CS344M Autonomous Multiagent Systems

Patrick MacAlpine

Department of Computer Science The University of Texas at Austin

Good Afternoon, Colleagues

Are there any questions?

Department of Computer Sciences The University of Texas at Austin

Patrick MacAlpine

• Surveys due Wednesday at 9pm

Patrick MacAlpine

- Surveys due Wednesday at 9pm
- Next week's readings posted

- Surveys due Wednesday at 9pm
- Next week's readings posted
- UT Robotics seminar talk on Wednesday at 11, CPE 2.206
 - Scott Niekum personal and home robotics

Video (and RoboCup connection)

- Video (and RoboCup connection)
- Advantages of system
 - Lower cost

- Video (and RoboCup connection)
- Advantages of system
 - Lower cost
 - Less energy

- Video (and RoboCup connection)
- Advantages of system
 - Lower cost
 - Less energy
 - Lower error rate

- Video (and RoboCup connection)
- Advantages of system
 - Lower cost
 - Less energy
 - Lower error rate
 - Less space

- Video (and RoboCup connection)
- Advantages of system
 - Lower cost
 - Less energy
 - Lower error rate
 - Less space
 - Robust to single robot failure

- Video (and RoboCup connection)
- Advantages of system
 - Lower cost
 - Less energy
 - Lower error rate
 - Less space
 - Robust to single robot failure
 - Faster/better throughput

- Video (and RoboCup connection)
- Advantages of system
 - Lower cost
 - Less energy
 - Lower error rate
 - Less space
 - Robust to single robot failure
 - Faster/better throughput
 - Faster to train pickers

- Video (and RoboCup connection)
- Advantages of system
 - Lower cost
 - Less energy
 - Lower error rate
 - Less space
 - Robust to single robot failure
 - Faster/better throughput
 - Faster to train pickers
 - Safer

- Video (and RoboCup connection)
- Advantages of system
 - Lower cost
 - Less energy
 - Lower error rate
 - Less space
 - Robust to single robot failure
 - Faster/better throughput
 - Faster to train pickers
 - Safer
 - Flexible/adaptable

- Video (and RoboCup connection)
- Advantages of system
 - Lower cost
 - Less energy
 - Lower error rate
 - Less space
 - Robust to single robot failure
 - Faster/better throughput
 - Faster to train pickers
 - Safer
 - Flexible/adaptable
 - Scaleable and Expandable

- Video (and RoboCup connection)
- Advantages of system
 - Lower cost
 - Less energy
 - Lower error rate
 - Less space
 - Robust to single robot failure
 - Faster/better throughput
 - Faster to train pickers
 - Safer
 - Flexible/adaptable
 - Scaleable and Expandable
 - Quick to deploy

- Video (and RoboCup connection)
- Advantages of system
 - Lower cost
 - Less energy
 - Lower error rate
 - Less space
 - Robust to single robot failure
 - Faster/better throughput
 - Faster to train pickers
 - Safer
 - Flexible/adaptable
 - Scaleable and Expandable
 - Quick to deploy
 - Can reorganize self

• Is Job Manager (JM) a single point of failure?

- Is Job Manager (JM) a single point of failure?
- How are collisions avoided with A*?

- Is Job Manager (JM) a single point of failure?
- How are collisions avoided with A*?
- If Drive Unit does path planning, how does the JM know how to allocate resources?

- Is Job Manager (JM) a single point of failure?
- How are collisions avoided with A*?
- If Drive Unit does path planning, how does the JM know how to allocate resources?
- How do they determine the ratio of pods to drive units to human pickers?

- Is Job Manager (JM) a single point of failure?
- How are collisions avoided with A*?
- If Drive Unit does path planning, how does the JM know how to allocate resources?
- How do they determine the ratio of pods to drive units to human pickers?
- What are the "over 100 message types"?

- Is Job Manager (JM) a single point of failure?
- How are collisions avoided with A*?
- If Drive Unit does path planning, how does the JM know how to allocate resources?
- How do they determine the ratio of pods to drive units to human pickers?
- What are the "over 100 message types"?
- Could you outperform the warehouse system with a swarm?
- Improvements using machine learning?
- Other applications of the system?

