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Abstract. We develop a new method for estimating the discrepancy
of tensors associated with multiparty communication problems in the
“Number on the Forehead” model of Chandra, Furst and Lipton. We
define an analogue of the Hadamard property of matrices for tensors in
multiple dimensions and show that any k-party communication prob-
lem represented by a Hadamard tensor must have Ω(n/2k) multiparty
communication complexity. We also exhibit constructions of Hadamard
tensors, giving Ω(n/2k) lower bounds on multiparty communication com-
plexity for a new class of explicitly defined Boolean functions.

1 Introduction

Communication complexity was introduced by Yao [23] in 1979. Two players
wish to compute f(x, y). One player knows x, and the other knows y. Both
have unlimited computational power. The communication complexity of f is the
number of bits they must exchange on an arbitrary input in order to determine
the value of f . This model and many of its variants have been widely studied
[14]. Communication complexity arguments have been used to derive results in
circuit complexity and in other computational models.

We consider the multiplayer model of Chandra, Furst, and Lipton [7] usually
called the “Number on the Forehead” model. With k players, the input is par-
titioned into k parts: x1, . . . , xk. The i-th player has access to every xj except
xi. The Number on the Forehead model is stronger than the 2-party model, and
sometimes the overlap between the players’ inputs can be used to obtain surpris-
ing upper bounds (e.g. [18, 17]). This model is harder to analyze than the 2-party
model, and very few lower bounds are known. On the other hand, lower bounds in
this model have many applications in complexity theory, including constructions
of pseudorandom generators for space bounded computation, universal traver-
sal sequences, and time-space tradeoffs [2], as well as circuit complexity lower
bounds [13, 16, 18].
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The largest known lower bounds for explicit functions are of the form Ω(n/2k)
where k is the number of players, and n is the number of bits each player misses.
The first bounds of this form were given by Babai, Nisan and Szegedy [2] for
the “quadratic character of the sum of coordinates” (QCS) function. They also
gave an Ω(n/4k) lower bound for the “generalized inner product” (GIP) func-
tion that was later improved to Ω(n/2k) by Chung and Tetali [10]. Chung [9]
and Raz [19] generalized the method of [2] to give a sufficient condition for a
function to have Ω(n/2k) multiparty communication complexity. Raz [19] also
obtained Ω(

√
n/2k) lower bounds for a new function based upon matrix multi-

plication over GF(2). Babai, Hayes and Kimmel [3] obtained further examples
of functions with Ω(n/2k) multiparty communication complexity. All of these
lower bounds were obtained by estimating discrepancy, and so they also hold in
the distributional and randomized communication complexity models.

The known bounds all decrease exponentially as the number of players grows,
becoming trivial for k > log n. It is a major open problem, with important
implications in circuit complexity, to prove nontrivial lower bounds on multiparty
communication problems for a large number of players. The class ACC0, defined
by Barrington [4], consists of languages recognized by constant depth, unbounded
fan-in polynomial size circuit families with AND, OR, NOT and MODm gates
for a fixed m. By the results of [24, 5, 13], families of functions that belong to
ACC0 can be computed by multiparty protocols with polylogarithmic (in n)
communication by a polylogarithmic (in n) number of players (where n is the
number of bits each player misses). Separating ACC0 from other complexity
classes (e.g. NP) is a major open problem, and a sufficiently large multiparty
communication complexity lower bound would resolve it.

As proved by Chor and Goldreich [8], any Boolean function defined by a Had-
amard matrix has Ω(n) 2-party communication complexity. Their proof uses
a lemma by Lindsey (see [11] p. 88) that estimates the largest possible sum
of entries in a submatrix of a Hadamard matrix. Lindsey’s lemma implies up-
per bounds on the discrepancy of functions defined by Hadamard matrices and
“nearly” Hadamard matrices. Babai, Nisan and Szegedy [2] generalized the proof
of Lindsey’s lemma to obtain upper bounds on the discrepancy of tensors asso-
ciated with certain multiparty communication problems. The lower bounds that
followed (e.g. [9, 10, 19, 3]) all used this approach. These papers did not consider
generalizing the Hadamard property to tensors. In fact, [10] mentions that it is
not clear how to generalize Hadamard matrices to tensors.

