
Lower Bounds on Streaming Algorithms for
Approximating the Length of the Longest Increasing

Subsequence∗

Anna Gál†

UT Austin.
panni@cs.utexas.edu

Parikshit Gopalan‡

Microsoft Research - Silicon Valley.
parik@microsoft.com

September 8, 2009

Abstract

We show that any deterministic data-stream algorithm that makes a constant
number of passes over the input and gives a constant factor approximation of the
length of the longest increasing subsequence in a sequence of length n must use space
Ω(
√

n). This proves a conjecture made by Gopalan, Jayram, Krauthgamer and Kumar
[GJKK07] who proved a matching upper bound. Our results yield asymptotically tight
lower bounds for all approximation factors, thus resolving the main open problem from
their paper. Our proof is based on analyzing a related communication problem and
proving a direct sum type property for it.

1 Introduction

The data-stream model of computation has been studied intensively in recent years, mo-
tivated by the design of better algorithms for massive data sets arising from settings such
as the Internet, social and biological networks (see the surveys by Muthukrishnan [Mut05]
and Babcock et al. [BBD+02] for an overview of this area). Much of this work on the
algorithmic side has focused on designing highly efficient algorithms for simple problems
such as estimating some statistics about the data. The seminal work of Alon, Matias and
Szegedy demonstrated the surprising computational power of this model, by giving simple
and efficient randomized algorithms to approximate various frequency moments [AMS96].
They also noted that techniques from communication complexity could be applied to prove
unconditional lower bounds on the space complexity of such algorithms.

∗A preliminary version of this paper appeared in FOCS’07
†Supported in part by NSF Grants CCF-0430695 and CCF-0830756
‡Work done while at UT Austin and the University of Washington

1

An area that has been extensively studied is that of estimating the sortedness of a data-
stream. This is a natural problem that arises in several scenarios [GJKK07], and since
efficient sorting is not possible in the data stream model, it is of interest to design highly
efficient algorithms that are able to estimate sortedness of a large data set on the fly. Several
possible measures of sortedness have been considered in the literature including inversions
[AJKS02, GZ03], transpositions [CMS01], Edit distance a.k.a. Ulam distance [GJKK07] and
the length of the longest increasing subsequence [LNVZ06, GJKK07, SW07].

Given a sequence σ of length n over an ordered alphabet [m], an increasing subsequence
in σ is a subsequence i1 < · · · < ik such that σ(i1) < · · · < σ(ik). Let lis(σ) denote the
length of the longest increasing subsequence (LIS) in σ. A closely related quantity is the
edit-distance from sortedness, denoted ed(σ) which is the number of edit operations needed
to sort a sequence. It can be shown that ed(σ) = n − lis(σ), since the best way to sort the
input is to identify an LIS and insert all the other elements into this subsequence. The LIS is
an important and well-studied object in its own right; see the books by Gusfield [Gus97] and
Pevzner [Pev03] for applications in bioinformatics and the survey by Aldous and Diaconis
[AD99]. There is a classical algorithm for computing the length of the LIS, known as Patience
Sorting, which was first discovered in the context of card games [AD99]. Patience Sorting
can naturally be viewed as a one-pass O(n logm) space data stream algorithm (though its
discovery far predates the advent of the data-stream model). The problem of finding more
space-efficient streaming algorithms for this problem has been well-studied.

Liben-Nowell, Vee, and Zhu [LNVZ06] showed an Ω(
√
n) space lower-bound for com-

puting lis(σ) exactly. Gopalan, Jayram, Kumar and Krauthgamer (hereafter referred to as
GJKK) [GJKK07] and Sun and Woodruff [SW07] independently improved this lower-bound
to Ω(n) even for randomized algorithms. This shows that Patience Sorting is optimal for
exact computation of lis(σ) and to get a better space bound, one needs to settle for approxi-
mation. We say that an integer ` is a 1+ε-approximation of lis(σ), if lis(σ) ≤ ` ≤ (1+ε) lis(σ).
Such an algorithm was given by GJKK, who present a deterministic one-pass streaming algo-
rithm which delivers a 1 + ε-approximation of lis(σ) using space O(

√
n
ε

logm) for any ε > 0.
They conjectured a Ω(

√
n) lower bound for getting a 1 + ε factor approximation for some

constant ε > 0.
The algorithm of GJKK is obtained by first showing an upper bound of t logm on the

maximum communication by any player in a t-player one-way communication protocol for
estimating the length of the LIS, when the string is broken into t blocks, and one block is
given to each player. Their algorithm simulates the protocol for t =

√
n where n is the

length of the input sequence.
The best lower-bound known before our results for the space requirement of streaming

algorithms for approximating the length of the LIS was Ω(1
ε

logm) for (1+ε) approximation,
which comes from analyzing the above communication problem with two players, and holds
for randomized algorithms with a constant number of passes [SW07]. GJKK were able to
prove their conjecture for a restricted class of algorithms, in a model where the bit-sizes of
the input are not taken into account. However, their proof only works when m ≥ 2

√
n, thus

in the standard model, their bound is not better than the Ω(logm) lower bound.

2

1.1 A communication problem

We obtain our bounds by analyzing a related communication problem that was proposed by
GJKK. The problem involves t-players P1, . . . , Pt, where player Pi holds a number xi ∈ [m].
Their goal is to decide whether the sequence x = (x1, . . . , xt) has lis(x) = 1 or if it has
lis(x) ≥ εt. We refer to this as the primitive problem. We then consider the OR of `
independent instances of this primitive problem, and the goal is to decide if any of the `
instances has lis ≥ εt or all have lis = 1.

GJKK showed (see Lemma 4.4 in [GJKK07]) that a lower bound on the the maximum
communication by any player in a t-player one-way communication protocol for the above
problem gives a lower bound on the space used by any one pass deterministic streaming
algorithm that gives a (1 + ε) approximation of the length of the LIS.

A straightforward upper bound for the above problem is to run the protocol for each
instance of the primitive problem separately. The hope for the conjecture is that the problem
has some kind of direct sum property, and one cannot do much better than the above
straightforward solution.

