
A Generalization of Spira’s Theorem and
Circuits with Small Segregators or Separators

Anna Gál? and Jing-Tang Jang??

Dept. of Computer Science, University of Texas at Austin,
Austin, TX 78712-1188, USA

{panni, keith}@cs.utexas.edu

Abstract. Spira [28] showed that any Boolean formula of size s can
be simulated in depth O(log s). We generalize Spira’s theorem and show
that any Boolean circuit of size s with segregators of size f(s) can be sim-
ulated in depth O(f(s) log s). If the segregator size is at least sε for some
constant ε > 0, then we can obtain a simulation of depth O(f(s)). This
improves and generalizes a simulation of polynomial-size Boolean circuits
of constant treewidth k in depth O(k2 log n) by Jansen and Sarma [17].
Since the existence of small balanced separators in a directed acyclic
graph implies that the graph also has small segregators, our results also
apply to circuits with small separators. Our results imply that the class of
languages computed by non-uniform families of polynomial-size circuits
that have constant size segregators equals non-uniform NC1.
Considering space bounded Turing machines to generate the circuits,
for f(s) log2 s-space uniform families of Boolean circuits our small-depth
simulations are also f(s) log2 s-space uniform. As a corollary, we show
that the Boolean Circuit Value problem for circuits with constant size
segregators (or separators) is in deterministic SPACE(log2 n). Our re-
sults also imply that the Planar Circuit Value problem, which is known
to be P -Complete [16], can be solved in deterministic SPACE(

√
n log n).

Key words: Boolean circuits, circuit size, circuit depth, Spira’s theorem,
Turing machines, space complexity

1 Introduction

Spira [28] proved the following theorem.

Theorem A [28] Let F be any Boolean formula of size s. Then F can be sim-
ulated by an equivalent formula of depth O(log s).

There are several results improving or extending Spira’s theorem. Bonet and
Buss [3] improved the constants in the depth bounds and the size of the sim-
ulation for Boolean formulas, Wegener [30] proved the statement for monotone
? Supported in part by NSF Grant CCF-1018060

?? Supported in part by MCD fellowship from Dept. of Computer Science, University
of Texas at Austin, and NSF Grant CCF-1018060

Boolean formulas, and Brent [5], Bshouty et. al. [6] extended it for arithmetic
formulas. All these results study formulas, i.e. tree-like circuits with fan-out 1.

Valiant, Skyum, Berkowitz and Rackoff [29] showed that arithmetic circuits of
size s and degree d can be simulated in size O((sd)O(1)) and O(log s log d) depth.
This implies that polynomial-size and polynomial-degree arithmetic circuits can
be simulated in NC2. However, very little is known for size vs. depth for general
Boolean circuits. The strongest results so far for general Boolean circuits by
Paterson and Valiant [23], and Dymond and Tompa [12] give a simulation of
arbitrary Boolean circuits of size s in depth O(s/ log s).

In this paper, we generalize Spira’s technique to circuits with small segre-
gators or small separators. Informally, the separator of a graph is a subset of
the nodes whose removal yields two subgraphs of comparable sizes. (See the
following section for a formal definition.) Graphs with small separators include
trees, planar graphs [20], graphs with bounded genus [15], graphs with excluded
minors [1], as well as graphs with bounded treewidth [25].

Segregators are a relaxed version of separators of directed acyclic graphs.
Paul et al. [24], and Santhanam [26] used segregators to study the computation
graph of Turing machines. Directed acyclic graphs with small separators also
have small segregators, but the reverse may not necessarily hold.

Jansen and Sarma [17] studied the question of simulating Boolean circuits
with bounded treewidth by small-depth circuits. They showed that polynomial-
size circuits with constant treewidth k can be simulated in depth O(k2 log n), and
thus the class of languages with non-uniform polynomial-size bounded treewidth
circuits equals non-uniform NC1.

We extend this result to arbitrary circuits with small segregators and show
that any Boolean circuit of size s with segregators (or separators) of size f(s)
can be simulated in depth O(f(s) log s). For circuits with segregators of size k,
thus also for graphs with treewidth k, this gives a simulation in depth k log s,
improving the bound in [17]. If the segregator size is at least sε for some constant
ε > 0, then we can obtain a simulation of depth O(f(s)). Our results imply
that the class of languages computed by non-uniform families of polynomial-size
circuits that have constant-size segregators equals non-uniform NC1.

