SaM v2.6 Design Documentation

lvan Gyurdiev
David Levitan

9/5/2005

Contents

I introductiod 6
L1 WhatisSaM? oo 6
L2 whatissaM3> 6
|1.3 What are the major SaM CQmenehts? 7
|1.4 Program Execut'l)n 7

B componentd 8
IZ..’I_I:I.a.dea.Leﬁo.m.D.Qn.e.hts 8

1.1 TheProcessor.o, 8
bi2 Memody. 10
13 TheHeapAllocator. 12
bia videocald 14
.15 SystemChipdet 15
b2 intemnal Simulator Clasdes 5 1
P21 SaMinstructios oo 16
22 SaMSymbolTale . . . oo oo 17
23 SaMReferenceTable 17
o4 saMProgram 18
b2s samub. 19

CONTENTS 2

D3 SAMEIONLENS . - o o o oo e 20
P31 samassembler........., 20
.22 _SaM Graphical User Interfabes 20

- oo 20
.3.2.2 SamCapture - Capture Vielver 21
323 SamTester - Test Script Execiltion 21
baz2a usade ... L. 21
.33 SaMTextUserinterfdce 21
- I 21
B SaM Insruction Set Architecture Manual 23

l&..’LJLD.eﬁ.QmLe.LLérS 23
Bi1 FTdi .. 24
Bi2 ETOR 24
Bia 1mok 24

B2 Stackinsertiohso 24
Bo1 pusHIMN 25
B22 pusHMME 25
B23 pusHimmch 25
24 PUSHIMMMAo, 26
25 PUSHIMMPA . . .\ ooooe oo 26
B2.6 PUSHIMMSTR\, 26

B3 RegisterManipulatibn 26
Bai pushde 27
B32 PUSHEBRo 27
Baa popdP 27

CONTENTS 3

B4 Stack Manipulation« oo 28
Bai Dub 28
Baz swab. 28

B.5 _Stack/Heap AIOCALON o o oo 29
Bs1 appsb 29
BE2 MALLOG. ..o\ oo e 29
B53 EREE 29

.6 Absolute Store/Retridve 03
BE1 PUSHIND . ..ot 30
.62 STOREINDo 30
Be3 PusHABS 30
B64 STOREABS 31

.7 _Relative SIOre/ReMriEVe oot 13
Bz1 PUSHOEF 31
RBZ2 STOREQEF 32

B8 IntegerAlgebla 32
Bei apd 32
Be2 sud 32
Bea TIMES 33
Bea DN ... 33
Bas MOD 33

.9 Floating POINEAIGEDIA . .« « v v v oo 34
Boi ADDH 34
ka2 susk. 34
Bosz mmESE 35
Boda DIVE 35

CONTENTS

CONTENTS

Chapter 1

| ntroduction

1.1 WhatisSaM?

SaM is the codename for a Java-based computer emulatoardtasronym for StAck
Machine. SaM is a virtual machine which executes programspased of SaM as-
sembly instructions. Itis a tool, which allows studentsgarh how computers operate,
and to write a compiler/translator to the simplified SaM assly, testing their code
using the virtual machine.

1.2 WhatisSaM 2?

SaM 2 is a complete rewrite of the original stack machine.nitEn objective is to

restructure the SaM code, and divide it into componentsrésgmble real computer
hardware and software more closely. The new SaM code alsaneek the instruction
set with numerous additions, such as bitwise logic, floapp@t instructions, and
string instructions. It provides a typed stack, which suppinteger, Floating Point
Number, Character, Program Address, and Memory AddressstyfaM 2 provides
better error handling using exceptions. Finally, it pr@schew more powerful front-
ends.

CHAPTER 1. INTRODUCTION 7

1.3 What arethe major SaM Components?

SaM is divided into four packages: user interfaag,(core, utilities (tils), and input-
output (o). The user interface package contains the SaM front endshvaine used to
execute SaM assembly programs. The io package containemitek, used to properly
parse such programs. The core package contains compohen&sulate real-world
hardware and software. The utililities package contaimarmon pieces of code used
that should be reused. There are also some subpackages.

1.4 Program Execution
SaM Programs are executed according to the following order:

1. Afront-end is invoked.
2. The front-end invokes the SamAssembler.

3. The assembler uses the SamTokenizer to examine the presgrade, and gen-
erate a Program java object, which consists of a sequenesswiittion objects.

4. The assembler returns this Program object to the frodt-en

5. The front-end passes the Program object to the SamPo@ssbegins execu-
tion.

Chapter 2

Components

2.1 Hardware Components

2.1.1 The Processor

(CORE/PROCESSORIAVA, CORE/SAMPROCESSORIAVA)

The SaM processor is responsible for the loading of a Progigett, and the execution
of Instruction objects, enclosed within that Program objedke a real processor, it
also provides registers, which assist program execution.

Program Execution

To execute a program, it must first be loaded by the proce$berfollowing methods
allow this to happen:

e void init() - initialize the state of the processor
¢ void load(Program prog) - load a Program object into the pssor

e Program getProgram() - obtain the current Program object

Following the successful loading of a program, it may be aket one instruction at a
time or all instructions with one call:

¢ void step() - Step executes one instruction.

