CS344M Autonomous Multiagent Systems

Patrick MacAlpine

Department of Computer Science The University of Texas at Austin

Good Afternoon, Colleagues

Are there any questions?

Logistics

• Progress reports due in 1 week

Logistics

- Progress reports due in 1 week
- Topic change for next week: multiagent learning

Logistics

- Progress reports due in 1 week
- Topic change for next week: multiagent learning
- Talks in the department:
 - FAI Talk Sergey Levine, Frdiay 11am GDC 6.302

Mixed strategy equilibrium

			Player	2	_
		Action	1	Action	2
Player 1	Action 1	3,7		2,2	
	Action 2	6,5		1,7	

Mixed strategy equilibrium

			Player	2	_
		Action	1	Action	2
Player 1	Action 1	3,7		2,2	
	Action 2	6,5		1,7	

- What if player 2 picks action 1 3/4 of the time?
- What if player 2 picks action 1 1/4 of the time?
- Player 1 must be indifferent between actions 1 and 2
- Player 2 must be indifferent between actions 1 and 2

Correlated Equilibria

Correlated Equilibria

Sometimes mixing isn't enough: Bach/Stravinsky

Want only S,S or B,B - 50% each

- We will both be in Paris for some time in June.
- We both know that we will both be there on the 15th.

- We will both be in Paris for some time in June.
- We both know that we will both be there on the 15th.
- Something happens so that we must meet on that day
- We have no way of getting in touch.

- We will both be in Paris for some time in June.
- We both know that we will both be there on the 15th.
- Something happens so that we must meet on that day
- We have no way of getting in touch.
- When and where?

- We will both be in Paris for some time in June.
- We both know that we will both be there on the 15th.
- Something happens so that we must meet on that day
- We have no way of getting in touch.
- When and where?
- What are the Nash equilibria?

- We each get one of 3 cards: 1,2,3
- If we both fold, we both lose nothing
- If one raises and one folds, the raiser gets 1
- If both raise, the one with the higher card gets 5
- Zero sum

- We each get one of 3 cards: 1,2,3
- If we both fold, we both lose nothing
- If one raises and one folds, the raiser gets 1
- If both raise, the one with the higher card gets 5
- Zero sum

Card ?

R

F

Card 3

R

5,-5

1,-1

F - 1, 1

0,0

• $3 \Rightarrow \text{raise}$

- $3 \Rightarrow \text{raise}$
- $1 \Rightarrow$ fold (no matter what the other one does with 2)

- $3 \Rightarrow raise$
- 1 \Rightarrow fold (no matter what the other one does with 2)
- 2 ⇒ ?

- $3 \Rightarrow raise$
- 1 \Rightarrow fold (no matter what the other one does with 2)
- $2 \Rightarrow ?$
 - Raise: (.5)(-5) + (.5)(1) = -2
 - Fold: (.5)(-1) + (.5)(0) = -.5

- $3 \Rightarrow raise$
- 1 \Rightarrow fold (no matter what the other one does with 2)
- 2 ⇒ ?
 - Raise: (.5)(-5) + (.5)(1) = -2
 - Fold: (.5)(-1) + (.5)(0) = -.5
 - Always fold!

- $3 \Rightarrow \text{raise}$
- 1 \Rightarrow fold (no matter what the other one does with 2)
- 2 ⇒ ?
 - Raise: (.5)(-5) + (.5)(1) = -2
 - Fold: (.5)(-1) + (.5)(0) = -.5
 - Always fold!
 - Bayes-Nash: both players Raise if 3, otherwise Fold

- $3 \Rightarrow \text{raise}$
- 1 \Rightarrow fold (no matter what the other one does with 2)
- 2 ⇒ ?
 - Raise: (.5)(-5) + (.5)(1) = -2
 - Fold: (.5)(-1) + (.5)(0) = -.5
 - Always fold!
 - Bayes-Nash: both players Raise if 3, otherwise Fold

With more numbers and/or different payoffs, bluffing can be a part of the Nash Equilibrium

Discussion

How useful is the concept of Nash equilibrium?

Discussion

- How useful is the concept of Nash equilibrium?
- What if one player isn't rational?

Discussion

- How useful is the concept of Nash equilibrium?
- What if one player isn't rational?
- What can't game theory simulate?

Book slides

- Book slides
- Tournaments on resources page

- Book slides
- Tournaments on resources page
- Threats slides

- Book slides
- Tournaments on resources page
- Threats slides
- Doran's ICML slides