined as follows:

dimvals g = 1

dimvals ; = dimvals ;_y - dimsizes ;_1 , 1 >0

The integer dimbias is a value that, when added to a dimension integer, will make it positive
and will bias each vector component within its field by half the size of the field. dimbias is
defined as:

7
dimbias = E

=0

dimvals ; - dimsizes ;

2

Given these definitions, algorithms are easily defined to convert between an 8-vector form of
dimension and the equivalent dimension integer. A dimension integer is easily derived from
a dimension vector v as the vector dot product of v and dimvals:

7
dimint(v) = Z dimvals ;- v ;
=0
For example, the dimension integer for a force can be calculated as follows:

force = length' - time™% - mass'

dimint([1 -2 01 00001])
= (1 *x 1) + (-2 % 20) + (0 * 400) + (1 * 8000)
= 7961

A dimension integer can be converted back to an 8-vector by adding dimbias to it and
then extracting the values from each field. This algorithm is not needed for unit conversion,

procedure dimvect (n, v)
integer m, sz, mm;
m :=n + dimbias;
for i := 0 to 7 do
begin
sz := dimsizes[i];
mm :=m / sz;
v[i] := (m - mm * sz) - sz / 2;
m := mm
end;
end;

Figure 4: Conversion of Dimension Integer to Dimension Vector

but is provided for completeness. The algorithm, shown in Fig. 4, has as arguments a
dimension integer n and an 8-vector v; it stores the dimension values derived from n into
v. This procedure uses truncated division to extract the biased value from each field of the
integer encoding. The bias value, sz / 2, is then removed to yield the signed field value.
Dividing by the field size is then used to bring the next field into the low-order position.

Our algorithm uses dimension integers, rather than dimension vectors, to check the
correctness of requested unit conversions. Addition, subtraction, and comparison of dimen-
sion vectors are simulated by scalar addition, subtraction, and comparison of corresponding
dimension integers. We can state the following theorems regarding dimension integers:

Theorem 1 Ifu and v are dimension vectors, then:
dimint(u 4 v) = dimint(u) + dimint(v)

dimint(u —v) = dimint(u) — dimint(v)
dimint(—u) = —dimint(u)

if u = v, then dinunt(u) = dimint(v)
These results follow immediately from the definition of dimint.

Theorem 2 [fu and v are dimension vectors, and dimint(u) = dimint(v), and

dimsizes;)
[ui | < ——— L, 0<i<7T
dimsizes;)
| v | < #,0§z§7

then u = v.

10

Proof: Suppose that dimint(u) = dimint(v) but v # v. Suppose that ug # vo. By the
definition of dimint and dimuvals,

dimint(u) = ug + ry - dimsizesg
dimint(v) = vo + r, - dimsizesg
Since dimint(u) = dimint(v),
Ug + 1y - dimsizesy = vg + 1, - dimsizesg

ug —vg = (ry —1y) - dimsizesy , | (ry —1y) [> 1

Therefore,

| ug —vo | > dimsizesg

and by the triangle inequality, | ug | + | vo | > dimsizesg
but this is contrary to our assumptions that | ug |< % and | vy |< %. Therefore,
it must be the case that ug = vy . By inductive repetition of this argument on the remaining

elements of v and v , it must be the case that u = v. Q.E.D.

These theorems show that checking the dimensions of unit conversions by means of
dimension integers is correct so long as the individual dimension quantities are less than
half the field sizes given in the dimsizes vector. We justify the use of the integer encoding
of dimension vectors as follows. The powers of dimension quantities that are found in units
that are used in practice are generally small — usually within the range +4. If a field size
of 20 is assigned to length, time, and temperature, and a field size of 10 is assigned to the
others, the dimension vector will fit within a 32-bit integer. The representation allows a
power of i(%
is within this range, two dimension vectors are equal if and only if their corresponding