8

CHAPTER 2. COMPONENTS 9

e void run() - Run executes all instructions, until the HALTgigter becomes
nonzero

Registers

The SaM Processor implements several registers that aleWPtocessor to execute
programs. These are not used for data storage, but rathertareal processor regis-
ters.

e HALT - Execution Status
Allowed Value: 0 (running) or 1 (stopped)
Start Value: 0
It is used to stop the execution of a program.

e PC - Program Counter
Allowed Value: 0 <= PC < Program Length
Start Value: 0
Used to track the instruction that will be executed next.

e SP - Stack Pointer
Allowed Value: 0 <= SP < Stack Limit
Start Value: 0
Used to track the first free memory location on the stack.

e FBR - Frame Based Register
Allowed Value: 0 &It;= FBR &It; Memory Limit
Start Value: 0
Used for relative addressing when constructing frames erstiick

Registers can be manipulated using the following methods:

¢ void set(int register, int value) - set a register to a givalue
e intinc (int register) - increment a register by one, and methe result
e int dec (int register) - decrement a register by one, andmahe result

e int[] getRegisters() - obtain the register array

CHAPTER 2. COMPONENTS 10

212 Memory

(COREIMEMORY.JAVA, CORE SAMMEMORY.JAVA)

Memory is responsible for data storage. It is capable ofirjodata of size Mem-

ory.UNIT_SIZE bits in each of Memory.MEMORYLIMIT locatian It is implemented

in SamMemory as an array of integers. SaM memory is typedugperts associat-
ing a data type with each memory location. This functiogat@n be used for error
checking, presentation clarity, or other purposes. Iralyntype and data information
alternate locations, but this is not visible to the end uEbe API provides methods for
setting and getting data and type separately, or simultsigaising the Memory.Data
wrapper object. SaM memory is divided into two zones - stakleeap. The boundary
between them is fixed at Memory.STACKLIMIT (the last stackdtion).

Types

The following data types are supported:

Integer (INT)
When an integer value is requested as an integer, a staralarthieger contain-
ing the value should be returned.

Floating Point (FLOAT)
When a floating point value is requested as an integer, an [EE@Representa-
tion of the floating point number should be returned.

Character (CH)
When a character is requested as an integer, the ASCII vdltleeaharacter
should be returned.

Memory Address (MA)
When a memory address is requested as an integer, its Inéatieemory should
be returned as an integer.

Program Address (PA)
When a program address is requested as an integer, theolocdiould be re-
turned as an integer.

General Access

All memory locations can be accessed using the followinghoes:

CHAPTER 2. COMPONENTS 11

e Data getMem (int pos) - retrieve the Data object at this llocat

e int getValue (int pos) - retrieve the value at this location

e Type getType (int pos) - retrieve the type at this location

¢ void setMem (int pos, Memory.Data data) - store a Data olgjetttis location

¢ void setMem (int pos, int data, Memory.Type type) - storeypdt value) pair at
this location

¢ void setValue (int pos, int data) - set the value at this liocat

¢ void setType (int pos, Memory.Type type) - set the type & kbcation

Stack Zone

The stack can be manipulated specifically using the follgvfimctions:

¢ void push (Memory.Data data) - pushes a Data object on tlek sta
e void push (int value, Memory.Type type) - pushes the valuktgpe separately
e void pushINT (inti) - pushes value with type integer

e void pushCH (char ch) - pushes value with type character

e void pushMA (int ma) - pushes value with type memory address
e void pushPA (int pa) - pushes value with type program address
e void pushFLOAT (float fl) - pushes value with type floating ptoin
e Memory.Data pop () - pops a Data object off the stack

e int popValue () - pops a value as an integer off the stack

e int popINT () - pops an integer value off the stack

e char popCH () - pops a character value off the stack

e int popMA () - pops a memory address value off the stack

e int popPA () - pops a program address value off the stack

o float popFLOAT () - pops a floating point value off the stack

CHAPTER 2. COMPONENTS 12

e public List<Memory.Data> getStack () - retrieves the ensitack as a list of Data
objects

Heap Zone

The heap zone is manipulated using a HeapAllocator. It id tedynamic allocation
of memory space. Memory provides the following methods forking with the heap
zone:

e HeapAllocator getHeapAllocator () - obtain the heap altoca
¢ void setHeapAllocator (HeapAllocator heap) - set the hdiagator

e public List<Memory.Data> getAllocation (HeapAllocataliocation alloc) - re-
trieves a heap memory allocation as a list of Data objects

2.1.3 TheHeap Allocator

(CORE/HEAPALLOCATOR.JAVA, CORE/EXPLICITFREEALLOCATOR.JAVA)

The SaM memory allocator is responsible for managing thephdamust support
reserving chunks of memory of a particular size, and redlagithe space later, without
fragmentation.

The current allocator is based on the Doug Lea’s malloc attrc Doug Lea’s malloc
allocatorhttp: /7 gee. cs. osweqo. edu/ dI / ht m/ mal T oc. ht m], or rather
the high-level description of it. The implementation wasti®n independently, and
was simplified for our purposes.