Direct sum problems in communication complexity have been studied in many scenarios,
and they can be very useful [KN97]. However, in many cases it is hard to prove that a direct
sum type property holds. Direct sum properties of problems that consist of taking the OR
of independent copies of some primitive problem have been studied in several contexts, and
the set disjointness problem is an important example of a problem of this type. [SS02] and
[BYJKS04] prove direct sum properties for these type of problems of certain measures related
to information complexity, introduced in [CSWY01]. These direct sum results yield strong
lower bounds on the randomized multi-party communication complexity of set disjointness
[SS02, BYJKS04, CKS03] and on the space complexity of randomized streaming algorithms
for several related problems.

1.2 Our results

We prove the conjecture made by GJKK, and obtain asymptotically tight lower bounds for
all approximation factors, thus resolving the main open problem from their paper.

Theorem 1.1. For any ε > 0, any deterministic data-stream algorithm that makes R passes
over the data and computes a 1 + ε-approximation of lis(σ) in a sequence σ of length n over
an alphabet [M] requires space Ω

(
1
R

√
n
ε

log(M
εn

)
)
.

Theorem 1.1 essentially matches the upper bound of O(
√

n
ε

logM) proved by GJKK for
one-pass algorithms for all ε > 0. It shows that no substantial improvement in their upper
bound is possible even if the algorithm were allowed to make a constant number of passes.
We should note that in our lower bound ε can take any value greater than 0, it can be a
large constant or even ω(1). If we take ε = 1

n
which corresponds to exactly computing the

length of the LIS, we recover the linear lower bound.
Our proof is based on analyzing the above communication problem. In communication

complexity, the standard techniques usually give bounds on the total communication, e.g.

3

the total length of the messages sent by all the players. For obtaining space lower bounds
for streaming algorithms, one needs to estimate the maximum communication, that is the
maximum (over all players) length of messages sent by the individual players. The standard
approach to showing lower bounds for maximum communication is to show a lower bound on
total communication and then divide by the number of players [BYJKS04, CKS03]. However,
we use tools that directly address the maximum communication.

As mentioned above, the hope for the conjecture of GJKK was that the problem should
have a direct sum property. We indeed show such a direct sum type property for the maxi-
mum communication. We are not aware of previous results that prove direct sum results for
maximum communication. One of the difficulties in obtaining such results is that a direct
sum result on total communication does not necessarily imply direct sum results on max-
imum communication. In fact we show that for a slight variant of the primitive problem,
a direct sum type property holds for the total communication, but not for the maximum
communication.

Finally, the kind of communication model considered plays a crucial role in this problem.
In this paper we only consider the “Number In Hand” (NIH) model, where the players
inputs are disjoint. Within the NIH model, there are two models of multi-party one-way
communication protocols studied in the literature. In both models, the players send messages
only once, in the order P1, . . . , Pt. In the first model, called the private messages model,
player Pi sends a message to player Pi+1 which is visible only to Pi+1. In the blackboard
model, the players write their messages on a blackboard that is visible to all players. In
order to show lower bounds for streaming algorithms, it suffices to consider the private
messages model. Many known lower bounds hold for the blackboard model, which is clearly
stronger [BYJKS04, CKS03]. Our lower bound comes by considering a promise version of
the primitive problem for which a direct sum type property holds in the private messages
model, but not in the blackboard model. In this paper we apply lower-bound techniques
that can exploit this difference.

Our communication complexity results give further insights into direct sum type prop-
erties and why such theorems are hard to prove. Our results highlight the fact that having
a strong direct sum property is sensitive to issues such as the type of communication (to-
tal versus maximum) and the type of model (blackboard versus private messages). Along
the way, we obtain a separation between the private messages and blackboard models of
deterministic one-way communication, this is the first such result to our knowledge.

1.3 Related Work

Independently of our work, Ergun and Jowhari [EJ08] subsequently gave a different proof
of the conjecture of GJKK. Their proof is based on analyzing a different communication
problem, where estimating total communication is sufficient to prove the conjecture. Their
lower bound is proved in the blackboard model. Note however that while our methods give
tight bounds for all approximation factors, this is not the case in [EJ08].

4

2 Preliminaries and Notation

We will consider the one-way multi-party communication model with t players P1, . . . , Pt who
are given inputs x1, . . . , xt respectively. Their goal is to compute the function f(x1, . . . , xt).
The players communicate in the order P1, . . . , Pt. We will consider two versions of the model,
the private messages model and the blackboard model. Most of our results will be for the
former.

We first define single round one-way protocols in the private messages model, At step 1,
player P1 sends a message M1 = M1(x1) to player P2, which is a function of its input x1. At
step i, player Pi sends a message Mi = Mi(xi,Mi−1) to player i + 1, which depends on its
input xi and the message Mi−1 received from player i− 1. At step t, player Pt must output
Mt(xt,Mt−1) = f(x1, . . . , xt). Thus a protocol P for f must specify the functions M1, . . . ,Mt

for each player. The total and maximum communication complexity of the protocol P are
defined as

CCtot
t (P) = max

x1,...,xt

t∑
i=1

|Mi|,

CCmax
t (P) = max

x1,...,xt

t
max
i=1
|Mi|

The total communication complexity of f denoted CCtot
t (f) is defined as the minimum of

CCtot
t (P) over all protocols P for computing f . The maximum communication complexity

of f denoted CCmax
t (f) is defined similarly.

Next we define single round protocols in the blackboard model. In the blackboard one-
way model, every player writes his messages on a blackboard where it is seen by all the
players. Thus we now have Mi = Mi(xi,Mi−1, . . . ,M1). In this model we denote total
and maximum one-way communication complexity by BBtot

t (f) and BBmax
t (f) respectively.

Note that in both one-way models, the message Mi is completely determined by the prefix
x1, . . . , xi of the input. Hence Mi(x1, . . . , xi) is well defined.

We will consider multi-round protocols in the private messages model with the goal of
obtaining lower bounds for multi-pass data stream algorithms. During each round r ≤ R,
player Pi sends a message to Pi+1 for i ≤ t− 1. At the end of round r < R, player Pt sends
a message to P1. In the last round R, player Pt is required to output the outcome of the
protocol. The main difference from 1-round protocols is that in round r ≥ 2, each players
message can depend on the entire input - through the messages the player received - and
not just its prefix. We use M r

i (x1, . . . , xt) to denote the message sent by Pi in round r. Note
that

M r
1 (x1, . . . , xt) = M r

1 (x1,M
r−1
t (x1, . . . , xt), . . . ,M

1
t (x1, . . . , xt)),

and for i ≥ 2

M r
i (x1, . . . , xt) = M r

i (xi,M
r
i−1(x1, . . . , xt), . . . ,M

1
i−1(x1, . . . , xt)).