— 1) for each quantity. As long as each element of a dimension vector

dimension integers are equal; furthermore, integer addition and subtraction of dimension
integers produce results equal to the dimension integers of the vector sum and difference of
the corresponding dimension vectors. Qur representation allows a power of £9 for length,
time, and temperature, and a power of +4 for mass, current, substance, luminosity, and
money. This should be quite adequate. We note that dimension vectors are used only in tests
of equality: unequal dimensions of source and goal units indicate an incorrect conversion.
An “overflow” from a field of the vector in the integer representation will not cause an error
to be indicated when correct unit conversions are performed, because the two dimension
values will still be equal despite the overflow. Two unequal dimension vectors will appear
unequal, despite an overflow, unless the incorrect dimension integer corresponds to a very
different kind of unit that has a dimension value that happens to be exactly equal; this is
most unlikely to happen accidentally. For example, if the user attempts to convert a 20th
power of length into a time, the system will fail to detect an error. This is such an unlikely
occurrence that we consider the use of the more efficient integer encoding to be justified.
Note, however, that 8-vectors could be used for dimension checking instead if desired.

Cunis [8] describes an alternative representation of dimensions. He represents dimensions
as a rational number in Lisp, i.e., as a ratio of integers that represent the positive and
negative powers of dimensions. Fach base quantity, such as length, is assigned a distinct

11

small prime; the product of these, raised to the appropriate powers, forms the integer used in
the ratio. This method requires somewhat more storage and computation than the method
we present, and arithmetic overflow could be a problem if extended-precision arithmetic is
not used; since Lisp provides extended-precision integers, this is not a problem in Lisp.

5.1 Unit Conversion Checking

The dimension integer corresponding to a unit can be found as follows. The dimension of
a constant is 0; this is also the case for units such as radian or nano® The dimension of a
base quantity is given by the corresponding value in the vector dimvals; for example, the
dimension of time is dimvals[1] or 20. The dimension integer of a product of units is the
sum of their dimension integers (using ordinary 32-bit integer arithmetic), and the dimension
of a quotient of units is the difference of their dimensions. Dimensions of common abstract
units such as force are found by computing the dimension of their expansion in terms of
base abstract units; for force this expansion is:

force = (/ (* mass length) (* time time))

We also define an abstract unit dimensionless with dimension integer 0. When a unit
symbol is defined to the system, its dimension is determined from the abstract unit specified
for it; thus, in Fig. 2, meter receives the dimension of length. When a unit is defined by an
expansion in terms of other units, the dimension of the expansion is verified by comparison
with the dimension of its abstract unit.

When convert is called to convert one unit to another, it also computes the dimension
of the source unit minus the dimension of the goal unit. If the difference is 0, the dimensions
are the same, and the conversion is legitimate. A nonzero value indicates a difference in
dimensions of the source and goal units.

If strict conversion is desired, any difference in dimension is treated as an error. In some
cases, however, it may be desired to allow automatic conversion between mass and force
or between mass and energy. FEach of these conversions will produce a unique difference
signature, which can be recognized; the conversions and corresponding dimension differences
(source - goal) are shown in Fig. 5. If the difference matches the integer signature, the
conversion factor should be multiplied by the additional factor shown in the table. For
example, in converting kilograms (mass) to newtons (force),

>(convert ’'kilogram ’newton)
9.8066499999999994

the dimension of kilogram is 8000 and the dimension of newton is 7961, so the difference
is 8000 — 7961 = 39 and the proper multiplier is 9.80665 . Although these multipliers are
expressed in SI units, the conversion works for all unit systems.

2Constants can be considered to have a dimension of unity, whose logarithmic representation is zero; such
units are sometimes referred to as “dimensionless” [18].

12

Conversion Vector Integer Factor
mass to weight [[-1 2 0000 0 0] 39 9.80665
weight tomass | [1 -2 0000 0 0] -39 1/9.80665
mass toenergy | [-2 20000 0 0] 38 | 8.98755179F16
energy tomass [[2 -2 0000 0 0] -38 | 1/8.98755179L16

Figure 5: Dimension Conversions
6 Units in Programming Languages

Although most modern programming languages require specification of data types and
feature compile-time type checking, units generally are not included as part of types. This
is unfortunate, since use of incorrect units must be considered to be a type error. Some
commonly used procedures have implicit requirements on the units of their arguments; for
example, the system sin function may require that its argument be expressed in floating-
point radians. Karr and Loveman [15] advocated the inclusion of units in programming
languages; although the ATLAS language [5] incorporates units, to our knowledge no widely-
used programming language does so.

