
Optimal Combinatorial Batch Codes
based on Block Designs

Natalia Silberstein and Anna Gál∗

August 16, 2014

Abstract

Batch codes, introduced by Ishai, Kushilevitz, Ostrovsky and Sahai, represent the distributed storage of an
n-element data set on m servers in such a way that any batch of k data items can be retrieved by reading at
most one (or more generally, t) items from each server, while keeping the total storage over m servers equal
to N . This paper considers a class of batch codes (for t = 1), called combinatorial batch codes (CBCs), where
each server stores a subset of a database. A CBC is called optimal if the total storage N is minimal for given
n,m, and k. A c-uniform CBC is a combinatorial batch code where each item is stored in exactly c servers. A
c-uniform CBC is called optimal if its parameter n has maximum value for given m and k. Optimal c-uniform
CBCs have been known only for c ∈ {2, k − 1, k − 2}.

In this paper we present new constructions of optimal CBCs in both the uniform and general settings, for
values of the parameters where tight bounds have not been established previously. In the uniform setting, we
provide constructions of two new families of optimal uniform codes with c ∼

√
k. Our constructions are based

on affine planes and transversal designs.

Keywords: Batch codes; Transversal designs; Affine planes. MSC 2010: 94B60; 94C30

1 Introduction

Batch codes were introduced by Ishai, Kushilevitz, Ostrovsky and Sahai [11]. An (n,N, k,m, t) batch code over
an alphabet Σ, encodes x ∈ Σn into an m-tuple of strings y1, . . . , ym ∈ Σ∗ of total length N (stored in m servers),
such that for every k-tuple (batch) of indices i1, . . . , ik ∈ [n], the k data items xi1 , . . . , xik can be retrieved by
reading at most t symbols from each server. Batch codes were motivated by applications to load balancing in
distributed storage, private information retrieval and cryptographic protocols. It is desirable to minimize the total
storage N used to store a data set of size n, or, equivalently, to maximize the rate of the code, defined as the ratio
n/N . Also, it is desirable to have the number of servers m as small as possible, given the parameters k, t and n.

Combinatorial Batch Codes: The name combinatorial batch codes was proposed by Paterson, Stinson, and
Wei [12] to refer to purely replication based batch codes. Combinatorial batch codes is the class of batch codes,
where each server stores a subset of data items and decoding simply means reading items from servers. An
(n,N, k,m, t)-CBC is a combinatorial batch code storing n data items on m servers with total storage size N ,
such that any k data items can be retrieved by reading at most t items from each server. An (n,N, k,m, t)-CBC is
called optimal if the total storage N is minimal for given n,m, and k. An (n,N, k,m, t = 1)-CBC is denoted by
(n,N, k,m)-CBC and the minimal value of N for t = 1 is denoted by N(n, k,m).

A preliminary version of the paper is available at http://arxiv.org/abs/1312.5505
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In this paper we consider only the case t = 1. (Combinatorial batch codes for t > 1 have been studied
in [9, 13].) Note that when t = 1, we can assume that n ≥ m ≥ k. As noted in [11], there are two trivial extreme
solutions to the problem for t = 1: replicating the data string x in each server gives a code with m = k (which is
lowest possible since m ≥ k must hold), but the total storage used is kn. For the case m = n every server simply
stores one data item, so the total storage used is n which is optimal, while the number of servers is very large.

It has been observed already in [11] that combinatorial batch codes for t = 1 are equivalent to (unbalanced)
bipartite expander graphs with expansion factor 1. Expander graphs have been extensively studied, but known
probabilistic and explicit constructions of bipartite expanders do not give optimal combinatorial batch codes. Note
that N ≥ n has to hold (and this is tight when m = n), and N ≤ kn−m(k − 1) by a simple construction which
is optimal when m = k [12]. However, for a certain range of parameters optimal constructions and tight bounds
on N(n, k,m) are not known even up to constant factors.

Precise values of N(n, k,m) have been established for some special settings of the parameters, and more
generally when n ≥

(
m
k−2
)
. For fixed k ∈ {2, 3, 4}, the values of N(n,m, k) are presented in [12] and [8]. The

results for general k where precise values of N(n, k,m) and constructions of CBCs that achieve these bounds have
been established are summarized in the following table.

n m N(n, k,m) references
n m = n n [11, 12]
n m = k kn− k(k − 1) [11, 12]

n = m + 1 m m + k [12]

n = m + 2 m

{
m + k − 2 + d2

√
k + 1e if m + 1− k ≥ d

√
k + 1e

2m− 2 + d1 + k+1
m−k+1e if m + 1− k < d

√
k + 1e [6, 8]

n ≥ (k − 1)
(

m
k−1
)

m kn− (k − 1)
(

m
k−1
)

[12](
m
k−2
)
≤ n ≤ (k − 1)

(
m
k−1
)

m n(k − 1)−
⌊
(k−1)( m

k−1)−n
m−k+1

⌋
[4, 7, 13]

The last bound was generalized in [4] for any 1 ≤ n ≤ (k − 1)
(

m
k−1
)

as follows: Let 1 ≤ s ≤ k − 1 be the
least integer such that

n ≤
(k − 1)

(
m
s

)(
k−1
s

) .

