CS344M Autonomous Multiagent Systems

Patrick MacAlpine

Department or Computer Science The University of Texas at Austin

Good Afternoon, Colleagues

Are there any questions?

Department of Computer Sciences The University of Texas at Austin

• How to read a research paper

- How to read a research paper
 - Some have too few details...

- How to read a research paper
 - Some have too few details...
 - Others have too many.

- How to read a research paper
 - Some have too few details...
 - Others have too many.
- Next week's readings posted

- How to read a research paper
 - Some have too few details...
 - Others have too many.
- Next week's readings posted

Darwin: genetic programming approach

Darwin: genetic programming approach

Stone and McAllester: Architecture for action selection

Darwin: genetic programming approach

Stone and McAllester: Architecture for action selection

Riley et al: Coach competition, extracting models

Darwin: genetic programming approach

Stone and McAllester: Architecture for action selection

Riley et al: Coach competition, extracting models

Kuhlmann et al: Learning for coaching

Darwin: genetic programming approach

Stone and McAllester: Architecture for action selection

Riley et al: Coach competition, extracting models

Kuhlmann et al: Learning for coaching

Wihthop and Reidmiller: Reinforcement learning

Darwin: genetic programming approach

Stone and McAllester: Architecture for action selection

Riley et al: Coach competition, extracting models

Kuhlmann et al: Learning for coaching

Wihthop and Reidmiller: Reinforcement learning

MacAlpine, Price, and Stone: Role assignment

Darwin: genetic programming approach

Stone and McAllester: Architecture for action selection

Riley et al: Coach competition, extracting models

Kuhlmann et al: Learning for coaching

Wihthop and Reidmiller: Reinforcement learning

MacAlpine, Price, and Stone: Role assignment

MacAlpine, Depinet, and Stone: Overlapping layered learning

• Motivated by biological evolution: GA, GP

- Motivated by biological evolution: GA, GP
- Search through a space

- Motivated by biological evolution: GA, GP
- Search through a space
 - Need a representation, fitness function
 - Probabilistically apply search operators to set of points in search space

- Motivated by biological evolution: GA, GP
- Search through a space
 - Need a representation, fitness function
 - Probabilistically apply search operators to set of points in search space
- Randomized, parallel hill-climbing through space

- Motivated by biological evolution: GA, GP
- Search through a space
 - Need a representation, fitness function
 - Probabilistically apply search operators to set of points in search space
- Randomized, parallel hill-climbing through space
- Learning is an optimization problem (fitness)

- Motivated by biological evolution: GA, GP
- Search through a space
 - Need a representation, fitness function
 - Probabilistically apply search operators to set of points in search space
- Randomized, parallel hill-climbing through space
- Learning is an optimization problem (fitness)

Some slides from *Machine Learning* (Mitchell, 1997)

• More ambitious follow-up to Luke, 97 (made 2nd round)

- More ambitious follow-up to Luke, 97 (made 2nd round)
- Motivated in part by Peter's detailed team construction

- More ambitious follow-up to Luke, 97 (made 2nd round)
- Motivated in part by Peter's detailed team construction
- Evolves whole teams lexicographic fitness function

- More ambitious follow-up to Luke, 97 (made 2nd round)
- Motivated in part by Peter's detailed team construction
- Evolves whole teams lexicographic fitness function
- Lots of spinning, but figured out dribbling, offsides

- More ambitious follow-up to Luke, 97 (made 2nd round)
- Motivated in part by Peter's detailed team construction
- Evolves whole teams lexicographic fitness function
- Lots of spinning, but figured out dribbling, offsides
- 1-1-1 record. Tied a good team, but didn't advance

- More ambitious follow-up to Luke, 97 (made 2nd round)
- Motivated in part by Peter's detailed team construction
- Evolves whole teams lexicographic fitness function
- Lots of spinning, but figured out dribbling, offsides
- 1-1-1 record. Tied a good team, but didn't advance
- Success of the method, but not pursued

Overlapping Layered Learning

• Machine learning paradigms (not algorithms)

- Machine learning paradigms (not algorithms)
- Useful for learning complex skills that work well together

- Machine learning paradigms (not algorithms)
- Useful for learning complex skills that work well together
- (slides)