In this paper we propose a generalization of the Hadamard property of ma-
trices to tensors of arbitrary dimension. We show that any k-party communica-
tion problem represented by a Hadamard tensor must have Ω(n/2k) multiparty
communication complexity. We construct families of Hadamard tensors, giving
Ω(n/2k) lower bounds for a new class of explicitly defined Boolean functions.
Our Hadamard property is stronger than the sufficient condition of Chung [9]
and Raz [19] for Ω(n/2k) bounds, and could yield larger than Ω(n/2k) lower
bounds. There are no matching upper bounds known for functions represented
by Hadamard tensors. We show how the Chung-Raz condition and some pre-
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vious lower bounds fit into a “nearly” Hadamard framework. We believe that
Hadamard tensors may also be of independent interest.

Our approach is based upon a new general upper bound on the discrepancy
of tensors in terms of the largest possible value achievable by multiplying a
collection of lines of the tensor by −1 and taking the sum of the entries of the
resulting tensor. We refer to this value as the weight. This measure has been
analyzed for matrices (see e.g. [1, 20]), and the corresponding matrix problem is
sometimes called the “switching lights game”. Generalizing the switching lights
game to tensors was previously suggested in [10]. As far as we know, the general
upper bound we give for the discrepancy of a tensor in terms of its weight
is new. We also show that this upper bound is not too much larger than the
actual discrepancy. Thus, the weight will give good bounds and may be easier
to use than directly computing discrepancy. Since our lower bounds are based
on discrepancy, they also hold in the distributional and randomized models.

2 Preliminaries

In the k-party model of Chandra, Furst and Lipton [7], k players with unlimited
computational power wish to compute the value of a function f : X1×· · ·×Xk →
{−1, 1} on input x = (x1, . . . , xk). Usually we assume that X1 = . . . = Xk =
{0, 1}n. The function f is known to each player, and player Pi gets all of the
input except xi ∈ Xi. Players communicate by broadcasting messages, so all
players receive all messages. If each player misses n bits of input, then n+1 bits
of communication is sufficient: Player P2 broadcasts x1, and then player P1 who
now has the entire input broadcasts the answer.

Definition 2.1. The deterministic k-party communication complexity of f (de-
noted C(f)) is the number of bits communicated by the players on the worst input
x using the best protocol for computing f .

Definition 2.2. Let µ be a probability distribution over the input of f . The bias
achieved by a protocol P is defined as |Pr[P (x) = f(x)] − Pr[P (x) �= f(x)]| ,
where x is chosen according to the distribution µ.

The ε-distributional communication complexity of f (denoted Cε,µ(f)) is the
number of bits communicated by the players on the worst input x using the best
protocol for computing f that achieves bias at least ε under the distribution µ.
When µ is the uniform distribution we abbreviate to Cε(f).

Definition 2.3. [2] A subset Zi ⊆ X1 × · · · ×Xk is called a cylinder in the i-th
dimension, if membership in Zi does not depend on the i-th coordinate, that is for
every (x1, . . . , xi, . . . , xk) ∈ Zi and every x′

i ∈ Xi we have (x1, . . . , x
′
i, . . . , xk) ∈

Zi as well. A subset Z ⊆ X1 × · · · ×Xk is called a cylinder intersection if it can
be represented as Z = ∩k

i=1Zi, where each Zi is a cylinder in the i-th dimension.

A protocol can be thought of as reducing the space of possible inputs at each
step until all the remaining possibilities give the same output. A message from
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player Pi winnows the input space, but not along the i-th dimension. Thus it
causes the space of possible inputs to be intersected with a cylinder in the i-th
dimension. After each message the consistent inputs form a cylinder intersection.

Definition 2.4. The discrepancy of f on the cylinder intersection Z (denoted
DiscZ(f)) is defined by

DiscZ(f) = |Pr[(x ∈ Z) ∧ (f(x) = 1)] − Pr[(x ∈ Z) ∧ (f(x) �= 1)]| ,

where x is chosen according to the uniform distribution. The discrepancy of f
(denoted Disc(f)) is the maximum of DiscZ(f) over all cylinder intersections Z.