We have implemented the use of units in the GLISP language. GLISP (“Generic Lisp”)
[19, 20] is a high-level language with abstract data types that is compiled into Lisp (or into
C by an additional translation step); the GLISP compiler is implemented in Common Lisp
[28]. GLISP has a data description language that can describe Lisp data structures or data
structures in other languages. GLISP is described only briefly here; for more detail, see [21]
and [19]. In the sections below, we describe both the language features needed to include
units in a programming language and the compiler operations necessary to perform unit
checking and conversion.

Karr and Loveman [15] suggested that units be implemented as reserved words that could
be used as multipliers in arithmetic expressions. Instead, we have implemented units as part
of data types. The implementation of units within a programming language involves several
different aspects:

1. inclusion of units as part of the type specification language

2. type checking of uses of data that have units

3. derivation of the units of the result of an arithmetic operation
4. coercion of data into appropriate units when necessary

5. a syntax for expressing numeric constants together with their units

Each of these aspects is described below.

13

6.1 Units as Part of Types

The types usually used to describe numeric data, such as integer, real, etc., describe only
the method of encoding numeric values. The units denoted by the numeric values are an
independent issue. Therefore, both the numeric type and unit must be specified as part of a
data type. We have adopted a simple syntax to specify the two together:

(units numeric-type unit)
For example, a floating-point number denoting a quantity of meters would have the type:
(units real meters)

A type specification of this form may be used wherever a numeric type specification such as
real would otherwise be used.

Since the unit specification language allows constants to be included as part of a unit, it
is possible to specify unusual units that might be used by hardware devices. For example,
suppose that an optical shaft encoder provides the angular position of a shaft as an 8-bit
integer, so that a circle is broken into 256 equal parts. This unit can be expressed as:

(units integer (/ (* 2 pi radians) 256))

6.2 Results of Operations and Coercion

If unit checking and conversion are to be performed, it is necessary to determine the unit
of the result of an arithmetic operation. In general, it is necessary to create and perhaps
simplify new symbolic unit descriptions. There are several classes of operations, which are

handled differently.

The units produced by multiplication and division are easily derived by creating new
units that symbolically multiply or divide, respectively, the source units. For example, if a
quantity whose unit is (/ meter second) is multiplied by a quantity whose unit is second,
the resulting unit is:

(¥ (/ meter second) second)

This unit could be simplified to meter, but in most cases it is not necessary for a compiler
to perform such simplification: usually only the numeric conversion factor and dimension of
the unit are used, and these are not affected by redundancy in the unit specification.

Exponentiation to integer powers can be treated as multiplication or division. The
function sqrt is a special case: the dimension vector of the argument unit must contain
only multiples of 2, and it is necessary to produce an output unit that is “half” the input
unit; this may require unit simplification, as discussed below.

14

There are differences of opinion regarding coercion of types by a compiler. Some languages
allow coercion within an arithmetic expression; for example, if an integer and a real are
added, the integer will be converted to real prior to the addition. Other languages allow
coercion only across an assignment operator. The most strict languages have no coercion
and treat type differences as errors. The same issues and arguments can be raised regarding
automatic coercion of units, and the same implementation options are available. Note,
however, that if no coercion is allowed, the language must furnish some construct to allow
the programmer to invoke type conversion explicitly. We describe below how automatic
coercion can be implemented if it is desired.

In the case of addition, subtraction, comparison, and assignment operations, the units of
the two arguments must be the same if the operation is to be meaningful. If the units are
unequal, an attempt is made to convert the unit of the right-hand argument to the unit of
the left-hand argument. If a conversion factor f is not returned by the convert algorithm,
the operation is illegitimate (e.g., an attempt to add kilograms to meters), and an error
should be signaled by the compiler.

(gldefun t1 (x: (units real meters)
y: (units real kilograms))
X+ y)

glisp error detected by GLCOERCEUNITS in function T1
Cannot apply op + to METERS and KILOGRAMS
in expression: (X + Y)

If the conversion factor f is 1.0, no compiler action is needed; this can occur if the units are
equivalent but unsimplified. If the conversion factor is other than 1.0, a multiplication of
the right-hand operand by the conversion factor must be inserted by the compiler. The
following example illustrates how the GLISP compiler inserts such a conversion for an
addition operation:

(gldefun t2 (x: (units real meters)
y: (units real feet))
X+ y)

>(glcp ’t2) ; compile function t2

result type: (UNITS REAL METERS)
(LAMBDA (X Y)
(+ X (x 0.30480000000000002 Y)))

In this example, the variable y, which has units feet, is added to the value of the variable
x, which has units meters. In this case, the compiler has inserted a multiplication by the
appropriate factor to convert feet to meters prior to the addition. The result type is the

15

type of the left-hand argument; this convention causes the type of a variable that is on the
left-hand side of an assignment statement to take precedence.