Then

N(n, k,m) ≥ ns−

(k − s)

(
(k−1)(ms )

(k−1
s )

− n

)
m− k + 1

 . (1)

Bound (1) is attained by the construction given in [4] for half of the values of n in the range
(

m
k−2
)
− (m− k +

1)A(m, 4, k − 3) ≤ n ≤
(

m
k−2
)
, where A(m, 4, k − 3) is the maximum number of codewords in a binary constant

weight code of length m, weight k − 3 and Hamming distance 4. The question of the tightness of bound (1) for
n <

(
m
k−2
)
− (m− k + 1)A(m, 4, k − 3) remained open.

Uniform Combinatorial Batch Codes: A c-uniform (n, cn, k,m)-CBC is a combinatorial batch code where
each item is stored in exactly c servers. These codes were studied in [3, 4, 10, 12]. The maximum value of n
for which there exists a c-uniform (n, cn, k,m)-CBC is denoted by n(m, c, k). In other words, n(m, c, k) is the
maximum number of data items that can be stored using a uniform code with the given number m of servers and
the given c and k. The following general upper bound on n(m, c, k) was established in [12]:

n(m, c, k) ≤
(k − 1)

(
m
c

)(
k−1
c

) . (2)
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It was shown in [12] by probabilistic arguments that n(m, c, k) = Ω(m
ck

k−1
−1) for fixed integers k and c (the

constants in the Ω notation depend on k and c). Explicit constructions of uniform codes which attain bound (2)
were given for c ∈ {k − 1, k − 2} in [12]. It was proved in [3] that n(m, c = 2, k = 5) =

⌊
m2

4

⌋
. A construction

of codes based on complete bipartite graphs given in [12] attains this bound. Based on the connection between
uniform combinatorial batch codes and the forbidden hypergraph problem [5] the following bounds for uniform
codes were shown in [3], however, these bounds only hold when k and c are fixed integers (the constants hidden in
the notation depend on k and c):

• n(m, 2, k) = O(m
1+ 1
bk/4c ), for k ≥ 4;

• n(m, 2, k) = Θ(m3/2), for k = 6, 7, 8;

• n(m, 2, k) = Θ(m4/3), for k = 9, 10, 11;

• n(m, 2, k) = Θ(m6/5), for k = 15, 16, 17;

• n(m, c, k) = o(mc), for k ≥ 7, 3 ≤ c ≤ k − 1− dlog ke;

• n(m, c, k) = Θ(mc), for k ≥ 6, k − dlog ke ≤ c ≤ k − 1.

The following bound was proved in [10]:

n(m, c, k) = O(mc−1+1/b k
c+1c),

for c ≤ k
2 − 1. This improves the general bound (2) when k and c are fixed integers, but it is weaker than (2) in

the general case. Note that optimal constructions of uniform CBCs for k = 3 and k = 4 are implied by the bounds
of [12] when c = 2. However, bounds tight up to constant factors for the value of n(m, c, k) are not known even
for c = 2 when k ≥ 18.

Our results: In this paper we give several constructions of optimal combinatorial batch codes for settings of
the parameters where tight bounds were not known previously, even up to constant factors.

We answer the question about the tightness of bound (1) affirmatively, for certain settings of the parameters
in the range n <

(
m
k−2
)
− (m − k + 1)A(m, 4, k − 3). We construct a family of CBCs that attain bound (1)

with n <
(

m
k−2
)
− (m − k + 1)A(m, 4, k − 3). More precisely, given a prime power q, we construct an optimal

(n,N, k,m)-CBC with n = q2 + q− 1, N = q3 − q, k = q2 − q− 1, and m = q2 − q. This construction is based
on a family of block designs, called transversal designs.

Regarding uniform batch codes, we present two new families of optimal uniform combinatorial batch codes
which attain bound (2) for k = c2 and k = c2 + c + 1. Previously, optimal uniform CBCs were known only for
c ∈ {2, k − 1, k − 2}. Our first optimal uniform construction is based on affine planes while the second one is
based on transversal designs.

Our proofs are based on the observation that the strong structural properties of affine planes and transversal
designs are well suited to obtain CBCs with good parameters. In fact, we show that simply taking the incidence
matrix of affine planes yields optimal uniform CBCs. Moreover, the proof of this result is fairly short and simple
(see Theorem 16). Transversal designs have similar structure to affine planes, and we show that they can be
modified to obtain optimal CBCs in both the uniform and non-uniform settings. However, to get tight results, the
proofs based on transversal designs are somewhat longer than the simple proof for affine planes.

To summarize our results, we note that the following optimal (n,N, k,m)-CBCs are constructed in the paper:

• non-uniform (q2 + q − 1, q3 − q, q2 − q − 1, q2 − q)-CBC;

• q-uniform (q2 + q, q(q2 + q), q2, q2)-CBC;

• (q − 1)-uniform (q2 − 3, (q − 1)(q2 − 3), q2 − q − 1, q2 − q − 1)-CBC,
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where q is a prime power.
Along the way, we also obtain the following asymptotically optimal constructions:

• (q − 1)-uniform (q2, q3 − q2, q2 − q − 1, q2 − q)-CBC,
such that the gap between the upper bound (2) and the number of data items n is q − 2 = o(n);

• (q − 1)-uniform (q2 + q − 3, (q − 1)(q2 + q − 3), q2 − q − 1, q2 − q)-CBC,
such that the gap between the upper bound (2) and the number of data items n is 1,

where q is a prime power.
The rest of the paper is organized as follows. In Section 2 we describe the combinatorial batch codes in terms of

set systems and dual set systems which satisfy Hall’s condition, as proposed in [12], and define transversal designs
and affine planes. In Section 3 we present our construction for new combinatorial batch codes from transversal
designs and prove their optimality. In Section 4 we present our constructions for uniform combinatorial batch
codes.