Since Disc(f) is defined with respect to the uniform distribution, and the
output of f is from {−1, 1}, we have the following:

DiscZ(f) = |
∑
x∈Z

f(x)| / |X1 × . . . × Xk| .

Lemma 2.1. [2] For any function f : X1 × X2 × · · · × Xk → {−1, 1}, C(f) ≥
log2(1/Disc(f)) and Cε(f) ≥ log2(ε/Disc(f)).

3 A General Upper Bound on Discrepancy

Problems in 2-party communication complexity can be represented as matrices
with rows labeled by the possible inputs for player P1 and columns labeled by
the possible inputs for player P2. An entry in the matrix at location (x, y) is
given by f(x, y).

A multiparty communication complexity problem can be represented by a
tensor, the multidimensional analogue of a matrix. Each dimension of the tensor
is labeled by the piece of input missed by a player. That is, the i-th dimension of
the tensor is indexed by the elements of Xi. We denote by A(x1, . . . , xk) the entry
of the k-dimensional tensor A at location (x1, . . . , xk). For tensor Af representing
function f we have Af (x1, . . . , xk) = f(x1, . . . , xk). If |X1| = . . . = |Xk| = N ,
we say that the tensor has order N .

Definition 3.1. Given a tensor A in k dimensions, a line of A is any vec-
tor formed by fixing all but one coordinate of A. A face of A is any (k − 1)-
dimensional tensor formed by fixing one coordinate of A.

A tensor of order N has N entries in each line and Nk−1 entries in each face. It
has Nk−1 lines and N faces along each of the k dimensions.

Definition 3.2. Let A be a tensor with ±1 entries. We say that a line of the
tensor A is flipped if each entry in that line is multiplied by −1.

Definition 3.3. We say that a tensor is cylindrical in the i-th dimension, if it
does not depend on the i-th coordinate xi.
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If a tensor is cylindrical in the i-th dimension, the entries of any given line
along the i-th dimension are identical, and the corresponding N faces are iden-
tical. Thus, a k-dimensional cylindrical tensor can be specified by a (k − 1)-
dimensional tensor (specifying the face that is repeated N times).

Definition 3.4. We define the excess of a tensor A (denoted S(A)) to be the
sum of its entries; that is, S(A) =

∑
x∈X1×···×Xk

A(x).

Lemma 3.1. (implicit in [10]) Disc(f) = max S(Af ◦C1◦. . .◦Ck)/Nk, where Af

is the ±1 tensor representing f , and each Ci is a 0/1 tensor which is cylindrical
in the i-th dimension. (Af ◦ C1 ◦ . . . ◦ Ck denotes the entrywise product of the
tensors A,C1, . . . , Ck.)

Proof. Let Zi ⊆ X1 × · · · × Xk be a cylinder in the i-th dimension, and let
Ci be the 0/1 tensor representing the characteristic function of the cylinder
Zi. Then Ci is cylindrical in the i-th dimension. Conversely, every 0/1 tensor
which is cylindrical in the i-th dimension represents the characteristic function
of some cylinder in the i-th dimension. The lemma immediately follows from the
definitions and our notation. 
�

Definition 3.5. We define the weight of a tensor A (denoted W (A)) to be the
largest possible excess of a tensor A′ where A′ can be obtained from A by flipping
an arbitrary collection of lines (in any direction). Note that the order in which
the flips are performed does not matter.

Alternatively, W (A) can be described as W (A) = max S(A ◦ T1 ◦ . . . ◦ Tk),
where each Ti is a ±1 tensor which is cylindrical in the i-th dimension. (A ◦T1 ◦
. . . ◦ Tk denotes the entrywise product of the tensors A, T1, . . . , Tk.)

Theorem 3.1. Disc(f) ≤ W (Af )/Nk, where N is the order of the tensor Af

representing f .