In some cases, it may be known that an argument of a procedure is required to have
certain units; in such cases, procedure arguments can be type-checked and coerced if needed.
For example, a library sin function may require an argument in radians; if the unit of the
existing data is as described above for the shaft encoder example, conversion will be required:

(gldefun t3 (x: (units integer (/ (* 2 pi radians)
256)))
(sin x))

result type: REAL
(LAMBDA (X)
(SIN (* 0.024543692606170259 X)))

We have not described any language mechanism to allow the programmer to explicitly
convert units to a desired form. Such a conversion can be accomplished by assigning a value
to a variable that has the desired unit. The units used for intermediate results within
an arithmetic expression may be somewhat unusual, but will always be converted to a
programmer-specified unit upon assignment to a variable. Conversion of units may generate
extra multiplication operations; however, if the compiler performs constant folding [3], these
operations and their conversion factors can often be combined with other constants.

Human programmers usually write programs in such a way that intermediate results
have reasonable units and reasonable numeric values. When automatic coercion of units is
performed, it is possible that intermediate values may have unusual units and very large
or very small numeric values. It is possible that compiler-generated unit conversions might
cause a loss of accuracy compared to code written by humans that does the unit conversions
explicitly. For this reason, it is advisable that automatic coercion of units be used only
with floating-point representations with high accuracy, such as the 64-bit IEEE Standard
representation. While a human programmer who is aware of unit conversions can always
force the desired units to be used, a compiler that performs conversions automatically might
allow a careless programmer to overlook a potential accuracy problem.

We have found that inclusion of units in programs tends to be “all or nothing”. That is,
if units are specified for some variables, then units need to be specified for other variables
that appear in expressions with those variables to avoid type errors.

6.3 Constants with Units

There may be a need to include physical constants, i.e., numbers with attached units, as
part of a program. We have adopted a syntax that allows a numeric constant and unit to
be packaged together:

' (q number unit)

16

The quoted q form indicates a quantity with units. The type of the result is the type of the
numeric constant combined with the specified unit. For example, the speed of light could be
written:

’(q 2.99792458e8 (/ meter second))

6.4 Unit Simplification

There are some cases in which unit simplification is needed. For example, it is desirable to
simplify a unit that describes the result of a function. An algorithm for unit simplification
should be able to handle any combination of units, including mixtures of units from different
systems. The form of a unit that is considered to be “simplified” may depend on the needs of
the user: an electrical engineer might consider (* kilowatt hour) to be simplified, while a
physicist might prefer joule. We present below an algorithm that works well in simplifying
units for several commonly used systems of units; in addition, it allows some customization
by specifying new unit systems.

A unit system is a set of base units that are by convention taken as dimensionally
independent, and a set of derived units, formed from the base units by multiplication and
division, that are by convention used with the unit system. Other units that are used for
historical reasons may be associated with a unit system by defining them in terms of a
numeric conversion factor and a combination of base units. We have implemented three
unit systems: si (the Systéme International or SI system), cgs (centimeter-gram-second),
and english (slug-foot-second). For each commonly used kind of unit (e.g., length, force,
pressure, etc.) we define the standard unit for that kind of unit in each system (e.g., meter,
newton, and pascal, respectively, for the si system).

Our algorithm for symbolic simplification of a unit is as follows:

1. The desired system for the simplified result may be specified as a parameter. If it
is unspecified, the dominant system of the input unit is determined by counting the
number of occurrences of units associated with known systems; if a dominant system
cannot be determined, si is used.

2. The input unit is “flattened” so that it consists of a quotient of two products. At
the same time, input units are recursively expanded to their equivalents in terms of
base units (length, mass, time, etc.). Units that are equivalent to numbers (have
dimensionality 0), such as mega or degree, are converted to numbers.

3. Any base units in the numerator and denominator product lists that are not in the goal
system are converted to the corresponding units in the goal system. The conversion
factors are accumulated.