5

We use CCtot
t,R(f) and CCmax

t,R (f) respectively to denote the total and maximum communica-
tion complexity of R round protocols.

Finally, we consider the unrestricted blackboard model, where players may communicate
in any order, any number of times. We use the standard notation Dt(f) and Nt(f) to denote
the (total) deterministic and non-deterministic t-party communication complexity of f .

We will use the extension of the notion of combinatorial rectangles [KN97] to multi-party
NIH communication. A combinatorial rectangle is a set of the form S1 × · · · × St where Si
is a subset of inputs to player Pi. As in the two party case, the sets of inputs that have the
same communication transcript under the protocol form combinatorial rectangles.

A Data Stream Algorithm receives an input of size n, where n is thought of as very large.
We think of this input as either written on an external memory device or obtained on the
fly from some source such as a sensor network. The algorithm is allowed to make only one
pass over its input or a few passes, while using very little storage space and update time
per element. We would like both these quantities to be sub-linear in n, ideally we would
like them to be of the order (log n)O(1). Typically, in order to solve problems in this highly
restricted model, we need to settle for randomization and/or approximation.

We use x ∈ [m]t to denote a vector x = (x1, . . . , xt). Given x ∈ [m]t`, we will also view
it as a matrix of dimension t × ` in [m]t×`. With this matrix view, we let Ri(x) and Cj(x)
denote the ith row and jth column of the matrix respectively. We use x ◦ y to denote string
concatenation. We use x` to denote x ◦ x · · · ◦ x ` times. For x ∈ [m]t, let lis(x) denote the
length of the longest increasing subsequence in x. Let lisa(x) to denote the length of the
longest increasing subsequence in x that ends with a value at most a. Thus lis(x) = lism(x).
In some places, we will omit floors and ceilings to improve readability.

3 Lower Bounds for a Special Case

We start by analyzing the communication problem with the following primitive problem.

Definition 1. Given x ∈ [m]t, let

h(x) =

{
0 if lis(x) = 1

1 if lis(x) = t.

Thus h(x) is a promise problem which is 0 if x is a non-increasing sequence, 1 if it is an
increasing sequence, and can be arbitrary otherwise.

First we give a lower bound on the communication complexity of this problem that holds
even in the unrestricted blackboard model, and even for nondeterministic communication
complexity.

Lemma 3.1. For the function h, Nt(h) ≥ log(m
t−1

).

Proof: The proof is via a fooling set argument. For each a ∈ [m], let ai be a repeated i
times. Clearly h(at) = 0. We claim that in any protocol for f , at most t− 1 such inputs can

6

lie in a single combinatorial rectangle. Assume for contradiction that at1, . . . , a
t
t share the

same rectangle where a1 < . . . < at. By the definition of combinatorial rectangles, the input
a = (a1, . . . , at) also lies in the same rectangle, however h(a) = 1. This shows that there are
at least m

t−1
distinct 0-rectangles which implies Nt(h) ≥ log(m

t−1
).

There is a matching upper bound that holds for BBtot
t (h) in the blackboard one-way

model.

Claim 3.2. For the function h, BBtot
t (h) ≤ dlog(m

t−1
)e.

Proof: Let yi = d xi

t−1
e ∈ [1, d m

t−1
e]. If h(x) = 1, then x1 < · · · < xt, so x1 + t − 1 ≤ xt, so

y1 < yt. If h(x) = 0 then x1 ≥ xt so y1 ≥ yt. So P1 writes y1 on the board, from which Pt
can compute h. This takes dlog(m

t−1
)e bits.

While it is clear that CCmax
t (h) ≥ Nt(h)

t
≥ 1

t
log(m

t−1
), this bound is not as strong as

we would like. In fact, we can improve the lower bound by a factor of t − 1, yielding a
tight bound. This improvement is important for obtaining the desired bounds on streaming
algorithms. We also obtain a slight improvement for CCtot

t (h) over the bound that follows
from Lemma 3.1. Our proof technique will crucially use the fact that the messages are
private.

Lemma 3.3. For the function h, CCmax
t (h) ≥ log(m

t−1
) and CCtot

t (h) ≥ log(m− t+ 1).

Proof: Consider the inputs at as before. Let us define the set S(a, i) to consist of all
increasing sequences x1, . . . , xi where xi ≤ a. We say that at is done at player Pi if the
message Pi sends for ai is different from any message Pi sends on vectors in S(a, i): Mi(a

i) 6=
Mi(x) for x ∈ S(a, i).

In a protocol for h, every input at is done at player Pt, since for any x ∈ S(a, t), h(x) = 1
whereas h(at) = 0. On the other hand, no input is done at player P1 since a1 = a ∈ S(a, 1).
However, it may happen that an input at is done at many players before Pt. So let us
consider the first time when a particular input is done. By the pigeonhole principle, there
must be some i ≥ 2 so that m

t−1
of the inputs at are done for the first time at Player Pi, fix

this i. We will show that player Pi−1 must send many distinct messages to player Pi.
Pick two inputs at and bt which are both done for the first time at player Pi. We claim

that Mi−1(a
i−1) 6= Mi−1(b

i−1). Assume that this is not the case. Since both at and bt are done
for the first time at Player Pi, they cannot be done at Player Pi−1. Thus, there are vectors
x ∈ S(a, i− 1) and y ∈ S(b, i− 1) so that Mi−1(x) = Mi−1(a

i−1) and Mi−1(y) = Mi−1(b
i−1).

Hence Mi−1 is the same for x,y, ai−1 and bi−1. Assume a < b and consider the sequence
z = x ◦ b of length i obtained by concatenating x with b. Since x is an increasing sequence
with xi−1 ≤ a < b, it follows that z is an increasing sequence with zi ≤ b. Hence z ∈ S(b, i).
However we have

Mi(b
i) = Mi(b,Mi−1(b

i−1)) = Mi(b,Mi−1(x)) = Mi(x ◦ b).

This contradicts the assumption that bt is done at player Pi. This shows that Pi−1 has to
send m

t−1
distinct messages, which implies that CCmax

t (h) ≥ log(m
t−1

).

