CS344M Autonomous Multiagent Systems

Patrick MacAlpine

Department of Computer Science The University of Texas at Austin

Good Afternoon, Colleagues

Are there any questions?

Patrick MacAlpine

Are there any questions?

- What agent could we use in a spectrum auction?
- What is open loop vs closed loop?

- FAI talk on Friday at 11 GDC 6.302
 - Itsuki Noda: Multiagent Simulation for Designing Social Services

- FAI talk on Friday at 11 GDC 6.302
 - Itsuki Noda: Multiagent Simulation for Designing Social Services
- Papers for next week finalized soon

- FAI talk on Friday at 11 GDC 6.302
 - Itsuki Noda: Multiagent Simulation for Designing Social Services
- Papers for next week finalized soon
- Grades coming ASAP

• Auction off uniform colors: Black, Blue, Brown, Cyan, Green, Orange, Pink, Purple, Red, White, Yellow

- Auction off uniform colors: Black, Blue, Brown, Cyan, Green, Orange, Pink, Purple, Red, White, Yellow
- Sequential auction

- Auction off uniform colors: Black, Blue, Brown, Cyan, Green, Orange, Pink, Purple, Red, White, Yellow
- Sequential auction
- Everyone gets 100 points

- Auction off uniform colors: Black, Blue, Brown, Cyan, Green, Orange, Pink, Purple, Red, White, Yellow
- Sequential auction
- Everyone gets 100 points
- Single simultaneous bid only bid integers unless bidding maximum points
 - Winner gets color, random tie breaker if necessary
 - Losing bids charged 50% of bid

- Auction off uniform colors: Black, Blue, Brown, Cyan, Green, Orange, Pink, Purple, Red, White, Yellow
- Sequential auction
- Everyone gets 100 points
- Single simultaneous bid only bid integers unless bidding maximum points
 - Winner gets color, random tie breaker if necessary
 - Losing bids charged 50% of bid
- Secondary market trade later if you want

3D Uniform Color Auction Discussion

• Who got first choice color, second choice, etc.?

Patrick MacAlpine

3D Uniform Color Auction Discussion

- Who got first choice color, second choice, etc.?
- Pros and cons of auction mechanism?

3D Uniform Color Auction Discussion

- Who got first choice color, second choice, etc.?
- Pros and cons of auction mechanism?
- How can the auction mechanism be improved?

Trading Agent Competition

- Put forth as a **benchmark problem** for e-marketplaces (Wellman, Wurman, et al., 2000)
- Autonomous agents act as travel agents

Trading Agent Competition

- Put forth as a **benchmark problem** for e-marketplaces (Wellman, Wurman, et al., 2000)
- Autonomous agents act as **travel agents**
 - **Game:** 8 *agents,* 12 min.
 - Agent: simulated travel agent with 8 *clients*
 - **Client:** TACtown \leftrightarrow Tampa within 5-day period

Trading Agent Competition

- Put forth as a **benchmark problem** for e-marketplaces (Wellman, Wurman, et al., 2000)
- Autonomous agents act as **travel agents**
 - **Game:** 8 *agents,* 12 min.
 - Agent: simulated travel agent with 8 *clients*
 - **Client:** TACtown \leftrightarrow Tampa within 5-day period
- Auctions for flights, hotels, entertainment tickets
 - Server maintains markets, sends prices to agents
 - Agent sends bids to server **over network**

28 Simultaneous Auctions

Flights: Inflight days 1-4, Outflight days 2-5 (8)

• Unlimited supply; prices tend to increase; immediate clear; no resale

28 Simultaneous Auctions

Flights: Inflight days 1-4, Outflight days 2-5 (8)

• Unlimited supply; prices tend to increase; immediate clear; no resale

Hotels: Tampa Towers/Shoreline Shanties days 1-4 (8)

- 16 rooms per auction; 16th-price ascending auction; quote is ask price; no resale
- Random auction closes minutes 4 11

28 Simultaneous Auctions

Flights: Inflight days 1-4, Outflight days 2-5 (8)

• Unlimited supply; prices tend to increase; immediate clear; no resale

Hotels: Tampa Towers/Shoreline Shanties days 1-4 (8)

- 16 rooms per auction; 16th-price ascending auction; quote is ask price; no resale
- Random auction closes minutes 4 11

Entertainment: Wrestling/Museum/Park days 1-4 (12)

• Continuous double auction; initial endowments; quote is bid-ask spread; resale allowed

Client Preferences and Utility

Preferences: randomly generated per client

- Ideal arrival, departure days
- Good Hotel Value
- Entertainment Values

Client Preferences and Utility

Preferences: randomly generated per client

- Ideal arrival, departure days
- Good Hotel Value
- Entertainment Values

Utility: 1000 (if valid) – travel penalty + hotel bonus + entertainment bonus

Client Preferences and Utility

Preferences: randomly generated per client

- Ideal arrival, departure days
- Good Hotel Value
- Entertainment Values
- Utility: 1000 (if valid) travel penalty + hotel bonus + entertainment bonus