In [14] we observed that the two-person pebble game of Dymond and Tompa
can be used to simulate circuits with small separator size in small depth, giving
essentially the same dependence of the depth on the separator size as in the
current paper. The approach in [14] based on the two person pebble game can
also be extended to graphs with small segregators. However, the simulation based
on the two person pebble game is non-uniform, and it seems that the resulting
circuits cannot be produced efficiently using this approach. Jansen and Sarma’s
[17] simulation of bounded treewidth circuits is also non-uniform.

For circuits with constant-size segregators or separators, the simulating cir-
cuits we obtain in this paper can be generated in space O(log2 s). We also note
that our simulation works for any circuit, and if the circuit has a segregator
of size f(s), we obtain a simulating circuit of depth at most O(f(s) log s), the
value f(s) does not have to be provided in advance. In contrast, the simulation

2

in [17] assumes that the treewidth k is known in advance, and a tree decom-
position is available along with the description of the circuit to be simulated.
It would be desirable to generate the simulating circuits even more efficiently
with respect to space or circuit depth, especially in the case of polynomial-size
circuits with constant-size segregators or separators, since in that case, as in the
case of formulas in Spira’s theorem, the resulting circuits are NC1 circuits. Note
however, that even in the case of formulas (tree-like circuits) Spira’s theorem
is non-uniform. It is not known if the restructuring procedure for formulas in
Spira’s theorem producing the simulating O(log s) depth circuits can be directly
implemented in less than O(log2 s) space, or less than O(log2 s) depth [8, 9].

The question of finding a uniform version of Spira’s theorem has direct rele-
vance for the complexity of the Boolean Formula Value problem. While a logspace
uniform version of Spira’s restructuring algorithm is still not known, it was
proved (by a different approach), that for Boolean formulas presented as paren-
thesized expressions the Boolean Formula Value problem is in SPACE(log n)
[21], and in DLOGTIME-uniform NC1 [8, 9].

Our generalization of Spira’s theorem allows us to bound the space complex-
ity of the Circuit Value Problem (CVP) for circuits with small separators and
segregators. Ladner [18] showed that the Circuit Value Problem is P-complete.
The space complexity of the CVP is not known to be o(n/ log n) for general
Boolean circuits. It is a straightforward consequence of Borodin’s theorem [4] (see
Theorem C) that the CVP for logspace uniform depth d circuits is in SPACE(d)
for d ≥ log n. It is also easy to see that the CVP for small-width circuits can
be solved in small space. Barrington, Lu, Miltersen and Skyum [2] showed that
the Monotone Planar Circuit Value Problem is in LOGDCFL, and thus in
SPACE(log2 n). See [10, 19] for recent results on variants of the Monotone Pla-
nar Circuit Value Problem. As far as we know, the only other variant that was
previously shown to be computable in small (polylog) space is the Boolean For-
mula Value Problem, that is the Circuit Value Problem for tree-like circuits [8, 9,
21]. We show that the Boolean Circuit Value Problem for circuits with constant-
size segregators (or separators) is in deterministic SPACE(log2 n). Our results
also imply that the Planar Circuit Value problem, which is known to be P -
Complete [16], can be solved in deterministic SPACE(

√
n log n).

2 Preliminaries

2.1 Space Bounded Turing Machines

For the space complexity of Turing machines, we follow the convention of con-
sidering Turing machines with a separate read-only input tape, and additional
work tapes. If the machine has to produce an output string (instead of just ac-
cepting or rejecting its input), then we also assume a separate write-only output
tape. The space used by a Turing machine on a given input is defined as the
number of work tape cells visited during the computation over all work tapes.
The input tape and the output tape do not contribute to the space bound of the
computation. This allows us to consider computations with sublinear space.

3

SPACE(s(n)) denotes the class of languages decidable by deterministic Tur-
ing machines with a separate read-only input tape and a separate write-only
output tape using O(s(n)) space on the work tapes.

In the following, whenever we talk about space bounds of Turing Machines,
it is assumed that the input tape is read-only, the output tape is write-only and
the space bound refers to the space used on the work tapes. See Papadimitriou
[22] for more details on space bounded Turing machines.