7

To get the bound for CCtot
t (h), consider the inputs at as before. We showed that if mi ≥ 1

of these inputs are done for the first time at player Pi where 2 ≤ i ≤ t, then Pi−1 must send
log(mi) distinct messages. Overall

∑
imi = m. Further, if we let S denote the set of indices

where mi ≥ 2, then
∑

i∈Smi ≥ m− (t− 1). Thus we have

CCtot
t (h) ≥

∑
i∈S

log(mi) = log(
∏
i∈S

mi) ≥ log(
∑
i∈S

mi) ≥ log(m− (t− 1)).

where we use
∏

i∈Smi ≥
∑

i∈Smi since mi ≥ 2.

This bound on CCmax
t (h) is tight: player P1 can send y1 (defined in Claim 3.2) to P2

who sends it to P3 and so on, so CCmax
t (h) ≤ dlog(m

t−1
)e. The bound on CCtot

t (h) is also
essentially tight, since one possible protocol is where player Pt−1 sends xt−1 to player Pt,
who compares it to xt and accordingly outputs 0 or 1. This shows that CCtot

t (h) ≤ logm.
Next we consider the communication problem taking the OR of ` disjoint instances of h.

Definition 2. For x ∈ [m]t`, let f(x) = ∨`j=1h(Cj(x)).

Thus f(x) is 1 if some column is increasing, 0 if every column is non-increasing and
undefined otherwise. We consider the t player communication complexity when player Pi is
given Ri(x) as input. We would hope that solving f essentially requires solving ` independent
copies of h. However, it turns out that this is true for CCtot

t (f) but not for CCmax
t (f).

We show that the total communication complexity does satisfy a direct sum property,
even for the unrestricted blackboard model. We give a lower bound on Nt(f), which implies
lower bounds on Dt(f) and CCtot

t (f).

Lemma 3.4. For the function f , Nt(f) ≥ ` log(m
t−1

).

Proof: Consider any `-tuple a = (a1, . . . , a`) where aj ∈ [m]. We view at ∈ [m]t` as a matrix
with the row a repeated t times. Note that there are m` choices for a, and that f(at) = 0. We
claim that at most (t− 1)` such input matrices can share the same combinatorial rectangle
in a protocol. Assume for contradiction that there are more of them. Each such input is
specified by a distinct `-tuple a. Since there are at least (t−1)`+1 distinct tuples, there must
be some index j where these tuples take t distinct values. Denote these tuples by a1, . . . , at
and assume that a1j < . . . < atj. The inputs a1t, . . . , att lie in the same combinatorial
rectangle. Hence the input x where Ri(x) = Ri(ait) = ai also lies in this rectangle. But
then Cj(x) = (a1j, . . . , atj) is an increasing sequence, hence f(x) = 1.

This shows that no more than (t− 1)` of the inputs at can lie in the same combinatorial
rectangle and hence there are at least (m

t−1
)` rectangles in total. This shows that Nt(f) ≥

` log(m
t−1

).

Note that this gives a lower bound of CCtot
t (f) ≥ ` log(m

t−1
) and hence CCmax

t (f) ≥
`
t−1

log(m
t−1

).
While this lower bound on CCmax

t (f) directly implies lower bounds on streaming algo-
rithms, the bounds are not strong enough for the range of parameters we are interested

8

in, where we would like a bound of the form ` log(m
t−1

). Proving a direct sum result on
maximum communication complexity would give strong enough bounds for our purposes.
Unfortunately the direct sum property proved above does not hold for the maximum com-
munication complexity, and the above lower bound for CCmax

t (f) is nearly tight.

Lemma 3.5. For the function f , CCmax
t (f) ≤ d `

t−1
e log(m).

Proof: Divide the columns into t − 1 groups of b = d `
t−1
e columns each. Let Gi =

{(i− 1)b+ 1, . . . , ib}. We give a protocol where Pi+1 will compute h for all columns in group
Gi.

For each j ∈ Gi, player Pi sends xij to Pi+1. If h(Cj(x)) = 1, then xi+1,j > xi,j, else
xi+1,j ≤ xi,j. Thus Pi+1 can compute h for each of these columns. If h(Cj(x)) = 1 for some
column, he sends a special message to Pi+2. Else, he sends xi+1,j for j ∈ Gi+1 to Pi+2. The
maximum message size is b log(m) = d `

t−1
e log(m).

The above lemma shows that for the case ` = O(t) (the important setting of the pa-
rameters for our purposes), the maximum communication complexity of solving the OR of
` instances of the problem is within constant factor of the maximum communication com-
plexity of solving just one instance, which is Ω(logm) by Lemma 3.3.

4 Lower Bounds for the General Problem

We are able to prove the desired direct sum type property for maximum communication
complexity of the problem defined using a weaker primitive problem.

Definition 3. Given x ∈ [m]t, for k ≤ t, let

hk(x) =

{
0 if lis(x) = 1

1 if lis(x) ≥ k.

For x ∈ [m]t` and k ≤ t, let fk(x) = ∨`j=1hk(Cj(x)).

We consider the t-player communication problem where player Pi is given the ith row
Ri(x) as input, and the players want to compute fk(x). The problem considered in the
previous section is a special case of this problem taking k = t.

4.1 One-Round Protocols

We first analyze single round protocols, which give lower bounds for single pass algorithms.
The following theorem and its proof are just a special case of our arguments for multi-round
protocols. We present it separately first, because this case is somewhat simpler.

Theorem 4.1. For the function fk,

CCmax
t (fk) ≥ `

(
(1− k

t
) log(

m

k − 1
)−H(

k

t
)

)
− log(t).

9

Proof: As in Lemma 3.4, we will consider inputs of the form at where Cj(a
t) = atj, thus the

same row a = (a1, . . . , a`) is repeated t times. For each such input, we define the set Si(a) of
vectors that are confused with ai by Pi. Formally, let Si(a) = {x ∈ [m]i`|Mi(x) = Mi(a

i)}.
For each x ∈ Si(a), we consider the length of the longest increasing subsequence in Cj(x)
ending with a value at most aj and take the maximum over x ∈ Si(a). Formally, let
qi,j(a) = maxx∈Si(a) lisaj

(Cj(x)).