2 Preliminaries

The equivalent definition of combinatorial batch codes in terms of set systems is given as follows [12]. An
(n,N, k,m, t) combinatorial batch code is a set system (X,B), where X is a set of n points (corresponding to
items), B is a collection of m subsets (or blocks) of X (corresponding to servers) and N =

∑
B∈B |B|, such that

for each k-subset {xi1 , . . . , xik} ⊂ X there exists a subset Ci ⊆ Bi, where |Ci| ≤ t, for 1 ≤ i ≤ m, such that
{xi1 , . . . , xik} ⊂

⋃m
i=1Ci. In the sequel, we will consider combinatorial batch codes with t = 1, and we refer to

such codes as (n,N, k,m)-CBCs.
Given a set system (X,B) with the points set X = {x1, . . . , xn} and the blocks set B = {B1, . . . , Bm}, its

incidence matrix is a m× n binary matrix A, where

(A)i,j =

{
1, if xj ∈ Bi

0, if xj /∈ Bi

The incidence matrix Γ of an (n,N, k,m)-CBC is defined as the m×n incidence matrix (with N ones) of the
corresponding set system. The following lemma [12] shows the properties of Γ.

Lemma 1. An m × n binary matrix Γ with N ones is an incidence matrix of an (n,N, k,m)-CBC if and only if
for any k columns there is a k × k submatrix of A which has at least one generalized diagonal containing k ones.

It is useful to represent CBCs by the dual set system, where the points correspond to servers and the blocks
correspond to items [12]. Each block (an item) in the dual system contains the points (servers) that store this par-
ticular item. In other words, let C be an (n,N, k,m)-CBC with n items x1, . . . , xn and m servers s1, . . . , sm. C is
represented by a (dual) set system (S,X ), where S = {s1, . . . , sm} is the set of m servers andX = {X1, . . . , Xn}
is a collection of n subsets (blocks) of S. If an item xj , for 1 ≤ j ≤ n, is stored in servers si1 , . . . si` then xj is
represented by a subset Xj , where Xj = {si1 , . . . si`}. Note that it holds that

∑
X∈X |X| = N .

The necessary and sufficient condition for C to be a CBC, in terms of dual systems, is given by using Hall’s
theorem [4] and is presented in the following lemma.

Lemma 2. The necessary and sufficient condition that any set of k items can be retrieved by reading at most one
item per server is that given any r sets Xi1 , . . . , Xir of X , for all r, 1 ≤ r ≤ k, in the dual system (S,X ), it holds
that ∪1≤j≤rXij ≥ r. In terms of an incidence matrix Γ of a code, it means that for any set of r columns of Γ,
{Γi1 , . . . ,Γir}, 1 ≤ r ≤ k, it holds that union of these columns (i.e., the characteristic vector of the union of the
corresponding blocks of the dual systems) contains at least r nonzero entries of Γ.
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Most of the constructions presented in this paper are based on a family of block designs, called transversal
designs. The definition of this designs is as follows.

A transversal design (TD) of group size h and block size `, denoted by TD(`, h), is a triple (P,G,B), where

1. P is a set of `h points;

2. G is a partition of P into ` sets (groups), each one of size h;

3. B is a collection of `-subsets of P (blocks);

4. each block meets each group in exactly one point;

5. any pair of points from different groups is contained in exactly one block.

It follows from the definition of TD that the number of blocks in TD(`, h) is h2 and the number of blocks that
contain a given point is h [2]. A TD(`, h) is called resolvable if the set B can be partitioned into sets B1, ...,Bh,
each one containing h blocks, such that each element of P is contained in exactly one block of each Bi. The sets
B1, ...,Bs are called parallel classes. The existence of resolvable transversal designs is considered in the following
theorem (see e.g. in [2]).

Theorem 3. Let q be a prime power. Then there exists a resolvable TD(`, q) for any integer ` ≤ q.

Example 4. We consider the resolvable transversal design TD(3, 4). The points V = {1, 2, . . . , 12}, groups
G = {G1, G2, G3} and blocks B = {B1, B2, . . . , B16} with four parallel classes B1,B2,B3,B4, are given by

G1 G2 G3

1 5 9
2 6 10
3 7 11
4 8 12

B1 B2 B3 B4
B1 B2 B3 B4

1 2 3 4
5 6 7 8
9 10 11 12

B5 B6 B7 B8

1 2 3 4
6 5 8 7
11 12 9 10

B9 B10 B11 B12

1 2 3 4
8 7 6 5
10 9 12 11

B13 B14 B15 B16

1 2 3 4
7 8 5 6
12 11 10 9

The transpose of the incidence matrix A of TD(3, 4) is given by the following 12× 16 block matrix:

AT =



1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0
0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1
0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0
0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1
0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0
0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0
0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0


A construction of an optimal uniform code presented in Section 4 is based on an affine plane. The definition of

an affine plane, in terms of set systems, is given as follows:
An affine plane of order s, denoted by A(s), is a set system (X,B), where X is a set of |X| = s2 points, B is

a collection of s-subsets (blocks) of X of size |B| = s(s + 1), such that each pair of points in X occur together in
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exactly one block of B. It follows from the definition, that an affine plane is always resolvable, that is the set B can
be partitioned into s + 1 sets of size s, called parallel classes, such that every element of X is contained in exactly
one block of each class. The existence of affine planes is considered in the following theorem (see e.g. in [2]).