Proof. For i = 1, . . . , k, let Ci be an arbitrary 0/1 tensor which is cylindrical
in the i-th dimension. We inductively define related ±1 tensors Ĉi and Ti. For
each i = 1, . . . , k, we define a (k − 1)-dimensional ±1 tensor Ĉi, where the
i-th coordinate is left out. For example, Ĉ1 is a (k − 1)-dimensional tensor that
depends on the k−1 coordinates x2, . . . , xk. To simplify notation, we will denote
the entries of these tensors by Ĉi(x), with the understanding that for Ĉi, xi is
not used for indexing. For example, Ĉ1(x) stands for Ĉ1(x2, . . . , xk).

We define Ĉ1 as follows: Ĉ1(x) = sign(
∑

x1
Af (x) ·C2(x) · · ·Ck(x)). In other

words, to obtain Ĉ1, we collapse the k dimensional tensor Af ◦ C2 ◦ . . . ◦ Ck to
a k − 1 dimensional tensor by summing the entries of each line along the first
dimension and taking the sign of each line sum as an entry of Ĉ1. (If a given line
sums to a negative number, the corresponding entry in Ĉ1 is −1, otherwise it is
1.) We use Ĉ1 to define the ±1 tensor T1, which is k-dimensional, and cylindrical
in the first dimension. T1 is obtained by taking N copies of Ĉ1 and using them
as the faces of T1 (along the first dimension).
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Assume that T1, . . . , Ti−1 are already defined. We define Ĉi as follows:

Ĉi(x) = sign(
∑
xi

Af (x) · T1(x) · · ·Ti−1(x) · Ci+1(x) · · ·Ck(x))

Once Ĉi is defined we use it to obtain Ti which is k-dimensional, and cylindrical
in the i-th dimension. Ti is obtained by taking N copies of Ĉi and using them
as the faces of Ti (along the i-th dimension).

First we show S(Af ◦C1 ◦C2 ◦ . . .◦Ck) ≤ S(Af ◦T1 ◦C2 ◦ . . .◦Ck). When we
replace C1 by T1, the contribution of each line of the tensor Af ◦C1 ◦C2 ◦ . . .◦Ck

(along the first dimension) is replaced by a nonnegative value at least as large
as the absolute value of the sum of the entries of the original line. To see this,
notice that by definition, Ĉ1 and T1 contain the signs of the sum of the entries
of the corresponding lines of Af ◦C2 ◦ . . . ◦Ck. (If the sum is 0, we use 1 for the
sign.) Obtaining Af ◦ T1 ◦ C2 ◦ . . . ◦ Ck corresponds to multiplying each entry
of a given line of Af ◦ C2 ◦ . . . ◦ Ck by the sign of the sum of the entries of
that line. Recall that each Ci is cylindrical, thus the lines of C1 along the x1

coordinate are constants (all 0 or all 1). If all entries of a given line of C1 are 0
then the corresponding line of Af ◦C1 ◦C2 ◦ . . .◦Ck did not contribute anything
to the sum, while after the replacement it contributes a nonnegative value. For
the lines of C1 that are constant 1, the contribution of the corresponding line of
Af ◦ C1 ◦ . . . ◦ Ck is replaced by its absolute value. Thus, we never decrease the
total sum. Similarly, at each inductive step above, we maintain that S(Af ◦T1 ◦
. . . ◦ Ti−1 ◦ Ci ◦ . . . ◦ Ck) ≤ S(Af ◦ T1 ◦ . . . ◦ Ti ◦ Ci+1 ◦ . . . ◦ Ck). It follows that
S(Af ◦ C1 ◦ . . . ◦ Ck) ≤ S(Af ◦ T1 ◦ . . . ◦ Tk). By Lemma 3.1 and the definition
of W (Af ) the theorem follows. 
�

The following simple example shows that the discrepancy Disc(f) can be
strictly smaller than W (Af )/Nk. Let k = 2, and f be the parity function, i.e.,
f is 1 if the number of 1’s among the input bits is even, and −1 otherwise.
Then the discrepancy Disc(f) = 1/4, while W (Af )/N2 = 1. To see this, note
that in the matrix corresponding to the parity function the sum of entries in
any rectangle is at most N2/4. On the other hand, it is possible to flip the lines
of the matrix so that we obtain the all 1 matrix. (Theorem 8 in [10] appears
to claim that Disc(f) = W (Af )/Nk. However, this seems to be a mistake in
notation, and they in fact prove Lemma 3.1.)