2.2 The Circuit Model

A Boolean circuit is a labeled directed acyclic graph (DAG), where every node
is labeled by either a variable from {x1, . . . , xn}, or an operation from {∧,∨,¬}.
The inputs of a Boolean circuit are the nodes with in-degree (fan-in) zero, and
the outputs of a Boolean circuit are the nodes with out-degree (fan-out) zero.
We refer to the nodes (including the inputs) as gates. A formula (or tree-like
circuit) is a circuit whose fan-out is one for every gate except the output. The
size of a Boolean circuit is the number of its gates. We will consider Boolean
circuits with gates of fan-in at most 2 from the basis {∧,∨,¬}. The depth of
a gate g is the length of the longest path from any input to g. The depth of a
circuit C is the depth of the output gate. See [31] for more on Boolean circuits.

Definition 1. A family of Boolean circuits {Cn} is called h(n)-space uniform,
if there exists a deterministic Turing machine M that on input 1n, outputs the
standard description of Cn using space O(h(n)) for all n. In particular, {Cn} is
logspace uniform if h(n) = log n.

2.3 Separators and Segregators

Informally, a node separator of a graph G is a set of nodes whose removal yields
two disjoint subgraphs of G. In this paper we only consider balanced separators,
that yield subgraphs that are comparable in size. In the next definition each of
the two subDAGs could consist of several weakly connected components.

Definition 2. A separator of size k of a DAG G = (V,E) is a set of k nodes
S ⊆ V such that G \ S is not weakly connected (i.e. the underlying undirected
graph is not connected); and the removal of S partitions G\S into two subDAGs,
G1 = (V1, E1) and G2 = (V2, E2), such that |Vi| ≤ 2

3 |V | for i = 1, 2, and there
are no edges either from G1 to G2, or from G2 to G1 in G \ S.

Segregators are a relaxation of separators in directed acyclic graphs [24, 26].

Definition 3. A segregator of size k of a DAG G = (V,E) is a set of k nodes
S ⊆ V such that every node in G \ S has at most 2

3 |V | predecessors in G \ S.

The following lemma follows directly from the definitions.

Lemma 1. Any DAG with a separator of size k has a segregator of size k.

Notice that the reverse is not true in general, since a node in a DAG may
have much smaller number of predecessors than the size of the component that
contains the node in the underlying undirected graph.

4

3 Boolean Circuits with Small Segregators or Separators

Definition 4. We say that a Boolean circuit C has separators of size f() if the
underlying DAG of every subcircuit of C with s gates has a separator of size at
most f(s).

We say that a Boolean circuit C has segregators of size f() if the underlying
DAG of every subcircuit of C with s gates has a segregator of size at most f(s).

The above definition is reasonable, since we typically consider classes of cir-
cuits based on properties of their underlying DAGs that are closed with respect
to subDAGs, for example planar circuits, circuits with small treewidth, etc.

We talk about constant-size separators (resp. segregators), if the size of the
separator (resp. segregator) is bounded by a fixed constant that does not depend
on the size of the circuit.

By Lemma 1, if the circuit has separators of size f(), then it must also have
segregators of size f(). Therefore in the following we will focus on circuits with
small segregators. We prove the following generalization of Spira’s theorem.

Theorem 2. Any Boolean circuit of size s with segregators of size f() can be
simulated in depth O(f(s)) if f(s) = Ω(sε) for some constant ε > 0, and in
depth O(f(s) log s) otherwise.

Proof. The construction is defined recursively. Let U = {u1, . . . , up} be the
segregator of C with size p ≤ f(s). Let C1, . . . , Cp be the subcircuits of C
corresponding to the nodes of the segregator, that is the node uj is the output
of the subcircuit Cj , for j = 1, . . . , p. Let gj be the Boolean function computed
by Cj . Let v be the output node of the circuit C, and let Ĉ be the circuit with
output node v, obtained from C by replacing the nodes in U by new variables
y1, . . . , yp. Thus, if the original circuit C has n variables, then Ĉ may have up
to p+ n variables. It is possible that Ĉ has less than p+ n variables, if some of
the original inputs get disconnected from the output v after removing the nodes
of the segregator from the circuit.