Score: Sum of client utilities – expenditures

- $G \equiv \text{complete allocation of goods to clients}$
- $v(G) \equiv \text{utility of } G \text{cost of needed goods}$
 - $G^* \equiv \operatorname{argmax} v(G)$

- $G \equiv$ complete allocation of goods to clients
- $v(G) \equiv \text{utility of } G \text{cost of needed goods}$
 - $G^* \equiv \operatorname{argmax} v(G)$

Given holdings and prices, find G^*

- $G \equiv$ complete allocation of goods to clients
- $v(G) \equiv \text{utility of } G \text{cost of needed goods}$
 - $G^* \equiv \operatorname{argmax} v(G)$

Given holdings and prices, find G^*

- General allocation NP-complete
 - Tractable in TAC: mixed-integer LP (ATTac-2000)
 - Estimate $v(G^*)$ quickly with LP relaxation

- $G \equiv$ complete allocation of goods to clients
- $v(G) \equiv \text{utility of } G \text{cost of needed goods}$
 - $G^* \equiv \operatorname{argmax} v(G)$

Given holdings and prices, find G^*

- General allocation NP-complete
 - Tractable in TAC: mixed-integer LP (ATTac-2000)
 - Estimate $v(G^*)$ quickly with LP relaxation

Prices known \Rightarrow G^* known \Rightarrow optimal bids known

• Learn model of expected hotel price

• Learn model of expected hotel price distributions

- Learn model of expected hotel price distributions
- For each auction:
 - Repeatedly sample price vector from distributions

- Learn model of expected hotel price distributions
- For each auction:
 - Repeatedly sample price vector from distributions
 - Bid avg marginal expected utility: $v(G_w^*) v(G_l^*)$

- Learn model of expected hotel price distributions
- For each auction:
 - Repeatedly sample price vector from distributions
 - Bid avg marginal expected utility: $v(G_w^*) v(G_l^*)$
- Bid for all goods not just those in G^*

- Learn model of expected hotel price distributions
- For each auction:
 - Repeatedly sample price vector from distributions
 - Bid avg marginal expected utility: $v(G_w^*) v(G_l^*)$
- Bid for all goods not just those in G^*

Goal: analytically calculate optimal bids

Patrick MacAlpine

Hotel Price Prediction

• Features:

- Current hotel and flight prices
- Current time in game
- Hotel closing times
- Agents in the game (when known)
- Variations of the above

Hotel Price Prediction

• Features:

- Current hotel and flight prices
- Current time in game
- Hotel closing times
- Agents in the game (when known)
- Variations of the above

• Data:

- Hundreds of seeding round games

Hotel Price Prediction

• Features:

- Current hotel and flight prices
- Current time in game
- Hotel closing times
- Agents in the game (when known)
- Variations of the above

• Data:

- Hundreds of seeding round games
- Assumption: similar economy

Hotel Price Prediction

• Features:

- Current hotel and flight prices
- Current time in game
- Hotel closing times
- Agents in the game (when known)
- Variations of the above

• Data:

- Hundreds of seeding round games
- Assumption: similar economy
- Features \mapsto actual prices

- $X \equiv \text{feature vector} \in \mathbb{R}^n$
- $Y \equiv \text{closing price} \text{current price} \in \mathbb{R}$

- $X \equiv \text{feature vector} \in \mathbb{R}^n$
- $Y \equiv \text{closing price} \text{current price} \in \mathbb{R}$
- Break Y into $k \approx 50$ cut points $b_1 \leq \cdots \leq b_k$

- $X \equiv \text{feature vector} \in \mathbb{R}^n$
- $Y \equiv \text{closing price} \text{current price} \in \mathbb{R}$
- Break Y into $k \approx 50$ cut points $b_1 \leq \cdots \leq b_k$
- For each b_i , estimate probability $Y \ge b_i$, given X

- $X \equiv \text{feature vector} \in \mathbb{R}^n$
- $Y \equiv \text{closing price} \text{current price} \in \mathbb{R}$
- Break Y into $k \approx 50$ cut points $b_1 \leq \cdots \leq b_k$
- For each b_i , estimate probability $Y \ge b_i$, given X- Say X belongs to class C_i if $Y \ge b_i$

- $X \equiv \text{feature vector} \in \mathbb{R}^n$
- $Y \equiv \text{closing price} \text{current price} \in \mathbb{R}$
- Break Y into $k \approx 50$ cut points $b_1 \leq \cdots \leq b_k$
- For each b_i , estimate probability $Y \ge b_i$, given X
 - Say X belongs to class C_i if $Y \ge b_i$
 - -k-class problem: each example in many classes

