1 Topics Covered

- Hall’s theorem
- Min-Max theorems

2 Hall’s Theorem

In this section, we define system of distinct representatives, state and prove Hall’s theorem.

Definition 1. System of Distinct Representatives: Given a collection of subsets S_1, S_2, \ldots, S_m of \mathcal{U}. A set of points x_1, x_2, \ldots, x_m s.t $x_i \in \mathcal{U}$ is called a system of distinct representatives if

- $x_i \in S_i$ for $i = 1, \ldots, m$
- $x_i \neq x_j$ for $i \neq j$

A basic requirement for such a system to exist is that $|\mathcal{U}| \geq m$. A set of necessary conditions are provided for such a system to exist. These together are called Hall’s condition.

Definition 2. Hall’s Condition: For any $I \subseteq [m]$

$$\left| \bigcup_{i \in I} S_i \right| \geq |I|$$

It is easy to see that this is necessary for the existence of a system of distinct representatives. In the following theorem we show that this is also sufficient.

Theorem 1. Hall’s Theorem A system of Distinct Representatives exists for sets S_1, S_2, \ldots, S_m iff $\forall I \subseteq [m]$,

$$\left| \bigcup_{i \in I} S_i \right| \geq |I|$$
Proof. Proof is by induction on m.

Base case: Trivially true for $m=1$.

Induction hypothesis: Assume the statement holds for any $S_1, S_2, ... S_t$ for $t < m$. Now to prove for case of m sets, from assumptions we have $\forall I \subseteq [m], |\bigcup_{i \in I} S_i| \geq |I|$. We now have 2 cases:

1. $\forall k : 1 \leq k < m$, and for any $I \subset [m]$ s.t. $|I| = k$,

$$\bigg|\bigcup_{i \in I} S_i\bigg| > k$$

Now for an arbitrary set S_i, we can pick an element $x_i \in S_i$ as a representative, and remove x_i from all other sets. Remaining $m-1$ sets satisfy Hall’s condition, and hence by the induction hypothesis, there exists a system of direct representatives for them.

2. $\exists k : 1 \leq k < m$ and $\exists I \subset [m], |I| = k$ s.t.

$$\bigg|\bigcup_{i \in I} S_i\bigg| = k$$

For these sets S_i for $i \in I$, applying the induction hypothesis we have a system of representatives x_i for $i \in I$. Removing these from the remaining $m-k$ sets, we claim the sets $S_j, j \in [m] \setminus I$ satisfy Hall’s condition; for any $s \leq m-k$ any s of these sets contain at least s elements (for otherwise, the union of these s sets and the k sets $S_i, i \in I$ contain less than $s+k$ elements, which contradicts Hall’s condition). Hence by the induction hypothesis, the sets $S_j, j \in [m] \setminus I$ also have a system of distinct representatives.

\[\square \]

Definition 3. Matching A matching in a bipartite graph is a collection of edges s.t. no two edges have a common vertex.

A perfect matching is a matching that covers all the nodes. Now we state Hall’s theorem for matching in bipartite graphs.

Theorem 2. A bipartite graph with vertex set V_1 and V_2 has a perfect matching (from V_1 to V_2) iff for any $X \subseteq V_1$ the union of neighbors of $v \in X$ has at least $|X|$ vertices.

Proof. For each $v \in V_1$ define the set $S_v \subseteq V_2$ as the set of neighbours of v, and apply Hall’s theorem. \[\square \]

3 Min-Max theorems

A related question to the existence of a perfect matching in a bipartite graph is the size of a maximum sized matching in a graph; this result (König-Egerváry’s theorem) is similar to several such “min-max theorems” (such as Dilworth’s theorem, which we saw before). For example:
• **Dilworth’s theorem (Dilworth 1950)** The minimum number of chains (correspondingly antichains) which cover a partially ordered set is equal to the maximum size of an antichain (correspondingly chain) of the poset.

• **Menger’s theorem (Menger, 1927)** The minimum number of vertices separating two given vertices in a graph is equal to the maximum number of vertex-disjoint paths between them.

• **König-Egerváry’s theorem (König 1931, Egerváry 1931)** The size of a largest matching in a bipartite graph is equal to the size of the smallest vertex cover.