We enumerate all Boolean vectors c ∈ {0, 1}p. Let ci = 〈ci,1, ci,2, . . . , ci,p〉 be
the ith Boolean vector of length p, for i = 1, . . . , 2p, according to some fixed
ordering. Let Ĉi be the circuit obtained from Ĉ by fixing the values of the
variables y1, . . . , yp to the bits ci,1, . . . , ci,p, respectively. Let hi be the Boolean
function computed by the circuit Ĉi.

Then, the Boolean function computed by the circuit C can be represented
using the following expression:

2p∨
i=1

hi ∧ p∧
j=1

((gj ∧ ci,j) ∨ (¬gj ∧ ¬ci,j))

 (1)

Next we will represent the functions hi for i = 1, . . . , 2p and gj for j =
1, . . . , p. We could proceed with a straightforward recursion, if we could claim

5

that each subcircuit C1, . . . , Cp and each circuit Ĉi for i = 1, . . . , 2p has size
at most 2s/3. In fact, we do know that every subDAG of the underlying DAG
of C with the nodes of U removed has size at most 2s/3. However, the output
node of the subcircuit Cj is uj , and uj is a member of the segregator U . Note
that the underlying DAGs of the circuits Ĉi are identical (they only differ from
each other in the substituted constants), and their output node v is the output
node of the “original” circuit C. The node v may or may not participate in the
segregator. If the node v participates in the segregator, then the functions hi are
constants and the recursion stops.

We can compute the function gj (computed at gate uj) by an additional
gate if we compute the functions computed at the two children of the gate uj .
If none of the children participates in the segregator, then we know that their
subcircuits must have size at most 2s/3. However, it is possible that children of
segregator nodes are also included in the segregator. Let Sj be the set of nodes
in the segregator, that are predecessors of uj , such that there is a path from each
of them to uj that consists only of segregator nodes. We also include uj in Sj .
That is, Sj forms a subcircuit with output uj that consists of segregator nodes.
Let Bj be the “boundary” of Sj formed by nodes that are not in the segregator,
that is, Bj contains the children of the nodes in Sj that are not included in the
segregator. Then we can compute the function gj from the functions computed
at the nodes in Bj (these can be computed by subcircuits of size at most 2s/3)
with an additional set of gates corresponding to the segregator nodes in Sj . Since
|Sj | ≤ p, this takes additional depth at most p.

To summarize, we can compute the functions hi and gj , by first computing in
parallel the functions corresponding to all subcircuits after removing the nodes of
the segregator. We know that each such subcircuit has size at most 2s/3, and we
can use our construction recursively on these smaller size circuits. Then we finish
computing every function hi and gj we need, by adding the gates corresponding
to the nodes participating in the segregator. This will take at most an additional
p ≤ f(s) depth. Then we can compute the function computed by C by expression
(1). This takes at most an additional p+dlog(p+1)e+3 = O(f(s)) depth. Thus,
in each iteration, we increase the depth by at most O(f(s)). Since the size is
reduced by a constant factor in each iteration, we are done after O(log s) steps.

More precisely, the depth of the final circuit is O
(∑dlog3/2 se

i=0 f
(

(2/3)i s
))

. Thus
the depth of the final circuit is O(f(s)) if f(s) = sε for some constant ε > 0, or
O(f(s) log s) otherwise. ut

Theorem 3. The class of languages decided by non-uniform families of polynomial-
size circuits with constant-size segregators equals non-uniform NC1.

Proof. Immediately follows from Theorem 2. ut

Robertson and Seymour [25] showed that if a graph has treewidth k, then
the graph also has separator size O(k). Together with Lemma 1 and Theorem 3,
a polynomial-size circuit with treewidth k can be simulated in depth O(k log n).
This improves a result in [17], which showed that Boolean circuits of size nO(1)

6

and treewidth k can be simulated in non-uniform depth O(k2 log n). We refer
interested readers to [11] and [13] for more background on treewidth.

4 Finding minimum size segregators in small space

4.1 Segregators of directed acyclic graphs

In this section, we give a space-efficient algorithm to find a minimum size segre-
gator in arbitrary directed acyclic graphs.

We will use the following space-efficient algorithm for reachability in directed
graphs by Savitch [27], to count the number of predecessors of a given node.

Theorem B [27] Given a directed graph G on s nodes and two nodes u, v ∈ G,
there exists a deterministic Turing machine that decides if there is a path from
u to v in G using space O(log2 s).