4. The numerator and denominator product lists are sorted alphabetically.

5. Corresponding duplicate units are removed from the lists in a linear pass down the two
lists; this cancels units that appear in both numerator and denominator.

17

6. The standard units that are defined for the goal system are examined. If the multisets
represented by the numerator and denominator of the standard unit’s expansion are
contained in the numerator and denominator, then the standard unit can be a factor of
the simplified unit. (The standard unit is also tested as an inverse factor.) The largest
standard unit factor (with size greater than one base unit) is chosen, and it replaces
its expansion in the unit that is being simplified. This process is continued until no
further replacements can be made; it must terminate, since each replacement makes
the unit expansion smaller.

As an example, we show how the algorithm simplifies the unit expression:
>(simplifyunit ’(/ joule watt))

The units joule and watt are defined in terms of base units:

joule = (/ (* KILOGRAM METER METER)
(* SECOND SECOND))
watt = (/ (* KILOGRAM METER METER)

(* SECOND SECOND SECOND))
The quotient of these two units is flattened as a quotient of two products:

(/ (* METER METER KILOGRAM SECOND SECOND SECOND)
(* SECOND SECOND METER METER KILOGRAM))

The two product lists are sorted:

(KILOGRAM METER METER SECOND SECOND SECOND)
(KILOGRAM METER METER SECOND SECOND)

Duplicated units in the two sorted lists are removed:

(SECOND)
O

In this case, the result is just a single unit: SECOND.

This algorithm has the advantage of being universal: by completely breaking its input
down to base units, canceling any duplicates, and then making a new unit from the result, it
can accept any combination of units as input. It is also deterministic: it produces the same
result for any way of stating the same unit. The algorithm is also reasonably fast. Since the
algorithm works with a definition of a unit system in terms of a set of preferred units, it is
possible for a user to define a modified unit system in which the user specifies the units that
are preferred as the result of simplification.

Some examples of unit simplification are shown below.

18

>(simplifyunit ’(/ meter foot))
3.280839895013123

>(simplifyunit ’(/ joule watt))
SECOND

>(simplifyunit ’(/ joule horsepower))
(* 0.0013410220896139906 SECOND)

>(simplifyunit ’(/ (* kilogram meter)
(* second second)))
NEWTON

>(simplifyunit ’atm)
(* 101325.0 PASCAL)

>(simplifyunit ’atm ’english)
(* 14.695948775721259 POUNDS-PER-SQUARE-INCH)

>(simplifyunit ’(/ (* amp second) volt))
FARAD

>(simplifyunit ’(/ (* newton meter)
(* ampere second)))
VOLT

>(simplifyunit ’(/ (* volt volt)
(*x 1bf (/ (* atto parsec)

hour))))
(*x 26250.801011041247 QHM)

It was mentioned above that determining the type returned by the sqrt function requires
making a unit that is “half” the input unit; for example, if the input unit is (* meter
meter), the output unit would be meter. The process for determining the unit returned by
sqrt is the same as the process of unit simplification described above, except for the last
step. After the initial steps of simplification, the input unit will be represented by flat, sorted
numerator and denominator lists containing base units of the same unit system, and possibly
a numeric factor. Both lists must consist of adjacent pairs of identical units; otherwise, the
input unit is in error. The output unit is determined by collecting every other member of
the input lists (checking to make sure the alternate member is identical) and making a new
unit from these lists and the square root of the numeric factor.

19

6.5 Units and Generic Procedures

We have done research on the reuse of generic procedures [22] [23]; a generic procedure is
one that can be used for a variety of data types. When the arguments of a generic procedure
include units, automatic checking and conversion of units are essential for correct reuse.