Access I nterface

The heap allocator supports the following methods:

e void init () - initialize the state of memory

¢ void malloc (int size) - allocate a memory chunk of the reqe@size, and place
its address on the stack

¢ void free (int pos) - free a previously allocated memory dhun

e lterator<HeapAllocator.Allocation> getAllocations (pbtain an iterator for all
allocations

http://gee.cs.oswego.edu/dl/html/malloc.html

CHAPTER 2. COMPONENTS 13

e Memory getMemory () - obtain the Memory object associatetth #iis allocator

¢ void setMemory(Memory mem) - set the Memory object for tHisaator

Design

The allocator's main feature is the division of memory spiae chunks (slices) with

power-of-two sizes. Those chunks are grouped togetherliinited lists with other

chunks of the same size. The linked list is attached to anh@ricwhose memory
offset from the base of the heap correspondegg(size) of chunks contained within
- this makes it trivial to locate chunks of a required sizengsimple bitwise algebra.
Offset 0 is special, and contains chunks of various sizeshttnee already been allo-
cated. Each memory chunk includes accounting metadatachefm after the actual
space visible to the user. This is used internally to mainthé linked lists, and for
error detection.

malloc:

When a chunk of size x is requested, x is rounded to a powermfawd the anchor is
traversed looking of free memory of that size, or larger (fgaor of 2 for each anchor
index). If no such slice is found, exception is thrown (OMENM)a slice is found, it
is disconnected from the linked list. The slice is cut bacth®smallest power-of-two
slice sufficiently large to contain the requested allogatibhe remainder is distributed
throughout the anchor as free space. The allocated churdtadata is updated to
reflect how large it is, and what the neighbor chunks are, hadiser-visible address
of it (past the metadata) is returned by malloc.

free:

When a chunk is freed, it is removed from the list of allocaticand it is merged
together with preceding free chunks and following free dtaurThis process prevents
fragmentation of memory - it reassembles small chunks irtgdr ones, which allow
the allocator to handle larger requests. There may be maredhe consecutive free
chunk, because, after the chunks are merged, the result anduredistributed back
into bins of various sizes. Unless the result was an exactepafvtwo, this may
cause multiple consecutive free chunks to exist in memooweéver, the distribution
algorithm makes sure that this number is bound by the sizeecdibchor, which ensures
that free is kept O(1).

getAllocations:

CHAPTER 2. COMPONENTS 14

An interesting consequence of keeping the list of allocetion anchor 0 is that we
can iterate this list. This function returns a Java itergtorO(1)) which allows a
debugging program to iterate the contents of memory, if ss@ey. This can be useful,
for example, to check for memory leaks (if any allocationsain).

Notes:

Enable the constant DEBUG_ALLOCATOR to print the allocdtors after every mal-
loc and free call.

This allocator was successfully translated to SaM assefmtnty an enhanced version
of the Bali language in Spring 2005. It executed correctiyatzout 100% overhead.
The compiler and the code may be found in the SVN repositar@@5sp/part3c.

Further Work:

While power-of-two blocks simplify computations, and amsy to manipulate, the
allocator is extremely wasteful on requests of size 2k + ddaye k and small c. To
address this, a better distribution of bin sizes should ls@gded - this is an opportunity
for future improvement of SaM.

214 Video Card

(CORE/VIDEO.JAVA)

The video card is represented by an interface, which frodsean implement and pro-
vide extra functionality for the SaM instructions. This tamare component is strictly
optional, and instructions should have an alternate smidtr systems without a video
card (front ends that do not implement the interface).

The following methods are avaliable for reading and writideo data:

e void writelnt(int i) - write an integer

e void writeString(String str) - write a string

void writeFloat(float f) - write a floating point number

void writeChar(char c) - write a character

int readInt() - read an integer

float readFloat() - read a floating point number

CHAPTER 2. COMPONENTS 15

e char readChar() - read a character

e String readString() - read a string

2.1.5 System Chipset
(CORE/SYS.JAVA)

This component provides a unified way to access the systeioedein SaM. It is the
equivalent of a computer chipset. The three componentsistlyraccessible from this
class are the Processor, the Memory, and the Video card.

The Sys class was originally designed to be static, but it lates redesigned as a
non-static class in order to allow components to work in parémultiple systems).
This works by sending a Sys object as a parameter to other @oemps, which need
it. The Processor, Memory, and GUI constructors take a Sysnaent. The Processor
and Memory are actually constructed when the Sys objectristoacted, since every
system will have memory and processor. The SaM instructimesa method(void
setSystem(Sys sys)) to get access to the system at exetini®n they don'’t need it
prior to that time.

To use this class, simply create a new Sys object. This wilbiize the processor and
memory. If you pass an integer to the constructor you camimiste multiple proces-
sors - this feature is currently of limited functionalityytcould be used to implement
multiprocessing in the future. The following methods araitable to work with the
Sys object:

e Processor cpu() - return the first processor of this system

Collection<Processor> cpus() - return the entire coltactf processors

Memory mem() - return the system memory

Video video() - return the system video object (null if noadable)

void setVideo(Video v) - set the system video object

2.2 Internal Smulator Classes

SaM also contains several classes that handle programtexeemd other necessary
functions. While these are not found in hardware, theseritieat to SaM.