Lemma 4. Let G be a DAG with s nodes. There exists a deterministic Turing
machine M such that, on input G, if G has a segregator of size f(s), then M
outputs a segregator of G of size at most f(s) using space O(f(s) log s+ log2 s).

Proof. We first define a Turing machine M1 that takes G and a node v ∈ G as
input, and computes the number of predecessors of v in G, i.e. the number of
nodes u such that there exists a directed path from u to v in G. In the beginning
M1 initializes a counter to 1. Then M1 uses Theorem B to check, one-by-one,
for each node u ∈ G \ {v} if there is a directed path from u to v in G. For each
node u ∈ G \ {v} such that v is reachable from u, the counter is incremented.
The space used to check the reachability of v from u is reused when checking for
reachability from the next node in G \ {v}. Thus M1 uses O(log2 s) space and
computes the size of the subDAG with v as the root.

We now define M in Lemma 4 as follows. First M enumerates integers k such
that 1 ≤ k ≤ s in increasing order. For a fixed k, M enumerates subsets W of
size k of the nodes in G in lexicographic order. For a given W , for every node
u ∈ G\W , let G(u) denote the set of predecessors of u in G\W . That is, G(u) is
the subDAG in G\W with u as its root. M uses M1 to compute |G(u)|. If there
exists one node u ∈ G \W such that |G(u)| > 2

3s, then M continues to the next
W , or the next k if every W of the current size has been already checked. Also,
every time before continuing to the next W or the next k, M clears unnecessary
information from the work tape.

We now argue that M will find a segregator of the smallest size. Observe
that the set of nodes of G is a segregator of size s, so M is guaranteed to find
a segregator. Since we try every k in increasing order, and we check for every
subset W of size k whether or not it is a segregator, it is guaranteed that we will
find a segregator of the smallest possible size in G.

We now argue thatM only usesO(f(s) log s+log2 s) space. The description of
G can be read using a counter of size O(log s). The enumeration and the storing
of W both take O(k log s) = O(f(s) log s) space. The computation of |G(u)|

7

takes O(log2 s) space since M1 uses O(log2) space. Thus the space complexity
to find a segregator of smallest size is O(f(s) log s+ log2 s). ut

Note that in the proof for Lemma 4, the input of M consists of only the
description of the graph. M does not know the value of f(s) in advance. Also,
by Lemma 1, for graphs with separators of size k, the algorithm in Lemma 4
will also find a segregator of size at most k.

4.2 Segregators of uniform circuits

Intuitively, Lemma 4 seems to apply directly to circuits since circuits are also
DAGs. However, the input of the Turing machine that has to generate the circuit
Cn for a uniform family of circuits, is the unary representation of n (1n), so the
graph of the circuit Cn is not available directly. Since we want to generate the
segregator using small space, we cannot store the description of Cn on the work
tapes. As it is standard in such situations, we will generate the description of Cn
as needed for the machine in the proof of Lemma 4, but never store the complete
description. We then have the following lemma.

Lemma 5. Let C be a h(n)-space uniform family of circuits. Let Cn ∈ C be the
Boolean circuit in the family with n inputs, and assume that Cn has size s = s(n)
and a segregator of size f(s). Then there exists a deterministic Turing machine
M̂ that on input 1n, outputs a segregator of Cn of size at most f(s) using space
O(h(n) + f(s) log s+ log2 s).

As in the case for directed graphs, for circuits with separators of size f(s),
the algorithm in Lemma 5 will also find a segregator of size at most f(s).

5 Generating the simulating circuits in small space

Let v be any node and Z be any set of nodes in the underlying graph of a circuit
Cn. We denote by Cv,Z the circuit obtained from the subcircuit Cv of Cn with
output v by replacing every node in Z that participates in Cv by a new input
variable.

Lemma 6. Let C be a h(n)-space uniform family of circuits. Let Cn ∈ C be
the circuit with n inputs in the family, and assume that Cn has size s = s(n).
Let v be any node and Z be any set of nodes in the underlying graph of Cn.
Then there exists a Turing machine M2 such that on input 1n, v and Z, M2

outputs the standard description of the circuit Cv,Z . Furthermore, M2 runs in
space O(h(n) + log2 s).