Theorem 5. If q is a prime power, then there exists an affine plane of order q.

Remark 6. Note that an affine plane of order q is equivalent to TD(q+ 1, q): the transpose of an incidence matrix
of an affine plane of order q is the incidence matrix of TD(q + 1, q).

3 Construction of Optimal CBCs from Transversal Designs

In this section we present a construction of new optimal combinatorial batch codes. These new batch codes prove
the tightness of bound (1) for a new range of parameters. The construction makes use of resolvable transversal
designs.

Construction I: Let q ≥ 3 be a prime power. Let TD(q)
def
= TD(q − 1, q) be a resolvable transversal design

with block size q − 1 and group size q. We define the servers of a code to be the points of TD(q) and the items of
the code to be the union of blocks and groups of TD(q). We denote the CBC constructed from TD(q) by CTD(q).

Example 7. The incidence matrix Γ of the CTD(4) obtained from TD(3, 4) from Example 4 is given by

Γ =



1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0
1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0
0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0
0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0
1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1
0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1
0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1
0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1


Before we analyze the parameters of the constructed CBC, we present the properties of the incidence matrix Γ

of CTD(q) which will be useful in the proofs.
Let A be a q2 × q(q − 1) incidence matrix of TD(q), where rows of A correspond to the blocks of TD(q),

and columns of A correspond to the points of TD(q). Since TD(q) is resolvable and all its groups are disjoint by
definition, there is a permutation of rows and columns of A which results in a matrix that consists of q(q − 1)
permutation matrices, each of size q × q. Each q × q permutation matrix corresponds to the q points of a group of
TD(q) and q blocks of a parallel class of TD(q). From now on we assume that A has this form.

Let G be a (q − 1) × q(q − 1) matrix where the rows are the incidence vectors of groups of TD(q), i.e., the
ith row of G is a binary vector with q 1s in positions (i − 1)q + j, 1 ≤ j ≤ q. Denote by Γ = (AT ||GT ) the
q(q − 1) × (q2 + q − 1) matrix, where the first q2 columns are formed by the columns of AT (incidence vectors
of blocks of TD(q)), and the last q − 1 columns are formed by the columns of GT (incidence vectors of groups of
TD(q)).

Note that Γ has the following structure: its q2 + q− 1 columns can be partitioned into q + 1 classes, where the
first q classes contain q columns each, and correspond to the parallel classes of TD(q), and the last class contains
q− 1 columns (the incidence vectors of the groups of TD(q)). We refer to the first q classes as the parallel classes,
and the last class as the special class. If not specified, a class of columns can be either one of the parallel classes
or the special class. Note also that the first q2 columns contain q − 1 1s each, and the last q − 1 columns (of the
special class) contain q 1s each.
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We will say that “a column Γi of Γ covers the set S of points” if the block or the group of TD(q) corresponding
to Γi contains all the points of S.

The following simple observations will be used in the sequel.

• (A) The columns of Γ within a given parallel class are disjoint, thus ` columns of a parallel class cover
`(q − 1) points.

• (B) Any two columns of Γ from different parallel classes intersect in at most one common point, thus `1
columns from a parallel class together with `2 columns from another parallel class cover at least `1(q− 1) +
`2(q − 1− `1) points. Note that this is useful when `1 ≤ q − 2.

• (C) Any column of Γ from the special class covers all q points of one of the groups. On the other hand, `
columns of a parallel class cover only ` points from each group. Thus, ` columns of a parallel class together
with x columns of the special class cover at least `(q − 1) + x(q − `) points.

We will also use the following lemmas.

Lemma 8. Let P1 and P2 be two parallel classes of TD(q). There is at most one column (block) from P2 whose
points are covered by q − 1 columns of P1.

Proof. Suppose that q − 1 blocks of P1 cover two blocks of P2, denoted by a and b. Let c be the remaining block
of P1. Since c has no common points with a and b, c should be covered by the q−2 blocks in P2 \{a, b}. However,
since c contains q − 1 points, at least one of the q − 2 blocks in P2 \ {a, b} must intersect c in at least two points,
which contradicts Property (5) of transversal designs.

Lemma 9. In TD(2, q), given 2(q − 2) points covered by q − 2 blocks from each of two different parallel classes,
there is no further parallel class having q − 2 blocks that cover these points.

Proof. Suppose there are three parallel classes such that q− 2 blocks from each cover the same 2(q− 2) points of
TD(2, q). Consider the set of remaining 4 points, denoted by S4. First note that the 4 points in S4 must be covered
by the remaining two blocks of each of the above three classes. Next, note that since S4 contains exactly two points
from each group, there are 4 possible blocks that can be formed by the points of S4. However, there are six blocks
(two from each of the three classes) that must be formed using these 4 points. Therefore, at least one block must
appear at least twice, which contradicts Property (5) of transversal designs.