The following theorem shows that the discrepancy can not be too much
smaller than the bound given by the weight. Thus, using the weight for bounding
discrepancy will give good bounds.

Theorem 3.2.
Disc(f) ≥ W (Af )/(2kNk) .

Proof. Consider the lines used to generate W (Af ). Partition the entries of Af

into 2k groups according to whether they were flipped by the lines along each of
the k dimensions. Along each dimension the entries flipped by the lines form a
cylinder, as do the unflipped entries. Thus the partition splits the entries of Af
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into 2k cylinder intersections. At least one of these cylinder intersections has en-
try sum with absolute value at least W (Af )/2k. Using that cylinder intersection
in the discrepancy definition gives discrepancy at least W (Af )/(2kNk). 
�

It is known that W (A) ≥ N3/2/
√

2 for any N by N matrix A with ±1 entries
(see Theorem 5.1 in [1]; see also [6] (c.f. [15])). We show the following extension
of that result:

Theorem 3.3. W (A) ≥ Nk− 1
2 /

√
2, for any k dimensional ±1 tensor A of or-

der N .

Proof. Consider the set of matrices formed by fixing all but the first two di-
mensions of A. Each of the matrices has weight at least N3/2/

√
2. They do not

intersect, so their lines can be flipped independently giving a tensor weight at
least Nk−2(N3/2/

√
2). 
�

A standard probabilistic argument shows that there are tensor with weight
O(

√
kNk− 1

2 ). Proving similar upper bounds on the weight of explicitly defined
tensors would yield lower bounds of the form Ω(n) on multiparty communication
complexity, for any number of players. Thus, estimating the weight of tensors
can potentially give close to optimal bounds on the discrepancy, and on the
multiparty communication complexity of the corresponding functions.

4 Hadamard Tensors

An N by N matrix with ±1 entries is called a Hadamard matrix if the inner
product of any two of its distinct rows is 0. It is equivalent to state the condition
for columns: The product of any two distinct rows is 0 if and only if the product
of any two distinct columns is 0.

The Hadamard property is invariant under the arbitrary flipping of lines.
Thus, Lindsey’s lemma (see [11] p. 88) gives the following well known statement:

Lemma 4.1. For any Hadamard matrix A of order N , W (A) ≤ N3/2.

We define the product of t lines (along the same dimension) of a tensor as
the sum of entries in their entrywise product. For example, if l1, . . . , lt are lines
along the first dimension, then their product is

∑
x1

l1(x1) · · · lt(x1).
Let A be a k-dimensional tensor of order N with ±1 entries. For each of

the first k − 1 dimensions i = 1, . . . , k − 1, choose two distinct indices yi, zi ∈
Xi. Picking exactly one of yi or zi for each i = 1, . . . , k − 1 gives a point in
X1×. . .×Xk−1, and each such point specifies a line of A along the last coordinate
xk. There are 2k−1 possible choices for the selection described above, and since
for each i = 1, . . . , k−1, yi �= zi, we get 2k−1 distinct lines this way. We say that
the tensor A is Hadamard, if the product of any 2k−1 lines chosen in this way is
0. More formally, we define Hadamard tensors as follows:
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Definition 4.1. Let A be a k-dimensional tensor of order N with ±1 entries.
We say that A is a Hadamard tensor if for any y1, z1 ∈ X1, . . . , yk−1, zk−1 ∈
Xk−1 such that yi �= zi for i = 1, . . . , k − 1, the following holds:

∑
xk∈Xk

∏
x1∈{y1,z1},...,xk−1∈{yk−1,zk−1}

A(x1, x2, . . . , xk) = 0 .

When k = 2 this definition is identical to the definition of Hadamard matrices.

Lemma 4.2. Let Axi denote the face of A obtained by fixing the i-th coordinate
to the value xi. Let k ≥ 3. A is a k-dimensional Hadamard tensor if and only
if for any i �= k and yi �= zi the entrywise product of two faces Ayi ◦ Azi is a
(k − 1)-dimensional Hadamard tensor.