- $X \equiv \text{feature vector} \in \mathbb{R}^n$
- $Y \equiv \text{closing price} \text{current price} \in \mathbb{R}$
- Break Y into $k \approx 50$ cut points $b_1 \leq \cdots \leq b_k$
- For each b_i , estimate probability $Y \ge b_i$, given X
 - Say X belongs to class C_i if $Y \ge b_i$
 - -k-class problem: each example in many classes
 - Use **BoosTexter** (boosting (Schapire, 1990))

- $X \equiv \text{feature vector} \in \mathbb{R}^n$
- $Y \equiv \text{closing price} \text{current price} \in \mathbb{R}$
- Break Y into $k \approx 50$ cut points $b_1 \leq \cdots \leq b_k$
- For each b_i , estimate probability $Y \ge b_i$, given X
 - Say X belongs to class C_i if $Y \ge b_i$
 - -k-class problem: each example in many classes
 - Use **BoosTexter** (boosting (Schapire, 1990))
- Can convert to estimated distribution of Y|X

- $X \equiv \text{feature vector} \in \mathbb{R}^n$
- $Y \equiv \text{closing price} \text{current price} \in \mathbb{R}$
- Break Y into $k \approx 50$ cut points $b_1 \leq \cdots \leq b_k$
- For each b_i , estimate probability $Y \ge b_i$, given X
 - Say X belongs to class C_i if $Y \ge b_i$
 - -k-class problem: each example in many classes
 - Use **BoosTexter** (boosting (Schapire, 1990))
- Can convert to estimated distribution of Y|X

New algorithm for conditional density estimation

- Repeat until time bound, for each hotel:
 - 1. Assume this hotel closes next

- Repeat until time bound, for each hotel:
 - 1. Assume this hotel closes next
 - 2. Sample prices from predicted price distributions

- Repeat until time bound, for each hotel:
 - 1. Assume this hotel closes next
 - 2. Sample prices from predicted price distributions
 - 3. Given these prices compute V_0, V_1, \ldots, V_8
 - $-V_i = v(G^*)$ if own **exactly** *i* of the hotel
 - $-V_0 \le V_1 \le \ldots \le V_8$

- Repeat until time bound, for each hotel:
 - 1. Assume this hotel closes next
 - 2. Sample prices from predicted price distributions
 - 3. Given these prices compute V_0, V_1, \ldots, V_8
 - $-V_i = v(G^*)$ if own **exactly** *i* of the hotel
 - $-V_0 \le V_1 \le \ldots \le V_8$
- Value of *i*th copy is avg($V_i V_{i-1}$)

Other Uses of Sampling

Flights: Cost/benefit analysis for postponing commitment

Patrick MacAlpine

Other Uses of Sampling

Flights: Cost/benefit analysis for postponing commitment

- **Cost:** Price expected to rise over next *n* minutes **Benefit:** More price info becomes known
 - Compute expected marginal value of buying some different flight

Other Uses of Sampling

Flights: Cost/benefit analysis for postponing commitment

- **Cost:** Price expected to rise over next *n* minutes **Benefit:** More price info becomes known
 - Compute expected marginal value of buying some different flight

Entertainment: Bid more (ask less) than expected value of having one more (fewer) ticket

Finals

Team	Avg.	Adj.	Institution
ATTac	3622	4154	AT&T
livingagents	3670	4094	Living Systems (Germ.)
whitebear	3513	3931	Cornell
Urlaub01	3421	3909	Penn State
Retsina	3352	3812	CMU
CaiserSose	3074	3766	Essex (UK)
Southampton	3253*	3679	Southampton (UK)
TacsMan	2859	3338	Stanford

- ATTac improves over time
- livingagents is an open-loop strategy

• *ATTacs*: "`full-strength" agent based on boosting

- *ATTacs*: "`full-strength" agent based on boosting
- *SimpleMean_s*: sample from empirical distribution (previously played games)

- *ATTacs*: "`full-strength" agent based on boosting
- *SimpleMean_s*: sample from empirical distribution (previously played games)
- ConditionalMeans: condition on closing time

- *ATTacs*: "`full-strength" agent based on boosting
- *SimpleMean_s*: sample from empirical distribution (previously played games)
- *ConditionalMeans*: condition on closing time
- ATTac $_{ns}$, ConditionalMean $_{ns}$, SimpleMean $_{ns}$: predict expected value of the distribution

- *ATTacs*: "`full-strength" agent based on boosting
- *SimpleMean_s*: sample from empirical distribution (previously played games)
- *ConditionalMeans*: condition on closing time
- ATTac $_{ns}$, ConditionalMean $_{ns}$, SimpleMean $_{ns}$: predict expected value of the distribution
- *CurrentPrice*: predict no change