CHAPTER 2. COMPONENTS 16

2.21 SaM Instructions

(CORE/INSTRUCTIONS*)

A SaM Instruction is a class, implementing the Instructitteiface. The exec() method
manipulates the hardware components of the SaM system asicbmwverwritten by
all instructions. All instructions are expected to manyiahange the PC register, either
incrementing it in the case of most instructions, or chagdis value to a new value
for a jump instruction. See sectibh 3 on p&gk 23 for the Sakuoson Set Manual.

Every instruction is represented as its own class, all otiextend SamIinstruction or
one of its subclasses. An instruction that extends Sanuictitn is one that does not
have any operands. Instructions that need an operand eatendf the subclasses of
Samlnstruction - Samintinstruction, SamFloatInstruttiSBamCharlnstruction, etc...
These subclasses provide the variable in the appropriate type which is set to the
operand provided to the instruction. All included instioos are prefixed bypAM_,
which is removed automatically when the instruction is atfyuused.

Instructions do not check the types of any input values ttsey Ln the default SamPro-
cessor implementation, floats, for example, are storedtagéns using standard Java
float->integer conversion routines. An integer operatioat is given a float as input
will produce unexpected results. Some instructions, sgch2D, SUB, DUP, SWAP,
ISNIL, NOT and EQUALS are defined on multiple data types. Ref¢he ISA manual
for details.

Apart from theop variable, which is provided to operand classes, instrast&lso have
access to thepu (the processor)nem (the memory)yvideo (the video interface)sys
(the system object), artog (the program that the instruction is a part of).

Creating a new Instruction

To create a new instruction:

1. Decide whether your instruction needs an operand, ardtsbk approriate class
to extend.

2. Create a new class definition that inherits the class yoa kelected.

3. Override the exec() method

Things to remember:

CHAPTER 2. COMPONENTS 17

e Remember that the PC must be set manually - typically it mustthe incre-
mented by 1.

e Make sure you use the correct superclass.

2.2.2 SaM Symbol Table

(CORE/SYMBOLTABLE.JAVA, CORE/SAM SYMBOLTABLE.JAVA)

A SaM program supports the use of labels, defined as a stridiggmwith "', such as
"ThislsALabel:" Jump instructions can then take the namsuch a label, and jump to
that address in the program. The SaM Symbol Table is resplerfsir mapping labels
(symbols) to addresses, and vice versa. It is implementagsing two hash tables,
enabling a search using a symbol, or a search using an address

The SaM core package will support multiple labels per addrénfortunately, as of
SaM 2.3, the GUI does not handle multiple stacked labelequperly, and simplifies
them down to one. This is nontrivial to fix, but will be corredtin a future release.

The symbol table provides the following methods:

¢ void add(String symbol, int address) - add a symbol with hectied address

e String resolveSymbol(int address) - return the symbollergiven address

Collection<String> resolveSymbols(intaddress) -retaltsymbols for the given
address

int resolveAddress(String label) - return the addressHerdgiven symbol

Collection<String> getSymbols() - return a collection éfsymbols

String toString() - return a string representation of tlailsle

2.2.3 SaM Reference Table

(CORE/REFERENCETABLE.JAVA, CORE/ SAM REFERENCETABLE.JAVA)

Introduced in SaM 2.4, the reference table maps symbolsaoeplin the program
where they are used. This sets the stage for future work oardiglinking, where

CHAPTER 2. COMPONENTS 18

reference resolution is performed at linking time. Curhgttie reference table is used
only during assembly.

The reference table provides the following methods:
¢ void add(String symbol, int ref_address) - add a referea&ymbol at the spec-
ified address
¢ void deleteSymbol(String symbol) - delete all referencethe given symbol

¢ Collection<Integer> getReferences(String symbol) -metucollection of refer-
ences for this symbol

e int size() - return the number of symbols in the referencéetab

e String toString() - return a string representation of thilslée

2.24 SaM Program

(CORE/PROGRAM.JAVA, CORE SAMPROGRAM.JAVA)

A SaM Program is an enclosing container for Instructions,efeRenceTable, and a
SymbolTable. The assembler generates a Program objectesoldes any references
using the constructed symbol table. The processor loadpritgram, and executes
each instruction of the program object, using the PC regéste numeric index.

The SaM program provides the following methods:

¢ void addlInst (Instruction ins) - append an instruction abfe the program

¢ void addlInst (Instruction[] ins) - append an array of instion objects to the
program

e Instruction getinst(int pos) - return the instruction a¢ gpecified index

e List<Instruction> getinstList() - return all instructisrof this program as a list
e int getLength() - return the number of instructions

e SymbolTable getSymbolTable() - return the symbol tablelits program

¢ ReferenceTable getReferenceTable() - return the refertaude for this program

CHAPTER 2. COMPONENTS 19

e void setSymbolTable(SymbolTable table) - set the symbmétéor this program

¢ void setReferenceTable(ReferenceTable table) - set feecrece table for this
program

e boolean isExecutable() - return if the program is execwetdall references are
resolved)