In the GLISP language [19] [21], it is not necessary to declare the type of every variable.
When a variable is assigned a value, type inference is used to determine the type of the value,
and the variable’s type becomes the type of the value assigned to it. (Assignment of values
of different types to the same variable will cause an error to be reported by the compiler.)
This feature is useful in writing generic procedures: it is only necessary to specify the main
types that are used (often just the types of input parameters); other types can be derived
from those types. Because the types of local variables are specified indirectly, a single generic
procedure can be specialized for a variety of input types. This is especially useful in the case
of types that include units.

| comnands

uit

Done

Redo

Move

Expand

Delete

Geometry

Physics

| ATRCRAFT-AL TITUDE i User Law
phi Drawing

Progxam

theta Make Var

| RADAR-AL TTTUDE 4 Specify Type

oF

Type-in

Constant

UNIFORM-MOTION

phi

R L]

theta

" OUTPUT

Figure 6: VIP: Calculation of Position of Aircraft from Radar Data

We have developed a system, called VIP [24] (for View Interactive Programming) that
generates programs from graphical connections of physical and mathematical models. A

20

program is generated from equations associated with the physical models. Typically, only
the types and units of inputs and outputs are specified; the units and types of intermediate
values are derived by type and unit inference. This system is illustrated in the diagram
shown in Fig. 6. The problem used as an example is a small but realistic numerical problem:
the calculation of the position of an aircraft from data provided by an air search radar. We
assume that the radar provides as input the time difference between transmission and return
of the radar pulse, as well as the angle of the radar antenna at the time the return pulse is
detected. When the radar illuminates the aircraft, we assume that the aircraft transponder
transmits the identity of the aircraft and its altitude. The position and altitude of the
radar station are assumed to be known. These items comprise the input data provided to
the program. We assume that the units of measurement of the input data are externally
specified (e.g., by hardware devices), so that the program is required to use the given units.

In creating the program, the user of VIP is able to select from a variety of predefined
physical and mathematical models, constant values, and operators. Initially, the VIP display
consists of a set of boxes representing the input data, and an output box. In our example, the
user first decides to model the travel of the radar beam as an instance of uniform-motion.
The user selects the Physics command, then kinematics from the Physics menu, then
uniform-motion from the kinematics menu. The input value TIME-DIFF is connected to
the time button t of the motion. Next, the user selects Constant and obtains the constant
for the speed of light, denoted C, and connects it to the velocity v of the motion. The distance
d of the motion then gives the total (out-and-back) distance from the radar to the aircraft; by
dividing this distance by 2, the one-way distance is obtained. This distance is connected to
the hypotenuse of a Geometry object, right-triangle. The difference between the altitude
of the aircraft and the altitude of the radar is connected to the y of this triangle. The x of
this triangle is then the distance to a point on the ground directly underneath the aircraft.
This distance and the angle of the radar give a range and bearing to the aircraft from the
radar; by connecting these to another right triangle, x and y offsets of the aircraft from the
radar are obtained. These are collected to form a relative position vector, RELPOS, which is
added to the radar’s UTM (universal transverse mercator) coordinates to form the output.

While the process described above is rather lengthy when described in words, the time
taken by an experienced user to create this program using VIP was less than two minutes.
Note that this problem involves several instances of conversion of units of measurement, a
physical constant, and algebraic manipulation of several equations; all of these were hidden
and performed automatically. Fig. 7 shows the GLISP program produced by VIP. Fig. 8
shows the program after it has been compiled and mechanically translated into C.

In this example, unit conversion is a major part of the application program. However, the
user only needed to specify the input units; all unit conversion and checking was performed
automatically by the compiler, so that this source of programming difficulty and potential
error was eliminated.

21

(LAMBDA (TIME-DIFF: (UNITS INTEGER (* 100 NANOSECOND))
ATRCRAFT-ALTITUDE: (UNITS INTEGER (* 10 FOOT))

RADAR-ALTITUDE: (UNITS INTEGER (* 10 FOOT))
RADAR-ANGLE: (UNITS INTEGER (/ (* 2 PI RADIANS) 4096))
RADAR-UTM: UTM-CVECTOR)

(LET (QUT3 OUTPUT D2 0UT4 X3 Y2 X4 RELPOS:UTM-CVECTOR)
(OUT3 := (- AIRCRAFT-ALTITUDE RADAR-ALTITUDE))
(D2 := (* ’(Q 2.997925E8 (/ M S)) TIME-DIFF))
(ouT4 := (/ D2 2))

(X3 := (SQRT (- (EXPT 0UT4 2) (EXPT QUT3 2))))
(Y2 := (* X3 (SIN RADAR-ANGLE)))
(X4 := (* X3 (COS RADAR-ANGLE)))

(RELPOS := (A UTM-CVECTOR NORTH Y2 EAST X4))
(QUTPUT := (+ RELPOS RADAR-UTM))
QUTPUT))

Figure 7: GLISP Program Generated by VIP for Radar Problem
7 Conclusions and Future Work

We have described algorithms for conversion of units, for compiler checking of units used in
arithmetic operations and for coercing units when necessary, and for symbolic simplification
of combinations of units. The unit conversion algorithms are as simple as possible: they
require only one multiply or divide per unit for conversion, and one add or subtract per
unit for dimension checking. These algorithms have been implemented in a compiler that
allows units as part of data type specifications and that performs automatic unit checking
and conversion.