Claim 4.2. For every j ∈ [`],

1 = q1,j(a) ≤ q2,j(a) ≤ . . . ≤ qt,j(a) ≤ k − 1 (1)

Proof: Since a ∈ S1(a), it is clear that q1,j(a) = 1. Now consider an x ∈ Si(a) such
that Cj(x) contains an increasing subsequence of length qi,j(a) ending with a value at most
aj. Consider the vector y = x ◦ a ∈ m(i+1)`. It is easy to see that y ∈ Si+1(a), and since
Cj(y) = Cj(x) ◦ aj, we get qi+1,j(a) ≥ qi,j(a). Finally, in a protocol for fk, qt,j(a) < k, else
some vector x such that fk(x) = 1 is not distinguished from at while fk(a

t) = 0.

Note that at most k − 2 of the inequalities qi−1,j(a) ≤ qi,j(a) can be strict. We say that
player Pi is bad for a on column j if qi−1,j(a) < qi,j(a), else we say Pi is good on j. For a
vector a, on each column, there are at most k − 2 bad players. By averaging, for each a,
some player is good for a on at least (1− k

t
)` columns. There are at most t− 1 choices for

the player, and at most 2H(k
t
)` possibilities for choosing a set of (1 − k

t
)` columns. There

are at most (k − 1)`(1−
k
t
) possibilities for the |S|-tuples qi,j(a) for j ∈ S where S is of size

`(1− k
t
). Hence, there is a player Pi, a set S of size `(1− k

t
), and a set of vectors T ′ ⊆ [m]`

with

|T ′| ≥ m`

(t− 1)2H(k
t
)`(k − 1)`(1−

k
t
)

such that player Pi is good for all vectors in T ′ on all columns in S, and for any j ∈ S and
a,b ∈ T ′ we have qi,j(a) = qi,j(b).

Since at most m
k
t
` vectors can agree at the coordinates in S, we can pick a subset T of

T ′ of size |T ′|
m

k
t `

such that any two vectors in T differ on some coordinate in S. We now come

to the crucial claim.

Claim 4.3. For a 6= b ∈ T , Mi−1(a
i−1) 6= Mi−1(b

i−1).

Proof: Assume for contradiction that Mi−1(a
i−1) = Mi−1(b

i−1). The vectors a and b differ
at some coordinate j ∈ S, assume that aj < bj. Fix x ∈ Si−1(a) such that lisaj

(Cj(x)) =
qi−1,j(a). Let y = x ◦ b ∈ [m]i`. Then

Mi(b
i) = Mi(b,Mi−1(b

i−1)) = Mi(b,Mi−1(a
i−1)) = Mi(b,Mi−1(x)) = Mi(y).

Thus y ∈ Si(b). But Cj(y) = Cj(x) ◦ bj, hence lisbj (Cj(y)) = qi−1,j(a) + 1 since we can take
the increasing subsequence of length qi−1,j(a) in Cj(x) ending with a value at most aj, and
append bj to it. This contradicts qi,j(b) = qi−1,j(b) = qi−1,j(a).

10

The theorem follows from this claim, since

|T | ≥ m`(1− k
t
)

(t− 1)2H(k
t
)`(k − 1)`(1−

k
t
)
.

This lower bound is dominated by the term `(1− k
t
) log(m

k−1
). Lemma 5.2 will show that

this is essentially tight.

4.2 Multi-Round Protocols

We now consider protocols that involve R rounds, which will give lower bounds for multi-pass
algorithms. Recall that we use M r

i (x) to denote the message sent by Pi on input x in round
r, and that Ri(x) denotes the i-th row of x, that is the input of Pi. Note that

M r
1 (x) = M r

1 (R1(x),M r−1
t (x), . . . ,M1

t (x)),

and for i ≥ 2

M r
i (x) = M r

i (Ri(x),M r
i−1(x), . . . ,M1

i−1(x)).

We define the set Si(a) as

Si(a) = {x ∈ [m]i`| ∀r,M r
i (x ◦ at−i) = M r

i (at)}.

Note that the definition of Si(a) in the one round case is just a special case of this
definition. The following properties of these sets will be useful.

Claim 4.4. If x ∈ Si(a) then x ◦ aj−i ∈ Sj(a) for all j > i.

Proof: Assume that x ∈ Si(a). By definition, for every round r, M r
i (x ◦ at−i) = M r

i (at).
But then

M r
i+1(x ◦ at−i) = M r

i+1(a,M
r
i (x ◦ at−i), . . . ,M1

i (x ◦ at−i))

= M r
i+1(a,M

r
i (at), . . . ,M1

i (at))

= M r
i+1(a

t).

This shows that x ∈ Si(a)⇒ x ◦ a ∈ Si+1(a). The claim follows by repeatedly applying this
last observation.

Claim 4.5. Assume that for every r ≤ R M r
i−1(a

t) = M r
i−1(b

t) and for every r < R
M r

t (at) = M r
t (bt). Then for any x ∈ Si−1(a) we also have x ∈ Si−1(b).

11

Proof: We show that under the above assumptions, for every round r ≤ R

M r
i−1(x ◦ at−i+1) = M r

i−1(x ◦ bt−i+1),

and
M r

t (x ◦ at−i+1) = M r
t (x ◦ bt−i+1).

Then, to conclude the proof of the claim note that x ∈ Si−1(b) follows from the first state-
ment, since the assumptions of the claim give M r

i−1(x ◦ at−i+1) = M r
i−1(a

t) = M r
i−1(b

t) for
every r ≤ R.

We prove these two statements by induction on r.
In the first round of any protocol, the players P1, . . . , Pi−1 have no information about the

inputs of the players Pj for j ≥ i. Thus, M1
i−1(x ◦ at−i+1) = M1

i−1(x ◦ bt−i+1) must hold.
This in turn, together with the assumptions of the claim, implies that M1

i−1(x ◦ bt−i+1) =
M1

i−1(b
t). Thus, in the first round the players Pj for j ≥ i cannot distinguish the vectors

x ◦ bt−i+1 and bt. Note also that by Claim 4.4 the players Pj for j ≥ i cannot distinguish
the vectors x ◦ at−i+1 and at in any round. Since M1

t (at) = M1
t (bt) by assumption, we get

M1
t (x ◦ at−i+1) = M1

t (x ◦ bt−i+1).
To finish the proof it is enough to note that if M s

t (x ◦ at−i+1) = M s
t (x ◦ bt−i+1) in every

round s ≤ r − 1, then in round r the players P1, . . . , Pi−1 cannot distinguish the vectors
x ◦ at−i+1 and x ◦ bt−i+1. The rest of the above argument now can be repeated for round
r.