¢ void resolveReferences() - resolve the program'’s refesfiom its symbol ta-
ble

¢ void resolveReferencesFrom(Program prog) - resolve amgitogram'’s refer-
ences

225 SaM 1/0

(CORETOKENIZER.JAVA, CORE/'SAMTOKENIZER.JAVA)

The SaM tokenizer was designed to break text into tokenspeaiat it easier to parse
both high level and assembly programs. The tokenizer'stfanality is better de-

scribed at the SaM Javadoc API documentation. Howeverpttefing are the various
types of tokens produced by these classes:

¢ Integers: defined as a sequence of digits starting with ieétldash or a digit and
containing only digits after the first digit.

e Floating Point Numbers: defined as a sequence of digitsrsjantith either a
dash, a period, or a digit and containing only digits and oeréogdl after the first
digit.

e Words: defined as a letter followed by a sequence of alphanariearacters

or underscores (_) without any whitespace. Also, any numthet have two or
more periods.

e Strings: anything between two quotation signs. Valid essgn, \r. \\, \", \,
\xxx, etc...) are evaluated in this case. This is only erdhlflthe correct option
is passed to SamTokenizer.

e Characters: a single character betweeen two apostropladis. éscapes (\n, \r.
\\, \", V', \xxx, etc...) are evaluated in this case. Thisidyoenabled if the correct
option is passed to SamTokenizer.

CHAPTER 2. COMPONENTS 20

e Comments: any text on the same line after //. This is only kb the correct
options is passed to SamTokenizer.

e Operators: defined as any non alphanumeric character anelseagied by the
java typechar.

e EOF: Such a token represents that the end of the stream hagdsshed and
that there are no more tokens.

2.3 SaM Front Ends

SaM frontends make use of the core package to assemble anudesaM programs.

23.1 SaM Assembler

(CORE/'SAMASSEMBLERJAVA)

The SaM assembiler is the equivalent of a real assemblerhwidaslates assembly
code into binary. It can be invoked with a filename argumefeader argument, or a
Tokenizer argument. The assembler uses the tokenizerddlegrogram tokens one-
by-one and create Instruction objects using Java reflefitioobtaining class names. It
reads the operands for each instruction, based on the ebdaas it extends (String for
SamsStringlnstruction, character for SamCharlinstructedo..). The assembler tracks
symbol references into a ReferenceTable, and resolveythleds currently available
into a SymbolTable. It combines all this information insal@rogram object.

2.3.2 SaM Graphical User Interfaces
2.3.21 SamGUI - Graphical Ul

SamGUI is a feature-rich graphical front-end, which digplthe stack and heap con-
tents, the program, and the registers at every step. It allwser to start and stop
execution at will, or step through the program. It supportsapture feature, which
saves the memory and register contents at every step,royeateries of snapshots of
the execution process. Finally, breakpoints are supptotedse debugging.

CHAPTER 2. COMPONENTS 21
2.3.2.2 SamCapture- Capture Viewer

SamCapture allows the user to view captures created by theG8& This feature
allows the user to view the state of the processor and menideyty/-side form one
step to the next.

2.3.2.3 SamTester - Test Script Execution

SamTester is a front-end to the ui.utils. TestScript clasallows the user to create a
TestScript and execute multiple SaM programs quickly aséyedt reports the output,
and also allows the XML-based test scripts to be saved.

2.3.24 Usage

The three graphical user interfaces described all have idesiexecution syntax. Each
can execute up to two arguments. The first argument can ber eifilename (in which
case the an instance of the class that was launched is stéttethe provided file) or
one of-gui/-capture/-tester. In the latter case, the appropriate GUI is launched and any
provided second argument is loaded as a file into this GUI.

2.3.3 SaM Text User Interface

When working in a console based enviroment it is essentiaat@ a text only solution
to executing SaM programs. Currently one such interfacéh¢oSaM simulator is
provided. It is also important to note that this interfacenisch faster than any of the
GUIs.

2.3.3.1 SamText - Text Ul

SamText is a small console front-end designed to executegran, and report its
return value. This front-end is great for quick testing, cadjng of student programs.
This front-end also allows a user to type a program at theaerand execute it without
saving. It also allows piping a program in as the input.

Usage

CHAPTER 2. COMPONENTS 22

java ui.SamText <filename> <options>

If the options are omitted, the program runs without limifsthe filename is omitted,
System.in is used for input

Options

+tl <integer>: Time limit in miliseconds

+il <integer>: Instruction limit

-load <class>: Loads a new instruction from the providedla

Chapter 3

SaM | nstruction Set
Architecture M anual

Instruction Set Architecture Manual For mat

Each instruction specifies input types expected, outpugsypperand type, version,
and description. The input and output values are orderad tap to bottom. The
leftmost value corresponds to the top of the stack (for bioplui and output).

Types

Input/output types correspond to the memory types supgdigeSaM (see Memory).
The allowed operand types are Integer, Float, Charactaglésguotes), String (double
quotes), and/or Label (unquoted string). Please note thatstruction requires a spe-
cific input type on the stack - all memory types are treatedeyeers, if they are not
converted with the appropriate instructions.