Lemma 10. Let P1 be a parallel class of TD(y, q), q ≥ y ≥ 3. Then any 2 blocks of any other parallel class
intersect with any given 2 blocks in the class P1 in at most 4 points, and thus cover 2y − 4 additional points.

Proof. The proof directly follows from Property (5) of transversal designs.

Lemma 11. In TD(q) let P = {p1, p2, p3} be three points which are contained in three different groups. Then, for
any set of blocks R, there are at most three parallel classes that contribute q− 2 blocks each to the set R such that
none of these blocks contain points from P .

Proof. Suppose that for some set of blocks R, there are four parallel classes P1, P2, P3, P4 that contribute q − 2
blocks each to R, such that none of these blocks contain points from P . Consider the remaining two blocks from
each Pi, 1 ≤ i ≤ 4. For each Pi, 1 ≤ i ≤ 4, at least one of these two blocks should contain at least two points
from P . Since there are only three different pairs of points in P , there exists at least one pair of points in P that is
contained in at least two blocks. This contradicts Property (5) of transversal designs.

Now we have all the machinery needed to prove the following theorem.

Theorem 12. The code CTD(q) obtained from TD(q) is a (q2 + q − 1, q3 − q, q2 − q − 1, q2 − q)-CBC.
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Proof. First, since the number of items for the code is equal to the number of blocks plus the number of groups
of TD(q), it follows from the definition of TD that n = q2 + q − 1. Second, the number of servers is equal to the
number of points of TD(q), and then m = q(q − 1). Since every point in TD(q) is contained in q blocks and one
group, we have N = q(q − 1)(q + 1) = q3 − q.

To prove that k = q2 − q − 1, by Lemma 2 we need to show that

• There exists a set of q2 − q blocks and groups of TD(q), such that their union contains at most q2 − q − 1
points, in other words, k ≤ q2 − q − 1;

• For any set of r blocks and groups of TD(q), 1 ≤ r ≤ q2 − q − 1, their union contains at least r points, in
other words, k ≥ q2 − q − 1.

Let p be a point of TD(q). Since TD(q) is a resolvable transversal design, there are q parallel classes, each
one of size q, which partition the set of blocks of TD(q). From each parallel class of blocks of TD(q) we take
q − 1 blocks (all the blocks except one) which does not contain p. We obtained q(q − 1) different blocks, such
that their union does not contain the point p, in other words, their union contains at most q2 − q − 1 points. Then
k ≤ q2 − q − 1.

To show that k ≥ q2 − q− 1, we will prove that any set of r columns of Γ, 1 ≤ r ≤ q2 − q− 1, covers at least
r points. Let R be an arbitrary set of r columns of Γ with r = s + x, where s is the number of columns of R from
the parallel classes, and x, 0 ≤ x ≤ q − 1, is the number of columns of R which belong to the special class. We
use the notation s = iq + j, where 0 ≤ i ≤ q − 2 and 0 ≤ j ≤ q − 1. Let t be the maximum number of columns
which is contributed to R by a parallel class. Note that t ≥ i. We consider the following cases:

Case t ≥ i+ 2. First, if i = q− 2 then by (A) i+ 2 = q columns of a parallel class cover q(q− 1) > r points.
Then we assume that i ≤ q − 3. By (C), i + 2 columns from a parallel class with x columns of the special class
cover at least (i + 2)(q − 1) + x(q − i− 2) = iq + q + (x + 1)(q − i− 2) ≥ s + x points.

Case t = i + 1. In addition to the parallel class which contributes i + 1 columns to R there exists at least one
parallel class which contributes at least i columns. By (B), blocks from these two parallel classes cover at least
(i + 1)(q − 1) + i(q − i− 2) = iq + q − 1 + i(q − i− 3) points. Then for i ≤ q − 4 and x ≤ i we have enough
covered points.

On the other hand, i + 1 columns from one parallel class together with x columns of the special class by (C)
cover a least (i + 1)(q − 1) + x(q − i− 1) = iq + q − 1 + x(q − i− 1)− i points. Then for i ≤ q − 3 and x ≥ i
we have enough covered points. So we need to consider the following sub-cases:

• i = q − 2. If there are x = q − 1 columns of the spacial class in R, then these columns cover q(q − 1) > r
points. Now assume that x ≤ q − 2. If there are two parallel classes that contribute q − 1 columns each
to R, then these columns together cover at least (q − 1)2 + q − 2 = q2 − q − 1 ≥ r points, by Lemma 8.
If there is only one such parallel class then the number of selected columns from parallel classes is at most
(q − 1) + (q − 2)(q − 1) = (q − 2)q + 1, hence j ≤ 1, and thus x columns from the special class together
with t columns of a parallel class cover at least (q − 1)2 + x = (q − 2)q + 1 + x ≥ r points, by (C).

• i = q − 3 and x ≤ q − 4. If there are two parallel classes that contribute t = q − 2 columns each to R,
then these columns together cover at least (q − 2)(q − 1) + 2q − 6 = (q − 3)q + 2q − 4 ≥ r points, by
Lemma 10. If there is only one such parallel class then the number of selected columns from parallel classes
is at most (q − 2) + (q − 3)(q − 1) = (q − 3)q + 1, hence j ≤ 1. Thus q − 2 columns from the parallel
class which contributes t columns to R together with q−3 columns from another parallel class cover at least
(q − 2)(q − 1) + q − 3 ≥ (q − 3)q + 1 + (q − 4) ≥ s + x points, by (B).