Proof. Without loss of generality, let i = k − 1. We need to show that for any
y1, z1 ∈ X1, . . . , yk−2, zk−2 ∈ Xk−2 such that yi �= zi for i = 1, . . . , k − 2, the
following holds:

∑
xk∈Xk

∏
x1∈{y1,z1},...,xk−2∈{yk−2,zk−2}

Ayk−1 ◦ Azk−1(x1, . . . , xk−2, xk) = 0 .

But Ayk−1 ◦ Azk−1(x1, . . . , xk−2, xk) =
∏

xk−1∈{yk−1,zk−1} A(x1, x2, . . . , xk), and
the statement directly follows from Definition 4.1. The proof in the reverse di-
rection is similar. 
�

Since the k-th coordinate plays a special role in the definition of a Hadamard
tensor, we can say that the definition is given with respect to the k-th dimension.
It is not hard to see (using Lemma 4.2) that, just as for matrices, if a tensor is
Hadamard with respect to one dimension, then it is Hadamard with respect to
any other dimension. We leave the proof of this statement for the full version of
the paper.

Lemma 4.3. Let A′ be a tensor obtained from a Hadamard tensor A by flipping
a collection of lines. Then A′ is a Hadamard tensor.

Proof. This follows by induction from the characterization of Hadamard tensors
given by Lemma 4.2. The result holds for matrices since after flipping a row or
column any row or column product that was 0 remains 0. Suppose the result
holds for tensors of dimension k − 1. Consider any face product Ayi ◦ Azi of a
k-dimensional Hadamard tensor A. Flipping a line of A may miss Ayi and Azi

entirely, intersect both in one entry, or flip an entire line of Ayi or Azi . In the
first case the face product is unaffected. In the second case the face product
is unchanged since the corresponding entry is negated twice. In the third case
the face product has a line flipped. By the induction hypothesis this is still a
Hadamard tensor. 
�
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4.1 The Discrepancy of Hadamard Tensors

In light of Theorem 3.1, we can prove upper bounds on the discrepancy of any
tensor A by proving upper bounds on W (A). Let Wk(N) denote the largest
possible value of W (A) if A is a k-dimensional Hadamard tensor of order N .

Lemma 4.4. Let A be a k-dimensional Hadamard tensor of order N . Then

(W (A))2 ≤ N2k−1 + Nk+1(Wk−1(N)) .

Proof. Let A′ be the k-dimensional tensor obtained from A by flipping a collec-
tion of lines that achieves maximal excess, that is W (A) = S(A′). By Lemma
4.3, A′ is a Hadamard tensor, and by Lemma 4.2 the entrywise product of any
two distinct faces of A′ is a Hadamard tensor in k−1 dimensions. Thus, we have
the following estimates (using the Cauchy-Schwartz inequality).

(S(A′))2 =

( ∑
x∈X1×···×Xk

A′(x)

)2

≤ Nk−1
∑

x1,...,xk−1

(∑
xk

A′(x)

)2

= Nk−1

⎛
⎝Nk +

∑
i�=j

∑
x1,...,xk−1

A′(x1, . . . , xk−1, i)A′(x1, . . . , xk−1, j)

⎞
⎠

≤ Nk−1(Nk + (N2 − N)(Wk−1(N))) ≤ N2k−1 + Nk+1(Wk−1(N))) .
�

Theorem 4.1. Let A be a k-dimensional Hadamard tensor of order N . Then
W (A) ≤ φNk−(1/2k−1) where φ = (1 +

√
5)/2.

Proof. Follows by induction using Lemma 4.1 and Lemma 4.4. 
�

Theorem 4.2. Let f : ({0, 1}n)k → {1,−1} be a function represented by a
Hadamard tensor. Then Disc(f) ≤ φN−1/2k−1

where φ = (1 +
√

5)/2.

Proof. Follows from Theorem 4.1 and Theorem 3.1. 
�
By the results of [2] (see Lemma 2.1) this yields the following:

Theorem 4.3. Let f : ({0, 1}n)k → {1,−1} be a function represented by a
Hadamard tensor. Then C(f) = Ω(n/2k), and Cε(f) = Ω((n/2k) + log2 ε).