Instruction Order Execution

All instructions change the value of the PC register. Mostrunctions will simply
increase the PC value by 1. However, jumps may change thidiféesent value.

3.1 TypeConverters
Type conversion instructions convert a value from one typanother.

23

CHAPTER 3. SAM INSTRUCTION SET ARCHITECTURE MANUAL
311 FTOI

Stack Input: Float
Stack Output: Integer
Operand: None
Since: 2.0
Description:

Converts a float to an integer by truncating any decimal porti

312 FTOIR

Stack Input: Float
Stack Output: Integer
Operand: None
Since: 2.0
Description:

Converts a float to an integer by rounding based on the degioréibn.

313 ITOF

Stack Input: Integer
Stack Output: Float
Operand: None
Since: 2.0
Description:

Converts an integer to a float.

3.2 Stack Insertions

These instructions allow new values to be pushed onto tlek.sta

24

CHAPTER 3. SAM INSTRUCTION SET ARCHITECTURE MANUAL 25

321 PUSHIMM

Stack Input: None
Stack Output: Integer
Operand: Integer
Since: 1.0
Description:

Places the integer operand onto the stack.

322 PUSHIMMF

Stack Input: None
Stack Output: Float
Operand: Float
Since: 2.0
Description:

Places the float operand onto the stack.

323 PUSHIMMCH

Stack Input: None

Stack Output: Character
Operand: Character
Since: 2.0

Description:

Places the character operand onto the stack.

CHAPTER 3. SAM INSTRUCTION SET ARCHITECTURE MANUAL 26

324 PUSHIMMMA

Stack Input: None

Stack Output: Memory Address
Operand: Integer

Since: 2.4

Description:

Places the integer operand onto the stack as a memory address

325 PUSHIMMPA

Stack Input: None

Stack Output: Program Address
Operand: Label or Integer
Since: 2.3.2

Description: This instruction pushes the address of the label onto ttek sta a pro-
gram address.

326 PUSHIMMSTR

Stack Input: None

Stack Output: Memory Address
Operand: String

Since: 2.0

Description:

Allocates space for the string on the heap, stores the sequécharacters on the heap,
starting with the first letter as the lowest heap locatione $tring is null-terminated
automatically. The object’s address is pushed onto th&stac

3.3 Register Manipulation

These instructions manipulate the processor registers.

CHAPTER 3. SAM INSTRUCTION SET ARCHITECTURE MANUAL

331 PUSHSP

Stack Input: None

Stack Output: Memory Address
Operand: None

Since: 2.4

Description

Pushes the value of the SP register onto the stack.

3.32 PUSHFBR

Stack Input: None

Stack Output: Memory Address
Operand: None

Since: 1.0

Description:

Pushes the value of the FBR register onto the stack.

3.3.3 POPSP

Stack Input: Memory Address
Stack Output: None

Operand: None

Since: 2.4

Description:

Sets the SP register to the value at the top of the stack.

27

CHAPTER 3. SAM INSTRUCTION SET ARCHITECTURE MANUAL 28
3.34 POPFBR

Stack Input: Memory Address
Stack Output: None
Operand: None

Since: 1.0

Description:

Sets the FBR register to the value at the top of the stack. iShoften used to undo
LINK.

3.4 Stack Manipulation

341 DUP

Stack Input: Any type

Stack Output: Two of the input type
Operand: None

Since: 1.0

Description:

Duplicates the value at the top of the stack preserving the.ty

342 SWAP

Stack Input: Any two types

Stack Output: The reverse of the two types
Operand: None

Since: 1.0

Description:

Switches the places of the first two values on the stack. Tyfoernation is preserved
for each value.

CHAPTER 3. SAM INSTRUCTION SET ARCHITECTURE MANUAL 29

3.5 Stack/Heap Allocation

These instructions allow space to be allocated for data®hdap/stack.

351 ADDSP

Stack Input: None
Stack Output: None
Operand: Integer
Since: 1.0
Description

Increments the SP register by the provided value.

352 MALLOC

Stack Input: Integer

Stack Output: Memory Address
Operand: None

Since: 1.0 (Modified in 2.0, 2.6)
Description:

This instruction allocates space on the heap of size praviethe input value. It
writes the address of the allocated space to the stack.

353 FREE

Stack Input: Memory Address
Stack Output: None
Operand: None

Since: 2.6

Description:

This instruction reclaims the space used by a previousdailoe. It pops the address
of the allocation off the stack, and marks the memory spade=as

CHAPTER 3. SAM INSTRUCTION SET ARCHITECTURE MANUAL 30

3.6 Absolute Store/Retrieve

These instructions provide access to absolute addresiseg should generally be used
for heap access, or for access to known, fixed, locationseffample, static variables).

3.6.1 PUSHIND

Stack Input: Memory Address
Stack Output: Value
Operand: None

Since: 1.0

Description:

Pushes the data at the specified memory address onto thepmtasérving its type.

3.6.2 STOREIND

Stack Input: Value, Memory Address
Stack Output: None

Operand: None

Since: 1.0

Description:

Sets the address provided by the second input value to the/tsgbe of the first input
value.