Case t = i. In this case each parallel class contributes exactly i columns, and hence s = iq. Any two parallel
classes cover at least i(q − 1) + i(q − i − 1) = iq + i(q − i − 2) points, by (B). Then for x = 0 or i ≤ q − 3
and x ≤ i we have enough covered points. On the other hand, i columns from one parallel class together with x
columns of the special class by (C) cover a least i(q − 1) + x(q − i) = iq + x + x(q − i− 1)− i points. Then for
i ≤ q − 2 and x ≥ i we have enough covered points.
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So we consider the only remaining sub-case, i = q − 2 and 1 ≤ x ≤ q − 3. Note that in this case q ≥ 4,
otherwise x = 0. Therefore, there are at least 4 parallel classes that contribute q − 2 columns each to R. First
we consider two parallel classes that contributes q − 2 columns each. By Lemma 10, these columns cover at least
(q−2)(q−1)+2(q−1)−4 = (q−2)q+q−4 points. If x ≤ q−4, then we are done. Let x = q−3. To prove that
the columns from two additional parallel classes cover at least one additional point, we note that 2(q− 2) columns
cover all but 4 points. Suppose first that these 4 points are contained in two groups. Since the columns from the
first class cover q−2 points in each group, we have two of the 4 points in both groups. Then Lemma 9 implies that
the remaining parallel classes must cover at least one of the 4 points, and thus they cover at least one additional
point. Next consider if these 4 points are distributed between at least three groups. Since at least 4 parallel classes
contribute q− 2 columns to R, Lemma 11 implies that we do get one additional point from the second two parallel
classes. Altogether, the columns contributed by the 4 parallel classes cover at least (q−2)q+q−4+1 = r points.

The following theorem proves the optimality of CTD(q).

Theorem 13. The code CTD(q) is an optimal CBC attaining bound (1) with s = q.

Proof. First, we prove that the smallest integer 1 ≤ s ≤ k − 1, such that

n ≤
(k − 1)

(
m
s

)(
k−1
s

) , (3)

where n = q2 + q − 1, k = q2 − q − 1, m = q2 − q, is s = q. We write (3) as a function of q:

q2 + q − 1 ≤
(q2 − q − 2)

(
q2−q
s

)(
q2−q−2

s

) . (4)

Note that the function Um,k,s =
(k−1)(ms )

(k−1
s )

is an increasing function of s, for fixed m and k. One can easily

verify that for s = q the inequality (4) holds, while for all s < q, this inequality does not hold.
Next, we show that CTD(q) attains bound (1). Note, that n ≤ (k − 1)

(
m
k−1
)

= m(m−1)(m−2)
2 . We will prove

that for s = q it holds that

N = ns−
⌊

(k − s)(Um,k,s − n)

m− k + 1

⌋
.

We express the values of m, k, s as functions of q and obtain

ns−
⌊

(k − s)(Um,k,s − n)

m− k + 1

⌋
= (q2 + q − 1)q −

⌊
2q3 − 4q2

2(q − 2)

⌋
= (q2 + q − 1)q − q2

= q3 − q

= N.

The following theorem establishes that CTD(q) shows the tightness of bound (1) for a new range of parameters.

Theorem 14. The parameters of CTD(q) satisfy n ≤
(

m
k−2
)
− (m − k + 1)A(m, 4, k − 3), where A(m, 4, k − 3)

is the maximum cardinality of a constant weight code of length m, distance 4 and constant weight k − 3.
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Proof. First note that by [1],

A(m, 4,m− 4) = A(m, 4, 4)

≤
⌊m

4
A(m− 1, 4, 3)

⌋
≤
⌊
m

4

⌊
m− 1

3
A(m− 2, 4, 2)

⌋⌋
≤
⌊
m

4

⌊
m− 1

3

⌊
m− 2

2

⌋⌋⌋
.

Then for k = m− 1 we have (
m

k − 2

)
− (m− k + 1)A(m, 4, k − 3)

=

(
m

m− 3

)
− 2A(m, 4,m− 4)

≥
(

m

m− 3

)
− 2

⌊
m

4

⌊
m− 1

3

⌊
m− 2

2

⌋⌋⌋
. (5)

For m = q2− q equation (5) is greater than or equal to 1
12(q2− q)(q2− q− 1)(q2− q− 2), which is larger than n

for q ≥ 4. For q = 3 we have A(6, 4, 2) = 3, then n = 32 + 3− 1 = 11 ≤
(
6
3

)
− 2 · 3 = 14.

4 Constructions of Uniform Combinatorial Batch Codes

In this section we present the constructions of two families of optimal c-uniform batch codes, both with c ∼
√
k.

The first family of codes is based on affine planes, and the second one is based on transversal designs.

4.1 Optimal Uniform Combinatorial Batch Codes from Affine Planes

We present a family of optimal uniform batch codes attaining the bound (2) with c =
√
k. This construction is

based on the incidence matrix of affine planes.
Construction II: Let q ≥ 3 be a prime power. Let A(q) be an affine plane of order q. We define the servers

of the code to be the q2 points of A(q) and the items of the code to be the q(q + 1) blocks of A(q). We denote the
uniform CBC constructed from A(q) by CA(q).