4.2 Constructions of Hadamard Tensors

Let x1, ..., xk be n-bit strings. Consider each of these strings as an element of
the finite field GF(2n), representing the field elements as univariate polynomials
over GF(2) modulo a fixed irreducible polynomial of degree n. (In this represen-
tation the i-th bit (0 ≤ i ≤ n − 1) of a given n-bit string indicates whether the
corresponding polynomial p(a) contains the term ai.)
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Let χS stand for the function obtained by raising −1 to the parity of the bits
with coordinates in S, such that χS is 1 when the parity is even, and −1 when
the parity is odd. It is not hard to see that for any x, y ∈ {0, 1}n,

χS(x)χS(y) = χS(x + y) , (1)

where + represents addition in GF(2n). (In fact the χS are the additive char-
acters of GF(2n).) By the definition of χS , χS(x)χS(y) = χS(x ⊕ y), viewing x
and y as strings and taking bitwise XOR, which is the same as χS(x + y) using
addition in the field.

Definition 4.2. Given a function f : {0, 1}n → {1,−1}, we define the function
FFMn,k

f : ({0, 1}n)k → {1,−1} by

FFMn,k
f (x1, . . . , xk) = f(x1 · x2 · . . . · xk) ,

where x1 · x2 · . . . · xk denotes the product of the field elements x1, . . . , xk, and f
is applied to the n-bit string representing the resulting field element.

For S ⊆ {0, 1, . . . , n − 1}, we denote by FFMn,k
S the function FFMn,k

χS
.

“FFM” is an abbreviation for “Finite Field Multiplication”.

Theorem 4.4. For every ∅ �= S ⊆ {0, 1, . . . , n − 1}, the k-dimensional tensor
associated with FFMn,k

S is Hadamard.

We need the following technical lemma:

Lemma 4.5. For any k and for any y1, z1, . . . , yk, zk ∈ GF(2n) with y1 �=
z1, . . . , yk �= zk, ∑

x1∈{y1,z1},...,xk∈{yk,zk}
x1x2 · · ·xk �= 0

Proof. The proof is by induction. For distinct y1 and z1, y1 + z1 is nonzero since
in GF(2n) each element is its own additive inverse. Suppose the statement holds
for k − 1. Let yk, zk ∈ GF(2n) with yk �= zk.∑

x1∈{y1,z1},...,xk∈{yk,zk}
x1x2 · · ·xk

= yk

∑
x1∈{y1,z1},...,xk−1∈{yk−1,zk−1}

x1x2 · · ·xk−1 +

zk

∑
x1∈{y1,z1},...,xk−1∈{yk−1,zk−1}

x1x2 · · ·xk−1

= (yk + zk)
∑

x1∈{y1,z1},...,xk−1∈{yk−1,zk−1}
x1x2 · · ·xk−1

Since yk + zk is nonzero (because in GF(2n) each element is its own additive
inverse), and the sum is nonzero by the induction hypothesis, this is nonzero. 
�
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Proof. (of Theorem 4.4) Consider the following sum from Definition 4.1:∑
xk

∏
x1∈{y1,z1},...,xk−1∈{yk−1,zk−1}

χS(x1x2 · · ·xk)

By (1) this is the same as

∑
xk

χS

⎛
⎝ ∑

x1∈{y1,z1},...,xk−1∈{yk−1,zk−1}
x1x2 · · ·xk

⎞
⎠

=
∑
xk

χS

⎛
⎝xk

∑
x1∈{y1,z1},...,xk−1∈{yk−1,zk−1}

x1x2 · · ·xk−1

⎞
⎠

As shown in Lemma 4.5, the inner sum evaluates to a non-zero field element,
so for some fixed non-zero w, we obtain

∑
xk

χS(xkw) =
∑

xk
χS(xk) = 0 
�

By Theorem 4.3 we immediately obtain the following:

Theorem 4.5. For every ∅ �= S ⊆ {0, 1, . . . , n − 1}, C(FFMn,k
S ) = Ω(n/2k),

and Cε(FFMn,k
S ) = Ω(n/2k + log2 ε).