Note that if Z = ∅, or if Z does not contain any predecessors of v then Cv,Z
is simply the subcircuit Cv. Similarly to the circuit Ĉ in the proof of Theorem 2,
if the size of Z is r, and Cv depends on n′ input variables, then Cv,Z may have
up to n′ + r variables. If v ∈ Z, then Cv,Z is simply a new variable. The proof
of this lemma is standard, and we leave it for the full version.

8

Lemma 7. Let C be a h(n)-space uniform family of circuits. Let Cn ∈ C be the
circuit with n inputs in the family, and assume that Cn has size s = s(n). Let
v be any node and Z be any set of nodes in the underlying graph of Cn. Also
assume that Cn has segregators of size f(). Then there exists a Turing machine
M3 such that on input 1n, v and Z, M3 outputs a minimum size segregator of
Cv,Z using space O(h(n) + f(s) log s+ log2 s).

Proof. Let M2 be the Turing machine in Lemma 6 that generates the description
of Cv,Z in space O(h(n)+log2 s). Let M be the Turing machine in the statement
of Lemma 4, that takes a directed graph G as input, and outputs a minimum size
segregator of G. The machine M3 will simulate M on the underlying directed
graph of Cv,Z . However, as before, the full description of the graph will never
be stored. Instead, whenever M3 needs some information about the graph, it
lets M2 run, (without recording its output), until the required information is
generated. The size of the subcircuit Cv,Z is s′ ≤ s. Since Cn has segregators
of size f(), we know that Cv,Z has a segregator of size f(s′). Recall that M
always finds a minimum size segregator, thus it will find a segregator of size
f(s′) ≤ f(s). Since M runs in space O(f(s) log s + log2 s), the total space used
will be O(h(n) + f(s) log s+ log2 s). ut

Now we are ready to prove a uniform version of Theorem 2.

Theorem 8. Let C be an h(n)-space uniform family of Boolean circuits. Let
Cn ∈ C be the Boolean circuit on n inputs with size s = s(n). Suppose that Cn
has segregators of size f(). Let g(s) = f(s) if f(s) = Ω(sc) for some constant
c > 0 and f(s) log s otherwise. Then C can be simulated by a O(h(n)+g(s) log s)-
space uniform family of Boolean circuits of depth O(g(s)).

Proof. We show that the construction in the proof of Theorem 2 can be generated
by a machine M∗ within the appropriate space bounds. M∗ on input 1n will
output the description of the depth O(g(s)) circuit simulating the circuit Cn ∈ C.

M∗ generates the simulating circuit essentially as described in the proof of
Theorem 2. In each step of the recursion, M∗ has to do the following:

1. Find a segregator S of the current subcircuit, and store the list of nodes of
S in workspace.

2. Find and store the list of nodes that participate in B = ∪|S|j=1Bj . Note that

a given node may belong to Bj for more than one j, but | ∪|S|j=1 Bj | ≤ 2|S|,
since Bj contains only children of segregator nodes. Thus, if |S| = p, it takes
O(p log s) space to store the list of nodes in B. We can generate this list
using M̂1, where M̂1 is the Turing machine that on input 1n generates the
description of Cn using space O(h(n)). We will run M̂1 several times, reusing
space, and never store the full description of the circuit, as discussed before.
For finding the set Bj , we have to find the set Sj and store it until we are
finished generating Bj . For each j this takes O(p log s) workspace. We reuse
this space when we move on to the next j. For each node of Bj that we find,
we check if we have already added it to the list, so the full list B takes at
most O(p log s) workspace to store.

9

3. Output the description of the part of the circuit that corresponds to the
current subcircuit. This is based on the expression (1), and the sets Bj and
Sj . We produce the description of the part of the circuit to compute gj ,
while we have Bj and Sj stored in memory. We reuse space when we move
on to the next j. Recall that the output is not part of the space bound. (We
do keep S and the full list B until the end of processing the subcircuit, and
maybe longer as we see below.)

The recursion will continue to process the subcircuits Ĉi (functions hi) de-
fined in the proof of Theorem 2, and the subcircuits of the nodes in B. Recall
that each of these subcircuits has size at most 2/3 of the last subcircuit. The
recursion stops when a subcircuit is either constant or an input variable. We
need a counter of size p to enumerate the Boolean vectors substituted, and to
enumerate the functions hi, for i = 1, . . . , 2p.