Remark 15. Note, that the incidence matrix of CA(q) is equal to the transpose of the incidence matrix of A(q).

Theorem 16. CA(q) is a q-uniform (q2 + q, q3 + q2, q2, q2)-CBC.

Proof. The parameters n,N,m, c directly follow from the parameters of A(q).
We will prove that k = q2. Obviously, k ≤ q2. We consider a set R of r blocks, 1 ≤ r ≤ q2. First, if

r = q2 = (q + 1)(q − 1) + 1, then from the resolvability of A(q), there is a parallel class that contributes q
blocks to R. Then, these q blocks cover q2 = r points. Second, we assume that r = i(q + 1) + j = iq + i + j,
for 0 ≤ i ≤ q − 2, 1 ≤ j ≤ q + 1. If there is a class that contributes i + 2 blocks, then these blocks cover
(i + 2)q = iq + 2q > iq + i + j = r points. Now we assume that every parallel class contributes at most i + 1
blocks to R. More precisely, there are at least j classes that contribute i + 1 blocks and at most q + 1− j classes
that contribute at most i blocks to R. We consider the following cases:
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• j = 1. Then, there is a class which contributes i+ 1 blocks and a class which contributes i blocks. Similarly
to observation (B) on transversal designs, these blocks cover (i+ 1)q+ (q− i− 1)i ≥ iq+ q+ i > r points.

• j ≥ 2. In this case, there are at least two classes which contribute i+ 1 blocks to R. Similarly to observation
(B) on transversal designs, these blocks cover (i+1)q+(q−i−1)(i+1) ≥ iq+q+i+1 = i(q+1)+(q+1) ≥
i(q + 1) + j = r points.

Theorem 17. The code CA(q) is an optimal q-uniform CBC attaining bound (2).

Proof. It holds that
(k − 1)

(
m
c

)(
k−1
c

) =
(q2 − 1)

(
q2

q

)(
q2−1
q

) =
(q2 − 1)q2

q2 − q
= q(q + 1) = n.

4.2 Optimal Uniform Combinatorial Batch Codes from Transversal Designs

We first present two constructions of asymptotically optimal uniform codes based on transversal designs, with
m = k+1 and k = c2 +c, i.e., c =

√
4k+1−1

2 and then modify these constructions to obtain optimal uniform codes

with m = k and k = c2 + c + 1, i.e., c =
√
4k−3−1

2 .
Construction III: Let q ≥ 3 be a prime power and let TD(q) be a resolvable transversal design TD(q − 1, q),

as in Section 3. We define the servers of the code to be the q(q − 1) points of TD(q) and the set of items of the
code to be the q2 blocks of TD(q). We denote the uniform CBC constructed from TD(q) by C1(q).

Theorem 18. The code C1(q) is a (q−1)-uniform (q2, q3−q2, q2−q−1, q2−q)-CBC, such that the gap between
the upper bound (2) and the number of data items of C1 is equal to q − 2.

Proof. The parameters of C1 directly follow from Theorem 12, since the incidence matrix of C1 is the submatrix
of the incidence matrix of the code CTD(q) from Theorem 12.

Since the the number of data items of a code is an integer number, then we can rewrite bound (2) as

n(m, c, k) ≤

⌊
(k − 1)

(
m
c

)(
k−1
c

) ⌋
.

Now, given that m = q2 − q, k = q2 − q − 1, and c = q − 1 we have

⌊
(k − 1)

(
m
c

)(
k−1
c

) ⌋
− n =

(q2 − q − 2)
(
q2−q
q−1
)(

q2−q−2
q−1

)
− q2 =

⌊
(q2 + q − 2) +

q2 − 5q + 6

q2 − 3q + 2

⌋
− q2 = q − 2

Next, we modify Construction III to obtain a uniform batch code C2 such that the gap between bound (2) and
the number of data items of C2 is equal to 1. We present the construction in terms of the incidence matrix for the
code.

Construction IV: Let the columns of the matrix Γ be the union of the columns of the incidence matrix of C1(q)
and q − 3 columns of weight q − 1, where the q − 1 ones of a new column i, 1 ≤ i ≤ q − 3, are in positions
(i− 1)q + j, 2 ≤ j ≤ q. We denote the uniform CBC with incidence matrix Γ by C2(q).
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Example 19. The incidence matrix of the uniform code C2(4) obtained from Construction IV with q = 4 is given
by

Γ =



1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1
1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0
0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0
0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0


Theorem 20. The code C2(q) is a (q−1)-uniform (q2 + q−3, (q−1)(q2 + q−3), q2− q−1, q2− q)-CBC, which
almost attains bound (2), i.e. the difference between the bound and the number of data items of the code is 1.

Proof. First, the parameters n, N , m, and c directly follow from the definition of the code. Hence, we only need
to prove that the parameter k of this construction is the same as in Construction III, i.e. k = q(q − 1) − 1. The
proof is similar to the proof of Theorem 12, and we use the same notations: Let Γ be the incidence matrix of C2(q),
where the first q2 columns are partitioned into q parts corresponding to parallel classes of TD(q) and the last q− 3
columns are the additional columns of weight q − 1 each, which we will refer as the special class. As in the proof
of Theorem 12, we consider an arbitrary set R of r columns of Γ where 1 ≤ r ≤ q(q − 1) − 1 and will prove
that the columns in R cover at least r points. We assume that r = s + x, where s is the number of columns of R
from the parallel classes, and x, 0 ≤ x ≤ q − 3, is the number of columns of R which belong to the special class.
We use the same notations for s as in the proof of Theorem 12, s = iq + j, for 0 ≤ i ≤ q − 2, 0 ≤ j ≤ q − 1.
Similarly, t ≥ i is the maximum number of columns which is contributed to R by a parallel class.