We prove the following theorem.

Theorem 4.6. For the function fk,

CCmax
t,R (fk) ≥

`

2R− 1

(
(1− k

t
) log(

m

k − 1
)−H(

k

t
)

)
− log(t)

2R− 1
.

Proof: As before, we consider the quantity

qi,j(a) = max
x∈Si(a)

lisaj
(Cj(x)).

Since a ∈ S1(a), we have q1,j(a) = 1. The bound qt,j(a) ≤ k−1 is implied by the correctness
of the protocol. From Claim 4.4, it follows that qi,j(a) ≤ qi+1,j(a). Hence

1 = q1,j(a) ≤ q2,j(a) ≤ . . . ≤ qt,j(a) ≤ k − 1.

Now by the same argument as in the proof of Theorem 4.1, we get a set of vectors
T ⊆ [m]`, a set S ⊆ [`] of columns and a player Pi such that:

• qi,j(a) = qi,j(b) for a,b ∈ T and j ∈ S.

• qi,j(a) = qi−1,j(a) for all a ∈ T and j ∈ S.

• Any two vectors in T differ at some coordinate in S.

12

We now come to the crucial claim.

Claim 4.7. For a 6= b ∈ T , either Pi−1 sends different messages on at and bt in some round
r ≤ R, or Pt sends different messages on at and bt in some round r < R.

Proof: Assume for contradiction that for every round r ≤ R, we have M r
i−1(a

t) = M r
i−1(b

t)
and for every r < R M r

t (at) = M r
t (bt). As before assume that a and b differ on column j

and that aj < bj.
Fix x ∈ Si−1(a) such that lisaj

(Cj(x)) = qi−1,j(a). By Claim 4.5 x ∈ Si−1(b). Then,
Claim 4.4 implies x ◦ b ∈ Si(b). Since aj < bj, the longest increasing sequence in Cj(x ◦ b)
has length qi−1,j(a) + 1 , this gives a contradiction. This proves Claim 4.7.

To finish the proof of the theorem, consider the sequence of 2R− 1 messages M r
i−1(a) for

r ≤ R and M r
t (a) for r ≤ R − 1. By Claim 4.7, this sequence of messages is different for

a 6= b ∈ T . Thus if the maximum message size is µ, then 2(2R−1)µ ≥ |T | and the statement
of the theorem follows.

4.3 The Reduction to LIS

We apply the reduction from computing fk to the LIS problem from GJKK, and show that
Theorem 4.6 yields a tight lower bound on the space complexity of deterministic streaming
algorithms for approximating the length of the LIS that make a constant number of passes
over the data. For completeness, we present the proof from GJKK of the following lemma
in the Appendix.

Lemma 4.8. (Lemma 4.4, [GJKK07]) CCmax
t,R (fk) is a lower bound on the space required for

any R-pass deterministic streaming algorithm that computes a 1 + k−1
`

approximation to the
LIS on sequences of length t · ` over an alphabet of size m · `.

We now conclude the proof of our main result.

Proof of Theorem 1.1 We set k − 1 = t/2. Now let n = t`, ε = k−1
`

and M = mt. This

gives t =
√

2εn, ` =
√

n
2ε

. Now plugging this into the lower bound of Theorem 4.6, and
ignoring the lower order terms, we get

S ≥ `

2R− 1
(1− k

t
) log(

m

k − 1
) =

1

2R− 1

√
n

8ε
log(

M

εn
).

When R = 1, this matches the O(
√

n
ε

logM) upper bound of the GJKK algorithm up
to constant factors provided we take M to be (εn)1+γ for some γ > 0. In particular, it
gives a tight lower bound even when ε is o(1). If we take ε = 1

n
, then this corresponds to

exact computation of the length of the LIS, for which we get a tight linear lower bound. In
addition, it shows that as long as the number of passes is constant, the space required is
Ω(
√
n).

13

4.4 (No) Direct Sum in the One-Way Blackboard Model

It is interesting to note that the lower bounds of Theorems 4.6 and 5.1 hold even for a version
of the function fk with a stronger promise, where in the No case, the input is guaranteed
to be of the form at for a ∈ [m]`. We show that in the one-way blackboard model the direct
sum property for max communication does not hold for this version of fk. To the best of our
knowledge, this is the first separation between the private messages and blackboard models
of one-way communication.

Definition 4. For x ∈ [m]t and k ≤ t, define the function ĥk as

ĥk(x) =

{
1 if lis(x) ≥ k

0 if x = at, a ∈ [m]

For x ∈ [m]t`, define the function f̂k as f̂k(x) = ∨`j=1ĥk(Cj(x)).

Lemma 4.9. For the function f̂k, BBmax
t (f̂k) ≤ d `

k−1
e logm and BBtot

t (f̂k) ≤ ` logm.

Proof: We divide the columns into k − 1 groups G1, . . . , Gk−1 of size d `
k−1
e. Player Pi

writes his inputs for the columns in Gi on the blackboard. The other players check if their
inputs agree with his on Gi, else they know that it is a Yes instance. Suppose for all i,
the players Pk, . . . , Pt all have inputs that agree with Pi on the columns in Gi. In this case,
every column contains the same letter repeated at least t−k+2 times. Hence, none of these
columns have an increasing subsequence of length more than k−1, so is a No instance. The
max communication of this protocol is d `

k−1
e logm, the total communication is ` logm.

By the same argument as Lemma 3.4, one can show that Nt(f̂k) ≥ ` log(m
k−1

), so both
bounds are nearly tight.

In the setting where k is a constant fraction of `, m = `O(1) which we are interested in,
BBmax

t (f̂k) = O(logm). In the case when ` = 1, trivially BBmax
t (f̂k) ≥ 1. Thus the max

communication does not increase by a factor of ` as in a direct sum result.

5 Tight Bounds on One-Round Communication in the

Private Messages Model

As noted in the previous section, the total communication for the version of fk that we
analyze does not satisfy a strong enough direct sum property in the blackboard model. In
this section, we give tight bounds on the total and maximum one-round, communication
complexity of this problem in the private messages model.

We give a lower bound on the one-round total communication complexity of the problem
f̂k, which also implies a lower bound for CCtot

t (fk).