We reuse space as we proceed to the next recursive step. However, to be
able to proceed with the recursion, we need to retain some information about
the segregators S, the sets B and list of values substituted for segregator nodes
from previous recursive steps to be able to generate and process the current
subcircuits. We process the subcircuits similarly to a depth first search in the
recursion tree, starting with the subcircuits corresponding to the set B and
leaving the subcircuit for the functions hi for last. Recall that there is only
one subcircuit to consider for the functions hi, they just differ in the values of
constants substituted.

We keep S, B and list of values substituted for nodes in S from previous steps
along the current path in the recursion tree. Since there are log s stages of the
recursion, at any point we keep at most log s segregators with their corresponding
set B and list of values. This takes O(

∑log s
i=1 f(s/2i) log s) = O(g(s) log s) space.

At the first iteration, we simply use the machine M̂ from Lemma 5 to find a
segregator. Now we describe how to find a segregator of the current subcircuit
during the recursion. To find a segregator for the subcircuits with outputs in the
sets B described above, we use M3 with input 1n, u where u is the output of the
subcircuit, and Z = ∅. (For processing the subcircuits corresponding to nodes in
the sets B we do not need to worry about the segregators that we stored from
previous levels of the recursion.) For the subcircuits Ĉi (functions hi) we use M3

with input 1n, v, where v is the output node of the subcircuits Ĉi (recall that
they have the same output node, they only differ in the constants substituted),
and Z where Z is the union of all the segregators currently stored.

In each step of the recursion, M3 finds the current segregator in at most
h(n) +O(log2 s+ f(s) log s) space by Lemma 7. Note that after each invocation
of Lemma 7, its workspace can be reused.

Thus on input 1n, the space used to construct the new circuit is at most
O(h(n) + log2 s+ g(s) log s) = O(h(n) + g(s) log s) since g(s) = Ω(log s). ut

10

6 Circuit Value Problem

The Boolean Circuit Value problem is defined as follows: given the standard
description of a circuit C and an assignment x to the variables of C as the input,
compute the value of the output of the circuit C evaluated on the assignment
x. As an application of Theorem 8, we obtain a bound on the space complexity
of the problem for Boolean circuits with small segregators (or separators). We
need the following theorem of Borodin [4].

Theorem C [4] Any language decided by a h(n)-space uniform circuit family
of depth h(n) ≥ log n, can be decided by a Turing machine in space O(h(n)).

Theorem 9. The Boolean Circuit Value problem for circuits that have size s
and segregators (or separators) of size f(s) is in deterministic SPACE(f(s) log s)
if f(s) = Ω(sε) for some constant ε > 0, and SPACE(f(s) log2 s) otherwise.

Proof. Let g(s) = f(s) if f(s) = Ω(sε) for some constant ε > 0, and g(s) =
f(s) log s otherwise. Since the description of C is given in the input, by the
proof of Theorem 8, using O(g(s) log s) space, we can generate a circuit C ′ of
depth O(g(s)) that simulates C. Then we can evaluate C ′ in the given assignment
using the argument of Theorem C using space O(g(s)).

Theorem 9 immediately implies the following theorem.

Theorem 10. The Boolean Circuit Value problem for circuits with constant-size
segregators (or separators) is in deterministic SPACE(log2 n).

Lipton and Tarjan [20] gave the following “planar separator theorem”.

Theorem D [20] Any planar graph of size s has a separator of size O(
√
s).

We use this to obtain our result about the space complexity of the Circuit
Value Problem for planar graphs.

Theorem 11. The Planar Circuit Value Problem can be decided in determinis-
tic SPACE(

√
n log n).

Proof. Immediately follows from Theorem D and Theorem 9.

References

1. N. Alon, P. Seymour and R. Thomas: A Separator Theorem for Graphs with an
Excluded Minor and its Applications. Proceedings of STOC, pp. 293–299 (1990).

2. D. Barrington, C. Lu, P. B. Miltersen and S. Skyum: On monotone planar circuits.
Proceedings of IEEE Conference on Computational Complexity, pp. 24–33, (1999).

3. M. Bonet and S. R. Buss: Size-depth tradeoffs for Boolean formulae. Information
Processing Letters, 49(3), pp. 151–155 (1994).

4. A. Borodin: On Relating Time and Space to Size and Depth. SIAM Journal on
Computing, 6(4), pp. 733–744 (1977).

11

5. R. P. Brent: The Parallel Evaluation of General Arithmetic Expressions. Journal of
the ACM, 21(2), pp. 201–206 (1974).