We consider the same cases for t as in the proof of Theorem 12, and present the details only when the proofs
are different.

Case t ≥ i + 2. We assume here that i + 2 ≤ q − 1, otherwise q columns of a parallel class cover q(q − 1)
points. Note that there is at least one additional parallel class which contributes at least i columns (otherwise the
total number of selected columns from the parallel classes is at most i(q − 1)), therefore, i + 2 columns from one
class and i columns from another class cover at least (i+2)(q−1)+i−1 ≥ iq+(q−1)+(q−3) ≥ iq+j+x = r
points, by Lemma 8.

Case t = i+ 1. The only difference to the corresponding case of the proof of Theorem 12 is when considering
t = i + 1 columns from a parallel class and x columns from the special class, these columns cover at least
(i+ 1)(q− 1) +x(q− 1− i− 1) = iq + (q− 1) +x(q− i− 2)− i, then for i ≤ q− 4 and i ≤ x we are done. The
additional case i = q − 2 with two parallel classes that contribute q − 1 columns to R and the case i = q − 3 are
identical to the proof of the corresponding cases in Theorem 12. The case i = q − 2 with only one parallel class
which contributes q − 1 columns to R corresponds to the case when j ≤ 1, as in the proof of Theorem 12, and
then two parallel classes that contribute q− 1 and q− 2 columns to R, respectively, together cover by Lemma 8 at
least (q − 1)2 + q − 3 = (q − 2)q + 1 + (q − 3) ≥ s + x points.

Case t = i. The only difference to the corresponding case of Theorem 12 is when considering t = i columns
from a parallel class and x columns from the special class, these columns cover at least i(q − 1) + x(q − 1− i) =
iq + (q − 1) + x(q − i − 1) − i, then for i ≤ q − 3 and i ≤ x we are done. Then the additional case is when
i = q − 2 (and x ≤ q − 3, by definition) which is identical to the proof of the corresponding case in Theorem 12.

Finally, similarly to the proof of Theorem 18, we have⌊
(k − 1)

(
m
c

)(
k−1
c

) ⌋
− n = q2 + q − 2− (q2 + q − 3) = 1.
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Now we modify Construction IV to obtain an optimal uniform code, with parameters that are different from
the parameters of the affine plane based code of Construction II.

Construction V: Let Γ be the incidence matrix of a code, which is obtained by removing the first row (which
corresponds to a server) and all the columns in the set {(i− 1)q + 1 : 1 ≤ i ≤ q}, (the columns which correspond
to the items of the removed server) from the incidence matrix of C2(q). We denote the resulting uniform CBC by
C3(q).

Example 21. The incidence matrix of the uniform code C3(4) is given by

Γ =



1 0 0 1 0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0 0 1 0 1
0 0 1 0 0 1 0 0 1 0 0 1 1
0 0 0 1 0 0 0 0 1 0 1 0 0
1 0 0 0 0 0 0 1 0 0 0 1 0
0 1 0 0 0 1 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 1 0 0 0
0 0 0 0 1 0 1 0 0 0 0 1 0
1 0 0 0 0 1 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 1 1 0 0 0
0 0 1 1 0 0 0 1 0 0 0 0 0



Theorem 22. The code C3(q) is an optimal (q− 1)-uniform (q2− 3, (q− 1)(q2− 3), q2− q− 1, q2− q− 1)-CBC,
attaining bound (2).

Proof. First, the parameters n, N , m, and c directly follow from the definition of the code. Then, we need to prove
that the parameter k of Construction V is the same as in Construction IV. Consider any set R of r columns of Γ,
1 ≤ r ≤ q2− q− 1. We expand every column in R by adding a zero in the first position. These expanded columns
are the columns of the incidence matrix of the uniform code C2(q), which cover r points, not including the first
point. Thus the original columns from R cover r points.

Next we prove that the code has the optimal number of data items. Given that m = k = q2 − q − 1 and
c = q − 1 we have ⌊

(k − 1)
(
k
c

)(
k−1
c

) ⌋
=

⌊
(q2 − 3)(q2 − 2q) + q2 − 3q + 2

q2 − 2q

⌋
= q2 − 3 = n.

Acknowledgment

The authors thank the anonymous referees for their valuable comments that helped to improve the presentation of
the paper.

References

[1] E. Agrell, A. Vardy, and K. Zeger. Upper bounds for constant-weight codes. Information Theory, IEEE
Transactions on, 46(7):2373–2395, 2000.

[2] I. Anderson. Combinatorial designs and tournaments. Clarendon Press, Oxford, 1997.

13



[3] N. Balachandran and S. Bhattacharya. On an extremal hypergraph problem related to combinatorial batch
codes. Discrete Applied Mathematics, 162:373 – 380, 2014.

[4] S. Bhattacharya, S. Ruj, and B. Roy. Combinatorial batch codes: A lower bound and optimal constructions.
Advances in Mathematics of Communications, 3(1):165–174, 2012.
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