Theorem 5.1. For the function f̂k,

CCtot
t (f̂k) ≥ (t− 3k)

`

2

(
log(

m

k − 1
)− 2

)
.

14

Proof: For a ∈ [m]` define the numbers qi,j(a) as before and say that player Pi is bad for a
on column j if qi−1,j(a) < qi,j(a), else we say Pi is good on column j. For a vector a, on each
column j ∈ [`], there are at least t− k + 1 good players. Suppose that player Pi is good for
a on `i(a) columns. Then

∑
i `i(a) ≥ (t− k + 1)`. By averaging, for at least t− 2k players,

we must have `i(a) ≥ `/2, else∑
i

`i(a) < (t− 2k)`+ 2k
`

2
≤ `(t− k).

Call these the good players for a. Suppose player Pi is good for a set T ′′i of vectors in [m]`

and let |T ′′i | = gi. Then we have
∑

i gi ≥ (t− 2k)m`. Again, by averaging, there are at least

t− 3k players where gi ≥ m`

3
, else∑

i

gi < (t− 3k)m` + 3k
m`

3
= (t− 2k)m`.

Now fix a player Pi where gi ≥ m`

3
and note that for each a ∈ T ′′i , Pi is good on at least

`/2 columns.
There are at most 2` choices for choosing a set S of `/2 columns, and (k − 1)`/2 choices

for the `/2-tuples qi,j(a) for j ∈ S. Thus, there is a set S of `/2 columns, and T ′i ⊂ T ′′i
of size at least gi

2`(k−1)`/2 such that Pi is good for each a ∈ T ′i on every column j ∈ S and

qi,j(a) = qi,j(b) for j ∈ S and a,b ∈ T ′i . Further we can find Ti ⊂ T ′i of size at least
|T ′

i |
m`/2

so that any two vectors in T ′i differ on some coordinate in S. As in Claim 4.3, we can argue
that Pi has to send different messages on any two vectors in Ti. Hence Pi sends messages of
size at least log(|Ti|) ≥ `

2
log(m

k−1
)− `− log 3. Thus the total communication is at least∑

i

log(|Ti|) ≥ (t− 3k)

(
`

2
log(

m

k − 1
)− `− log 3

)
.

We note that this is dominated by `(t−3k)
2

log(m
k−1

). If we take k = t
4
, this gives CCtot

t (f̂k) =

Ω(t` log m
k−1

). In contrast, Lemma 4.9 shows that BBtot
t (f̂k) ≤ ` logm. Similarly, by Theorem

4.1 and Lemma 4.9 the max communication can also differ by a factor of k = t
4
. This shows

a separation between the two models of one-way communication. One can improve on the
t− 3k term in the lower bound, but we omit the details.

Finally we show that our lower bounds on the maximum and total communication
complexity of fk are essentially tight. We will use the simple fact that in a sequence
x = (x1, . . . , xn) of n numbers, there exists i ∈ [n] such that xi+1 > xi if and only if
lis(x) ≥ 2.

Lemma 5.2. The following upper bounds hold for fk:

CCmax
t (fk) ≤ ` log(m

k−1
), CCtot

t (fk) ≤ t` log(m
k−1

),

CCmax
t (fk) ≤ d`(1− k−2

t
)e log(m), CCtot

t (fk) ≤ td`(1− k−2
t

)e log(m).

15

Proof: Let us define
yi,j = d xi,j

k − 1
e ∈ [1, d m

k − 1
e].

The players will try to tell if Cj(y) is non-increasing for every j or whether some column
does contain a non-trivial increasing subsequence. For every column j, Pi sends yi,j to Pi+1.
If yi+1,j > yi,j, then Pi+1 concludes that fk(x) = 1 and ends the protocol, else it sends yi+1,j

for all j to the next player. The maximum message size is bounded by ` log(m
k−1

).
Assume that hk(Cj(x)) = 1. Let the first and last elements of the increasing subsequence

in Cj(x) be xr,j and xs,j respectively. Then xs,j ≥ xr,j + k − 1, hence ys,j ≥ yr,j + 1, so
y1,j, . . . , yt,j contains an increasing subsequence of length at least 2. So yi+1,j > yi,j for some
i. On the other hand, if hk(Cj(x)) = 0, then xs,j ≤ xr,j, and so ys,j ≤ yr,j for all r < s.
Hence the sequence yi,j is non-increasing.

For the second upper bound, consider the protocol where we divide the ` columns into
d t
t−k+2

e groups of size at most d`(1 − k−2
t

)e each. The first t − k + 2 players will compute

hk(Cj(x)) for columns Cj where j ∈ [1, d`(1− k−2
t

)e]. Each player Pi for i ∈ [1, . . . , t− k+ 2]
sends xi,j where j ∈ [1, d`(1 − k−2

t
)e] to Pi+1. If Pi+1 finds xi,j < xi+1,j for some j, then

hk(Cj(x)) = 1 and the protocol terminates. Clearly, the maximum message size is bounded
by d`(1− k−2

t
)e log(m).

Observe that if hk(Cj(x)) = 1, then any subsequence of t−k+2 numbers from Cj cannot
be non-increasing, as it will contain two numbers from the increasing subsequence, which
are in increasing order. So it must contain two consecutive numbers in increasing order.
This will be detected by our protocol. On the other hand, when fk(x) = 0, each column is
non-increasing, so every pair of consecutive numbers is also non-increasing.

6 Open Problems

We have proved Ω(
√
n) lower bounds on the space requirement of deterministic data-stream

algorithms with constant number of passes that give constant factor approximation of the
length of the longest increasing subsequence in a sequence of length n. It is interesting to
ask if such a lower bound holds even for randomized algorithms. However, the direct sum
based approach employed here for the problem fk will not yield a randomized lower bound.
Amit Chakrabarti has pointed out that the randomized communication complexity of the
problem fk is bounded by O(1

ε
logm), for the setting of parameters that yields the Ω(

√
n)

lower bound for deterministic algorithms in Theorem 1.1.
Let Rmax

t (fk) denote the maximum communication complexity of fk in the randomized
one-way private messages model.

Theorem 6.1. [Cha07] For the function fk,

Rmax
t (fk) ≤

2`t

(k − 1)2
logm.

