CS344M Autonomous Multiagent Systems

Patrick MacAlpine

Department or Computer Science The University of Texas at Austin

Good Afternoon, Colleagues

Good Afternoon, Colleagues

Are there any questions?

Department of Computer Sciences The University of Texas at Austin

Patrick MacAlpine

• Questions about the syllabus?

- Questions about the syllabus?
- Class registration

- Questions about the syllabus?
- Class registration
- Problems with the assignment?

- Questions about the syllabus?
- Class registration
- Problems with the assignment?
- Piazza and Canvas announcements yesterday

- Questions about the syllabus?
- Class registration
- Problems with the assignment?
- Piazza and Canvas announcements yesterday
- Last week's slides are up

- Questions about the syllabus?
- Class registration
- Problems with the assignment?
- Piazza and Canvas announcements yesterday
- Last week's slides are up
- Next week's readings are up:
 - Brooks' reactive robots
 - A more deliberative architecture
 - RoboCup challenge paper

- Questions about the syllabus?
- Class registration
- Problems with the assignment?
- Piazza and Canvas announcements yesterday
- Last week's slides are up
- Next week's readings are up:
 - Brooks' reactive robots
 - A more deliberative architecture
 - RoboCup challenge paper
- Seating arrangement

- Are they agents or not?
- How does Wooldridge resolve this?

• Autonomous robot

- Autonomous robot
- Information gathering agent
 - Find me the cheapest?

- Autonomous robot
- Information gathering agent
 - Find me the cheapest?
- E-commerce agents
 - Decides what to buy/sell and does it

- Autonomous robot
- Information gathering agent
 - Find me the cheapest?
- E-commerce agents
 - Decides what to buy/sell and does it
- Air-traffic controller

- Autonomous robot
- Information gathering agent
 - Find me the cheapest?
- E-commerce agents
 - Decides what to buy/sell and does it
- Air-traffic controller
- Meeting scheduler

- Autonomous robot
- Information gathering agent
 - Find me the cheapest?
- E-commerce agents
 - Decides what to buy/sell and does it
- Air-traffic controller
- Meeting scheduler
- Computer-game-playing agent

Not Intelligent Agents

- Thermostat
- Telephone
- Answering machine
- Pencil
- Java object

Your Agent Examples

Patrick MacAlpine

Simple home alarm; cat food dispenser **Software:** anti-virus/malware agent; spam filter; web crawler: iOS autocorrect daemon Automotive: smart keys; digitial highway speed sign; traffic light with sensors; autonomous car; cruise control **Telecom:** GPS device; cell phone Physical Control: Roomba; lawn watering system Health: pacemaker **Game/Entertainment:** chess player; first person shooter AI

An Example

• You, as a class, act as a learning agent

- You, as a class, act as a learning agent
- Actions: Wave, Stand, Clap

- You, as a class, act as a learning agent
- Actions: Wave, Stand, Clap
- Observations: colors, reward

- You, as a class, act as a learning agent
- Actions: Wave, Stand, Clap
- Observations: colors, reward
- Goal: Find an optimal *policy*

- You, as a class, act as a learning agent
- Actions: Wave, Stand, Clap
- Observations: colors, reward
- Goal: Find an optimal *policy*
 - Way of selecting actions that gets you the most reward

How did you do it?

- What is your policy?
- What does the world look like?

Knowns:

Knowns:

- $\mathcal{O} = \{\text{Blue}, \text{Red}, \text{Green}, \text{Yellow}, \ldots\}$
- Rewards in ${\sf I\!R}$
- $\mathcal{A} = \{Wave, Clap, Stand\}$

 $o_0, a_0, r_0, o_1, a_1, r_1, o_2, \ldots$

Knowns:

- $\mathcal{O} = \{\mathsf{Blue}, \mathsf{Red}, \mathsf{Green}, \mathsf{Yellow}, \ldots\}$
- Rewards in \mathbb{R}
- $\mathcal{A} = \{Wave, Clap, Stand\}$

 $o_0, a_0, r_0, o_1, a_1, r_1, o_2, \ldots$

Unknowns:

Knowns:

- $\mathcal{O} = \{\text{Blue}, \text{Red}, \text{Green}, \text{Yellow}, \ldots\}$
- Rewards in \mathbb{R}
- $\mathcal{A} = \{Wave, Clap, Stand\}$

 $o_0, a_0, r_0, o_1, a_1, r_1, o_2, \ldots$

Unknowns:

- S = 4x3 grid
- $\mathcal{R}: \mathcal{S} \times \mathcal{A} \mapsto \mathbb{R}$
- $\mathcal{P} = \mathcal{S} \mapsto \mathcal{O}$
- $\mathcal{T}: \mathcal{S} \times \mathcal{A} \mapsto \mathcal{S}$

Knowns:

- $\mathcal{O} = \{\text{Blue}, \text{Red}, \text{Green}, \text{Yellow}, \ldots\}$
- Rewards in \mathbb{R}
- $\mathcal{A} = \{Wave, Clap, Stand\}$

 $o_0, a_0, r_0, o_1, a_1, r_1, o_2, \ldots$

Unknowns:

- S = 4x3 grid
- $\mathcal{R}: \mathcal{S} \times \mathcal{A} \mapsto \mathbb{R}$
- $\mathcal{P} = \mathcal{S} \mapsto \mathcal{O}$
- $\mathcal{T}: \mathcal{S} \times \mathcal{A} \mapsto \mathcal{S}$

$o_i = \mathcal{P}(s_i)$

Knowns:

- $\mathcal{O} = \{\text{Blue}, \text{Red}, \text{Green}, \text{Yellow}, \ldots\}$
- Rewards in \mathbb{R}
- $\mathcal{A} = \{Wave, Clap, Stand\}$

 $o_0, a_0, r_0, o_1, a_1, r_1, o_2, \ldots$

Unknowns:

- S = 4x3 grid
- $\mathcal{R}: \mathcal{S} \times \mathcal{A} \mapsto \mathbb{R}$
- $\mathcal{P} = \mathcal{S} \mapsto \mathcal{O}$
- $\mathcal{T}: \mathcal{S} \times \mathcal{A} \mapsto \mathcal{S}$

 $o_i = \mathcal{P}(s_i)$ $r_i = \mathcal{R}(s_i, a_i)$

Knowns:

- $\mathcal{O} = \{\text{Blue}, \text{Red}, \text{Green}, \text{Yellow}, \ldots\}$
- Rewards in ${\sf I\!R}$
- $\mathcal{A} = \{Wave, Clap, Stand\}$

 $o_0, a_0, r_0, o_1, a_1, r_1, o_2, \ldots$

Unknowns:

- S = 4x3 grid
- $\mathcal{R}: \mathcal{S} \times \mathcal{A} \mapsto \mathbb{R}$
- $\mathcal{P} = \mathcal{S} \mapsto \mathcal{O}$
- $\mathcal{T}: \mathcal{S} \times \mathcal{A} \mapsto \mathcal{S}$

 $o_i = \mathcal{P}(s_i)$ $r_i = \mathcal{R}(s_i, a_i)$

 $s_{i+1} = \mathcal{T}(s_i, a_i)$