3.6.3 PUSHABS

Stack Input: None
Stack Output: Value
Operand: Integer

Since: 2.4

CHAPTER 3. SAM INSTRUCTION SET ARCHITECTURE MANUAL 31

Description:

Pushes the data at the memory address specified by the operdaadhe stack, pre-
serving its type.

3.6.4 STOREABS

Stack Input: Value
Stack Output: None
Operand: Integer
Since: 2.4
Description:

Sets the address provided by the operand to the value/tyihe stack input.

3.7 Reative Store/Retrieve

These instructions provide access to memory addresseiweedia the FBR register.
They should generally be used for local variables, paramsetand temporary stack
operations.

3.7.1 PUSHOFF

Stack Input: None
Stack Output: Value
Operand: Integer
Since: 1.0
Description:

Pushes the data at the memory address of the FBR+operanthersiack.

CHAPTER 3. SAM INSTRUCTION SET ARCHITECTURE MANUAL 32
3.7.2 STOREOFF

Stack Input: Value
Stack Output: None
Operand: Integer
Since: 1.0
Description:

Sets the address provided by the FBR+operand to the vaheedtithe stack input.

3.8 Integer Algebra

These instructions perform integer algebra on the stack.

381 ADD

Stack Input: Value (Float disallowed), Value (Float disallowed)

Stack Output: Integer, Memory Address (if exactly one of the input valuea Mem-
ory Address), or Program Address (if exactly one of the ingalties is a Program
Address)

Operand: None
Since: 1.0 (modified in 2.0, 2.6)

Description: Adds the first input value to the second input value and sldice result
on the stack.

382 SUB

Stack Input: Value (Float disallowed), Value (Float disallowed)

Stack Output: Integer, Memory Address (if exactly one of the input valisea Mem-
ory Address), or Program Address (if exactly one of the ingalties is a Program
Address)

Operand: None

CHAPTER 3. SAM INSTRUCTION SET ARCHITECTURE MANUAL 33

Since: 1.0 (modified in 2.0, 2.6)
Description:

Subtracts the first input value from the second input valuke@aces the result on the
stack.

383 TIMES

Stack Input: Integer, Integer
Stack Output: Integer
Operand: None

Since: 1.0

Description:

Multiplies the first input value by the second input value @fates the result on the
stack.

3.84 DIV

Stack Input: Integer, Integer
Stack Output: Integer
Operand: None

Since: 1.0

Description

Divides the first input value into the second input value alatgs the result on the
stack. If the result is not an integer, it is truncated andhthiaced on the stack as an
integer.

385 MOD

Stack Input: Integer, Integer

Stack Output: Integer

CHAPTER 3. SAM INSTRUCTION SET ARCHITECTURE MANUAL 34

Operand: None
Since: 2.0
Description:

Divides the first input value into the second input value alatgs the remainder on
the stack.

3.9 Floating Point Algebra

These instructions perform floating point algebra on theksta

3.9.1 ADDF

Stack Input: Float, Float
Stack Output: Float
Operand: None

Since: 2.0

Description:

Adds the first input value to the second input value and plttesesult on the stack.

3.9.2 SUBF

Stack Input: Float, Float
Stack Output: Float
Operand: None

Since: 2.0

Description:

Subtracts the first input value from the second input value@aces the result on the
stack.

CHAPTER 3. SAM INSTRUCTION SET ARCHITECTURE MANUAL 35
393 TIMESF

Stack Input: Float, Float
Stack Output: Float
Operand: None

Since: 2.0

Description:

Multiplies the first input value by the second input value @fates the result on the
stack.

3.94 DIVF

Stack Input: Float, Float
Stack Output: Float
Operand: None

Since: 2.0

Description:

Divides the first input value into the second input value alatgs the result on the
stack.

3.10 Shifts

These instructions perform signed bitwise shifting. Shgtmoves all the bits in the
shifted value over by the specified amount left or right. VEitined bitwise shifting, the
sign of the value is preserved when shifting to the rightwigie shift left is egivalent
of multiplying an integer by two. Bitwise shift right is equailent to dividing an integer
by two.

3.10.1 LSHIFT

Stack Input: Integer

CHAPTER 3. SAM INSTRUCTION SET ARCHITECTURE MANUAL 36

Stack Output: Integer
Operand: Integer
Since: 2.0
Description:

Shifts the input value to the left by the number of places #igecby the operand.

3.10.2 LSHIFTIND

Stack Input: Integer, Integer
Stack Output: Integer
Operand: None

Since: 2.6

Description:

Shifts the second input value to the left by the number ofgdagpecified by the first
input value.

3.10.3 RSHIFT

Stack Input: Integer
Stack Output: Integer
Operand: Integer
Since: 2.0
Description:

Shifts the input value to the right by the number of placexHigel by the operand.
The sign of the value is preserved (so a negative number ailélones added to the
left, while a positive number will have zeroes added to tffg.le

3.104 RSHIFTIND

Stack Input: Integer, Integer

CHAPTER 3. SAM INSTRUCTION SET ARCHITECTURE MANUAL 37

Stack Output: Integer
Operand: None
Since: 2.6
Description:

Shifts the second input value to the right by the number ofgdaspecified by the first
input value. The sign of the value is preserved (so a negativeber will have ones
added to the left, while a positive number will have zeroegealto the left).