Although all finite fields of order 2n are isomorphic, it is necessary to spec-
ify exactly which one is being used to obtain explicit constructions of Boolean
functions this way. The deterministic algorithm developed by Shoup [21] can be
used to construct an irreducible polynomial of degree n for any given n. Thus
the family of Boolean functions associated with the tensors FFMS belongs to
the complexity class P . Note also that the polynomial xn+xn/2+1 is irreducible
over GF(2) when n is of the form n = 2 · 3m (Theorem 1.1.28 in [22]). Assuming
that an irreducible polynomial of degree n is given, we can show that the cor-
responding Boolean function can be computed by depth O(log k) ACC circuits.
We leave the proof of this for the full version of the paper.

4.3 Relaxations of the Hadamard Property

Raz [19] considered the function defined as follows: each part of the input xi ∈
{0, 1}n is interpreted as a

√
n by

√
n matrix with 0, 1 entries. The function is

defined by the bit in the upper left corner of the matrix obtained by taking
the product (over GF(2)) of the k matrices. Raz [19] proved that this function
has (probabilistic) k-party communication complexity Ω(

√
n/2k). The tensor

associated with this function is not Hadamard, but we can show that it contains
a subtensor of order 2

√
n which is Hadamard. Thus, our methods give Ω(

√
n/2k)

lower bounds on the k-party communication complexity of the function.
Chung [9] and Raz [19] state a sufficient condition for a function to have

Ω(n/2k) multiparty communication complexity (generalizing the method of [2]).
We can show that satisfying the condition of [9] and [19] is equivalent to being
nearly Hadamard in the following, relaxed sense: Instead of requiring that all
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the products of the 2k−1-tuples of lines selected according to the Hadamard def-
inition are 0, it is enough to require that the products are small on average; e.g.
that the sum of the squares of the line products is small. The tensor correspond-
ing to the “generalized inner product” (GIP) function of [2] is nearly Hadamard
in this relaxed sense, but it is not Hadamard. For the tensor corresponding to
the “quadratic character of the sum of coordinates” (QCS) function of [2] we
can show that each (nontrivial) product of the selected 2k−1 tuples of lines is
small (at most 2k

√
N). We leave the proof for the full version of the paper. Note

that the property we prove for QCS is stronger than the condition required in
[9, 19], but weaker than the Hadamard property.

Grolmusz [12] proved an O(kn/2k) upper bound on the multiparty commu-
nication complexity of GIP, showing that the Ω(n/2k) lower bounds for GIP
cannot be significantly improved. There are no similar upper bounds known for
any of the functions that we presented as examples of Hadamard tensors. The
examples of Hadamard tensors we give and the QCS function are candidates for
having Ω(n/poly(k)) multiparty communication complexity.

References

[1] N. Alon, J. H. Spencer, “The Probabilistic Method”, Wiley-Interscience, 2000.
[2] L. Babai, N. Nisan, M. Szegedy, “Multiparty Protocols, Pseudorandom Generators

for Logspace, and Time-Space Trade-Offs”, JCSS, 45(2):204-232, 1992.
[3] L. Babai, T. P. Hayes, P. G. Kimmel, “The Cost of the Missing Bit: Communica-

tion Complexity with Help”, Proc. 30th ACM STOC, 673-682, 1998.
[4] D. Barrington, “Bounded-width polynomial size branching programs recognize

exactly those languages in NC1”, JCSS, 38(1):150-164, 1989.
[5] R. Beigel, J. Tarui, “On ACC”, Proc. 32nd IEEE FOCS, 783-792, 1991.
[6] M. R. Best, “The Excess of a Hadamard Matrix”, Indag. Math., 39(5):357-361,

1977.
[7] A. Chandra, M. Furst, R. Lipton: “Multiparty protocols”, Proc. 15th ACM STOC,

94-99, 1983.
[8] B. Chor, O. Goldreich, “Unbiased Bits from Sources of Weak Randomness and

Probabilistic Communication Complexity”, SIAM J. Comp. 17:230-261, 1988.
[9] F. Chung, “Quasi-Random Classes of Hypergraphs”, Random Structures and Al-

gorithms, 1(4):363-382, 1990.
[10] F. Chung, P. Tetali, “Communication complexity and quasi randomness”, SIAM

J. Discrete Math., 6(1):110-123, 1993.
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