Unit conversion is a problem that will not go away, even if the United States converts
to the SI system. Workers in particular fields will continue to use units such as parsec or
micron rather than meter, both because of tradition and because such units are convenient
in size for the measurements typically used in practice. The compiler algorithms that we have
described are relatively easy to implement, so that units could be incorporated into a variety
of programming languages. These algorithms make it feasible to implement essentially all
known units of measurement, so that users may use any units they find convenient. We agree
with Karr and Loveman [15] that scientific programming languages should support the use
of units; we hope that presentation of these algorithms will encourage such a trend.

The ARPA Knowledge-Sharing Project [17] focuses on combining data from distributed
databases and knowledge bases. The algorithms described in this paper can be used for
conversion when these databases use different units.

We have included money as a dimension, since it is often important to convert units
such as (/ dollar kilowatt-hour) that include monetary units. Of course, the conversion

22

CUTM *tqc (time_diff, aircraft_altitude, radar_altitude, radar_angle,
radar_utm)

long time_diff, aircraft_altitude, radar_altitude, radar_angle;

CUTM *radar_utm;

{
long outil;
CUTM *output;
float d1, out2, x1, yi1, x2;
CUTM *relpos, *glvarl62il;

outl = aircraft_altitude - radar_altitude;
dl = 2.997925E8 * time_diff;
out2 = d1 / 2;

x1 = sqrt(square(out2) - 9.2903039999999988E14 * lsquare(outl));
y1l = x1 * sin(0.0015339807878856412 * radar_angle);
x2 = x1 * cos(0.0015339807878856412 * radar_angle);
relpos = (CUTM*) malloc(sizeof (CUTM));
relpos->north = 1.0000000000000001E-7 * y1;
relpos->east = 1.0000000000000001E-7 * x2;

glvar1621 = (CUTM*) malloc(sizeof(CUTM));
glvarl621->east = relpos->east + radar_utm->east;
glvarl621->north = relpos->north + radar_utm->north;
output = glvarl621;

return output;

Figure 8: Radar Program Compiled and Converted to C

factors for different currencies are not constant; however, by updating the conversion factors
periodically, useful approximate conversions can be obtained.

Our algorithms do not handle units that include additive constants; the common examples
of such units are the Celsius and Fahrenheit temperature scales. Other features of the GLISP
language can be used to handle these cases. Note that it is only possible to convert from
a pure temperature unit to another temperature unit; it would be incorrect to multiply a
non-absolute temperature by another unit. The kelvin and the degree Rankine are linearly
related and can be converted by our algorithms.

Ruey-Juin Chang implemented an Analyst’s Workbench [7] to aid in making analytical
models. She included substance as an additional part of a quantity, along with numeric
quantity and unit; for example, “10 gallons of gasoline” has gasoline as the substance.
Engineering and scientific calculations often involve conversions that depend on the substance
as well as the quantity and units. For example, “10 gallons of gasoline” can be converted
into volume (10 gallons), mass, weight, energy, money, or energy equivalent in kilograms
of anthracite coal. The algorithms presented in this paper might usefully be extended to

23

include these kinds of conversions as well.

8 Software Available

The unit conversion software described in this paper is available free by anonymous ftp

from ftp.cs.utexas.edu/pub/novak/units/ . It is written in Common Lisp. An on-line
demonstration of the software, which requires a workstation running X windows, is available
on the World Wide Web via http://www.cs.utexas.edu/users/novak .

Acknowledgment
I thank the anonymous reviewers for their suggestions for improving this paper.

References

1]

[10]

M. Abramowitz and 1. A. Segun, Handbook of Mathematical Functions,
National Bureau of Standards, 1964; New York: Dover, 1968.

R. A. Ackley, Physical Measurements and the International (SI) System of
Units, San Diego, CA: Technical Publications, 1970.

A. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques, and
Tools, Addison-Wesley, 1982.

American National Standard for Metric Practice, ANSI/IEEE Standard 268-
1992, 1992.

IEEE Standard C/ATLAS, IEEE Standard 716-1982.
P. W. Bridgman, Dimensional Analysis, Yale Univ. Press, 1922.

R.-J. Chang, “Cliche-Based Modeling for Expert Problem-Solving Systems”,
Ph.D. diss., C.S. Dept., Univ. Texas at Austin, 1992.

R. Cunis, “A Package for Handling Units of Measure in Lisp”, ACM Lisp
Pointers, vol. 5, no. 2, 1992.

T. R. Gruber and G. R. Olsen, “An Ontology for Engineering Mathematics”,
Proc. Fourth Int. Conf. on Principles of Knowledge Representation and
Reasoning, San Mateo, CA: Morgan Kaufmann, 1994.

N. Gehani, “Units of Measure as a Data Attribute”, Computing Languages
vol. 2, no. 3, pp. 93-111, 1977.

24

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[22]

23]

[24]

[25]

M. Herlihy and B. Liskov, “A Value Transmission Method for Abstract Data
Types”, ACM Trans. Programming Languages Syst., vol. 4, no. 4, pp. 527-
551, Oct. 1982.

P. N. Hilfinger, “An Ada Package for Dimensional Analysis”. ACM Trans.
Programming Languages Syst., vol. 10, no. 2, pp. 189-203, 1988.

A. L. Horvath, Conversion Tables of Units in Science and FEngineering, New

York: Elsevier, 1986.
Quantities and Units, [SO Standards Handbook, 3rd ed., Geneva,

Switzerland: International Organization for Standardization, 1993.

M. Karr and D. B. Loveman, “Incorporation of Units into Programming
Languages”, Communications of the ACM, vol. 21, no. 5, pp. 385-391, May
1978.

D. Lamb, “IDL: Sharing Intermediate Representations”, ACM Trans.
Programming Languages Syst. vol. 9, no. 3, pp. 267-318, July 1987.

R. Neches et al., “Enabling Technology for Knowledge Sharing”, Al
Magazine, vol. 12, no. 3, pp. 36-56, Fall 1991.

“The International System of Units (SI)”, National Inst. Standards Tech.
Special Publication 330, Washington, DC: Superintendent of Documents,
U.S. Govt. Printing Office, 1991.

G. Novak, “GLISP: A LISP-Based Programming System With Data
Abstraction”, AI Magazine, vol. 4, no. 3, pp. 37-47, Fall 1983.

G. Novak, “GLISP User’s Manual,” Tech. Report STAN-CS-82-895, C.S.
Dept., Stanford Univ., 1982; TR-83-25, A.I. Lab, C.S. Dept., Univ. of Texas

at Austin.

G. Novak, F. Hill, M. Wan, and B. Sayrs, “Negotiated Interfaces for Software
Reuse”, IEKFE Trans. Software Engineering, vol. 18, no. 7, pp. 646-653, July
1992.

G. Novak, “Software Reuse through View Type Clusters”, Proc. 7th
Knowledge-Based Software FEng. Conf., IEEE Press, Sept. 1992, pp. 70-79.

G. Novak, “Software Reuse by Specialization of Generic Procedures through
Views”, submitted for publication, 1994.

G. Novak, “Generating Programs from Connections of Physical Models”,
Proc. 10th Conf. on Artificial Intelligence for Applications, IEEE Computer
Society Press, March 1994, pp. 224-230.

F. D. Rossini, Fundamental Measures and Constants for Science and

Technology, Cleveland, OH: CRC Press, 1974.

25

[26] C. A. Schulz, “Writing Applications for Uniform Operation on a Mainframe
or PC: A Metric Conversion Program”, APL Quote Quad, vol. 20, no. 4, pp.
348-361, ACM, July 1990.

[27] W. J. Semioli and P. B. Schubert,, Conversion Tables for SI Metricalion,
New York: Industrial Press, 1974.

[28] Steele, G., Common Lisp, Digital Press, 1990.

[29] T. Wildi, Metric Units and Conversion Charts: A Metrication Handbook
for Engineers, Technologists, and Scientists, 2nd ed., Piscataway, NJ: IEEE
Press, 1995.

26