16

Note that if we set k − 1 = t/2, n = t`, ε = k−1
`

as in the proof of Theorem 1.1, we get
that Rmax

t (fk) ≤ 4
ε

logm. It is interesting to ask if indeed a better randomized upper bound
is possible for the general problem of approximating the LIS, and the following question
raised in GJKK remains open.

Problem 1. Is there a randomized streaming algorithm to approximate lis(σ) within (1 + ε)
for constant ε > 0 using space o(

√
n)?

Acknowledgments

The second author would like to thank T.S Jayram, Robert Krauthgamer and Ravi Kumar
for many interesting discussions about this problem. We would also like to thank Amit
Chakrabarti for enlightening discussions about direct sum problems, and allowing us to
include the statement of Theorem 6.1.

References

[AD99] D. Aldous and P. Diaconis. Longest increasing subsequences: From patience
sorting to the Baik–Deift–Johansson theorem. Bulletin of the American Math-
ematical Society, 36:413–432, 1999.

[AJKS02] M. Ajtai, T.S. Jayram, R. Kumar, and D. Sivakumar. Approximate counting of
inversions in a data stream. In Proc. 34th Ann. ACM Symposium on Theory of
Computing (STOC’02), pages 370–379, 2002.

[AMS96] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of ap-
proximating the frequency moments. In Proc. 28th ACM Symp. on Theory of
Computing, pages 20–29, 1996.

[BBD+02] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and
issues in data stream systems. In Proc. 21st ACM Symposium on Principles of
Databases Systems, pages 1–16, 2002.

[BYJKS04] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information
statistics approach to data stream and communication complexity. Journal of
Computer and System Sciences, 68(4):702–732, 2004.

[Cha07] A. Chakrabarti. Personal communication, 2007.

[CKS03] A. Chakrabarti, S. Khot, and X. Sun. Near-optimal lower bounds on the multi-
party communication complexity of set-disjointness. In Proceedings of the 18th
Annual IEEE Conference on Computational Complexity (CCC’03), pages 107–
117, 2003.

17

[CMS01] G. Cormode, S. Muthukrishnan, and S. C. Sahinalp. Permutation editing and
matching via embeddings. In Proc. 28th International Colloquium on Automata,
Languages and Programming (ICALP’01), pages 481–492, 2001.

[CSWY01] A. Chakrabarti, Y. Shi, A. Wirth, and A. C. Yao. Informational complexity
and the direct sum problem for simultaneous message complexity. In Proc. 42nd

IEEE Symp. on Foundations of Computer Science (FOCS’01), pages 270–278,
2001.

[EJ08] F. Ergün and H. Jowhari. On distance to monotonicity and longest increasing
subsequence of a data stream. In Proc. 19th ACM-SIAM Symposium on Discrete
Algorithms (SODA’08), 2008.

[GJKK07] P. Gopalan, T.S. Jayram, R. Krauthgamer, and R. Kumar. Estimating the
sortedness of a data stream. In Proc. 18th ACM-SIAM Symposium on Discrete
Algorithms (SODA’07), 2007.

[Gus97] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, 1997.

[GZ03] A. Gupta and F. Zane. Counting inversions in lists. In Proc. 14th ACM-SIAM
Symposium on Discrete Algorithms (SODA’03), pages 253–254, 2003.

[KN97] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University
Press, 1997.

[LNVZ06] D. Liben-Nowell, E. Vee, and A. Zhu. Finding longest increasing and com-
mon subsequences in streaming data. Journal of Combinatorial Optimization,
11(2):155–175, 2006.

[Mut05] S. Muthukrishnan. Data Streams: Algorithms and Applications. Now Publishers
Inc., 2005.

[Pev03] P. Pevzner. Computational Molecular Biology. Elsevier Science Ltd., 2003.

[SS02] M. Saks and X. Sun. Space lower bounds for distance approximation in the data
stream model. In Proc. 34th Ann. ACM symposium on Theory of computing
(STOC’02), pages 360–369, 2002.

[SW07] X. Sun and D. P. Woodruff. The communication and streaming complexity
of computing the longest common and increasing subsequences. In Proc. 18th

ACM-SIAM Annual Symposium on Discrete Algorithms (SODA’07), 2007.

18

A Proof of Lemma 4.8

Proof: [GJKK07] The players reduce computing fk(x) to approximating the length of the
LIS for a string σ of length t · ` defined as σ(i−1)`+j = (j − 1)m+ xi,j. Note that the block of
` consecutive numbers σ(i−1)`+1, . . . , σi` of σ can be computed by player Pi, and that these
numbers are in increasing order. Thus if we view σ as a t× ` matrix, Ri(σ) is an increasing
sequence. Further, Ri(σ) depends only on Ri(x). Now let us consider the columns. The
column Cj(σ) consists of the numbers (j − 1)m + xi,j for i = 1, . . . , t, thus it is essentially
Cj(x) with each number shifted by (j−1)m. Thus, all the numbers in Cj(σ) lie in the range
[(j − 1)m+ 1, jm]. Further, lis(Cj(σ)) = lis(Cj(x)).

We claim that if fk(x) = 0, then lis(σ) ≤ `. Since every column is non-increasing, an
increasing subsequence in σ can contain at most one number per column, so lis(σ) ≤ `. In
fact lis(σ) = `, since every row is an increasing sequence.

On the other hand, if fk(x) = 1, then lis(σ) ≥ ` + k − 1. Assume that column j has an
increasing subsequence of length k. Then by taking σ1, . . . , σj−1 followed by the increasing
subsequence in column j, followed by σ(t−1)`+j+1, . . . , σt`, we get an increasing subsequence
of length `+ k − 1.

Now assume that there is an R-pass streaming algorithm that can compute a 1 + ε
approximation to the length of the LIS using space S where ε = k−1

`
. By a standard

simulation, by running this algorithm on σ, we get an R-round, one-way communication
protocol for fk in the private messages model with CCmax

t (f) ≤ S.

19

	Introduction
	A communication problem
	Our results
	Related Work

	Preliminaries and Notation
	Lower Bounds for a Special Case
	Lower Bounds for the General Problem
	One-Round Protocols
	Multi-Round Protocols
	The Reduction to LIS
	(No) Direct Sum in the One-Way Blackboard Model

	Tight Bounds on One-Round Communication in the Private Messages Model
	Open Problems
	Proof of Lemma 4.8