6. N. Bshouty, R. Cleve and W. Eberly: Size-Depth Tradeoffs for Algebraic Formulas.
SIAM Journal on Computing, 24(4), pp. 682–705 (1995).

7. P. Bürgisser, M. Clausen, and M. Amin Shokrollahi: Algebraic complexity theory.
Springer-Verlag, Berlin-Heidelberg-New York (1997).

8. S. R. Buss: The Boolean formula value problem is in ALOGTIME. Proceedings of
STOC, pp. 123–131 (1987).

9. S. Buss, S. Cook, A. Gupta, and V. Ramachandran: An Optimal Parallel Algorithm
for Formula Evaluation. SIAM Journal on Computing, 21(4), pp. 755–780 (1992).

10. T. Chakraborty and S. Datta: One-Input-Face MPCVP Is Hard for L, but in
LogDCFL. Proceedings of FSTTCS 2006, LNCS 4337, pp. 57–68 (2006).

11. R. G. Downey and M. R. Fellows: Parameterized Complexity. Springer (1999).
12. P. Dymond and M. Tompa: Speedups of Deterministic Machines by Synchronous

Parallel Machines. J. Comp. and Sys. Sci., 30(2), pp. 149–161 (1985).
13. J. Flum and M. Grohe: Parameterized Complexity Theory. Springer (2006).
14. A. Gál and J. Jang: The size and depth of layered Boolean circuits. Proceedings of

LATIN 2010, LNCS 6034, pp. 372–383 (2010).
15. J.R. Gilbert, J.P. Hutchinson, and R.E. Tarjan: A Separator Theorem for Graphs

of Bounded Genus. Journal of Algorithms, 5(3), pp. 391–407 (1984).
16. L. Goldschlager: The monotone and planar circuit value problem is complete for

P. SIGACT News, pp. 25–27 (1977).
17. M. Jansen and J. Sarma M. N.: Balancing Bounded Treewidth Circuits. 5th Inter-

national Computer Science Symposium in Russia, pp. 228–239 (2010).
18. R. E. Ladner: The circuit value problem is log-space complete for P. SIGACT

News, 6(2), pp. 18–20 (1975).
19. N. Limaye, M. Mahajan, and J. Sarma: Upper bounds for monotone planar circuit

value and variants. Computational Complexity, 18, pp. 377–412 (2009).
20. R. Lipton and R.E. Tarjan: A Separator Theorem for Planar Graphs. SIAM J.

Appl. Math., 36, pp. 177–189 (1979).
21. N. A. Lynch: Log space recognition and translation of parenthesis languages. J.

Assoc. Comput. Mach., 24, pp. 583–590 (1977).
22. C. H. Papadimitriou: Computational complexity. Addison-Wesley (1994).
23. M. S. Paterson and L. G. Valiant: Circuit Size is Nonlinear in Depth. Theoretical

Computer Science, 2(3), pp. 397–400 (1976).
24. W. J. Paul, N. Pippenger, E. Szemerédi, and W. T. Trotter: On determinism versus

non-determinism and related problems. Proceedings of FOCS, pp. 429–438 (1983).
25. N. Robertson and P. D. Seymour: Graph Minors II. Algorithmic aspects of tree

width. Journal of Algorithms, 7, pp. 309–322 (1986).
26. R. Santhanam: On separators, segregators and time versus space. Proceedings of

the Sixteenth Annual Conference on Computational Complexity, pp. 286–294 (2000).
27. W. J. Savitch: Relationships Between Nondeterministic and Deterministic Tape

Complexities. Journal of Computer and System Sciences, 4(2), pp. 177–192 (1970).
28. P. M. Spira: On time-hardware complexity tradeoffs for Boolean functions. Proc.

4th Hawaii Symp. on System Sciences, pp. 525–527 (1971).
29. L. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff: Fast Parallel Computation of

Polynomials Using Few Processors. SIAM J. Comp., 12(4), pp. 641–644 (1983).
30. Ingo Wegener: Relating monotone formula size and monotone depth of Boolean

functions. Information Processing Letters, 16(1), pp. 41–42 (1983).
31. Ingo Wegener: The Complexity of Boolean Functions. (1987).

12