- *ATTacs*: "`full-strength" agent based on boosting
- *SimpleMean_s*: sample from empirical distribution (previously played games)
- *ConditionalMeans*: condition on closing time
- ATTac $_{ns}$, ConditionalMean $_{ns}$, SimpleMean $_{ns}$: predict expected value of the distribution
- *CurrentPrice*: predict no change
- *EarlyBidder*: motivated by TAC-01 entry livingagents

- *ATTacs*: "`full-strength" agent based on boosting
- *SimpleMean_s*: sample from empirical distribution (previously played games)
- *ConditionalMeans*: condition on closing time
- ATTac $_{ns}$, ConditionalMean $_{ns}$, SimpleMean $_{ns}$: predict expected value of the distribution
- *CurrentPrice*: predict no change
- EarlyBidder: motivated by TAC-01 entry livingagents Immediately bids high for G^* (with SimpleMean_{ns})
 - Goes to sleep

Stability

• 7 EarlyBidder's with 1 ATTac

Agent	Score	Utility
ATTac	2431 ± 464	8909 ± 264
EarlyBidder	-4880 ± 337	9870 ± 34

Stability

• 7 EarlyBidder's with 1 ATTac

Agent	Score	Utility
ATTac	2431 ± 464	8909 ± 264
EarlyBidder	-4880 ± 337	9870 ± 34

• 7 ATTac's with 1 EarlyBidder

Agent	Score	Utility
ATTac	2578 ± 25	9650 ± 21
EarlyBidder	2869 ± 69	10079 ± 55

Stability

• 7 EarlyBidder's with 1 ATTac

Agent	Score	Utility
ATTac	2431 ± 464	8909 ± 264
EarlyBidder	-4880 ± 337	9870 ± 34

• 7 ATTac's with 1 EarlyBidder

Agent	Score	Utility
ATTac	2578 ± 25	9650 ± 21
EarlyBidder	2869 ± 69	10079 ± 55

EarlyBidder gets more utility; ATTac pays less

• *Phase I* : Training from TAC-01 (seeding round, finals)

- *Phase I* : Training from TAC-01 (seeding round, finals)
- *Phase II* : Training from TAC-01, phases I, II

- *Phase I* : Training from TAC-01 (seeding round, finals)
- *Phase II* : Training from TAC-01, phases I, II
- *Phase III* : Training from phases I III

- *Phase I* : Training from TAC-01 (seeding round, finals)
- *Phase II* : Training from TAC-01, phases I, II
- *Phase III* : Training from phases I III

Agent	Relative Score		
	Phase I	Phase III	
ATTac _{ns}	105.2 ± 49.5 (2)	166.2 ± 20.8 (1)	
ATTacs	27.8 ± 42.1 (3)	122.3 ± 19.4 (2)	
EarlyBidder	140.3 ± 38.6 (1)	117.0 ± 18.0 (3)	
SimpleMean _{ns}	-28.8 ± 45.1 (5)	-11.5 ± 21.7 (4)	
SimpleMean _s	-72.0 ± 47.5 (7)	-44.1 ± 18.2 (5)	
ConditionalMean _{ns}	8.6 ± 41.2 (4)	-60.1 ± 19.7 (6)	
<i>ConditionalMean_s</i>	-147.5 ± 35.6 (8)	-91.1 ± 17.6 (7)	
CurrentPrice	-33.7 ± 52.4 (6)	-198.8 ± 26.0 (8)	

Last-minute bidding (R,O, 2001)

- eBay: first-price, ascending auction
- Amazon: auction extended if bid in last 10 minutes
- eBay: bots exist to incrementally raise your bid to a maximum
- Still people *snipe*. Why?
 - There's a risk that the bid might not make it
 - However, common-value \Longrightarrow bid conveys info
 - Late-bidding can be seen as implicit collusion
 - Or ..., lazy, unaware, etc. (Amazon and eBay)
- Finding: more late-bidding on eBay,
 - even more on antiques rather than computers

Small design-difference matters

Late Bidding as Best Response

- Good vs. incremental bidders
 - They start bidding low, plan to respond
 - Doesn't give them time to respond
- Good vs. other snipers
 - Implicit collusion
 - Both bid low, chance that one bid doesn't get in
- Good in common-value case
 - protects information

Overall, the analysis of multiple bids supports the hypothesis that last-minute bidding arises at least in part as a response by sophisticated bidders to unsophisticated incremental bidding.

- Supply Chain Management
- Ad Auctions
- Power

• Are these agents useful for the real version of these tasks?

Patrick MacAlpine

- Are these agents useful for the real version of these tasks?
- What can we learn from these competitions?

- Are these agents useful for the real version of these tasks?
- What can we learn from these competitions?
- General strategy that works well?

- Are these agents useful for the real version of these tasks?
- What can we learn from these competitions?
- General strategy that works well?