3.11 Logic

These instructions perform logical operations on inpuugal They treat all non-
negative numbers as 1.

3111 AND

Stack Input: Integer, Integer
Stack Output: Integer
Operand: None

Since: 1.0

Description:

If both values are non-zero, pushes 1 onto the stack. Othenpushes 0.

3112 OR

Stack Input: Integer, Integer
Stack Output: Integer
Operand: None

Since: 1.0

Description

Performs an inclusive or. If either value is non-zero, pgsh®nto the stack. Other-
wise, pushes 0.

CHAPTER 3. SAM INSTRUCTION SET ARCHITECTURE MANUAL 38

3.11.3 NOR

Stack Input: Integer, Integer
Stack Output: Integer
Operand: None

Since: 1.0

Description:

If either value is non-zero, pushes 0 onto the stack. Otlseryushes 1. Equivalent to
OR followed by NOT.

3.11.4 NAND

Stack Input: Integer, Integer
Stack Output: Integer
Operand: None

Since: 1.0

Description:

If both values are non-zero, pushes 0 onto the stack. Oteenpushes 1. Equivalent
to AND followed by NOT.

3115 XOR

Stack Input: Integer, Integer
Stack Output: Integer
Operand: None

Since: 1.0

Description:

Performs an exclusive or. If only one of the two values is mem, pushes 1 onto the
stack. Otherwise, pushes 0.

CHAPTER 3. SAM INSTRUCTION SET ARCHITECTURE MANUAL 39
3.11.6 NOT

Stack Input: Integer
Stack Output: Integer
Operand: None
Since: 1.0
Description:

If the value is non-zero, pushes 0 onto the stack. Othenpisshes 1.

3.12 BitwiseLogic

These are logic operations that are performed on a bitwiss.ld&cach individual bit
is compared and the operation is performed. For exampldyittaay value 110 (dec-
imal value of 6) BITAND'd with 101 (decimal value of 5) prodes an output of 100
(decimal value of 4).

3.12.1 BITAND

Stack Input: Integer, Integer
Stack Output: Integer
Operand: None

Since: 2.0

Description:

Performs a bitwise AND operation on the two integers. Fohdat; if both bits are 1,
the resulting bit is a 1. Otherwise, it is a zero.

3.12.2 BITOR

Stack Input: Integer, Integer
Stack Output: Integer

Operand: None

CHAPTER 3. SAM INSTRUCTION SET ARCHITECTURE MANUAL 40

Since: 2.0
Description:

Performs a bitwise inclusive OR operation on the two integ€or each output bit, if
either input bitis 1, the resulting bit is a 1. Otherwisesiti0.

3.12.3 BITNOR

Stack Input: Integer, Integer
Stack Output: Integer
Operand: None

Since: 2.0

Description:

Performs a bitwise NOR operation. For each output bit, ifi@itinput bit is 1, the
resulting bit is a 0. Otherwise, itis a 1. Equivalent to BIT@&Rowed by BITNOT.

3.12.4 BITNAND

Stack Input: Integer, Integer
Stack Output: Integer
Operand: None

Since: 2.0

Description:

Performs a bitwise NAND operation. For each output bit, iffbimput bits are 1, the
resulting bit is a 0. Otherwise, itis a 1. Equivalent to BITRNollowed by BITNOT.

3125 BITXOR

Stack Input: Integer, Integer
Stack Output: Integer

Operand: None

CHAPTER 3. SAM INSTRUCTION SET ARCHITECTURE MANUAL 41

Since: 2.0
Description:

Performs an bitwise XOR operation. For each bit in the ouyalue, if only one of the
input bits is 1, the resulting bit is a 1. Otherwise, itis a 0.

3.12.6 BITNOT

Stack Input: Integer
Stack Output: Integer
Operand: None
Since: 2.0
Description:

Performs a bitwise NOT operation. For each bit in the outllie, if the input bitis a
0, the output bit is set to a 1. Otherwise itis setto a 0.

3.13 Comparison

These instructions allow two values to be compared.

3131 CMP

Stack Input: Integer, Integer
Stack Output: Integer
Operand: None

Since: 1.0

Description:

Compares the two input values. If the first input value is kigdpan the second input
value, a 1 is placed on the stack. If they are equal, a 0 is glacehe stack. If the first
input value is smaller than the second input value, a -1 isgqul@n the stack.

CHAPTER 3. SAM INSTRUCTION SET ARCHITECTURE MANUAL 42

3132 CMPF

Stack Input: Float, Float
Stack Output: Integer
Operand: None

Since: 2.2.4
Description:

Compares the two input values. If the first input value is kigiipan the second input
value, a 1 is placed on the stack. If they are equal, a 0 is gplawé¢he stack. If the first
input value is smaller than the second input value, a -1 isgul@n the stack.

3.13.3 GREATER

Stack Input: Integer, Integer
Stack Output: Integer
Operand: None

Since: 1.0

Description:

Compares the two input values. If the second input valueggdsithan the first input
value, a 1 is placed on the stack. Otherwise, a 0 is placedeostétk.

3134 LESS

Stack Input: Integer, Integer
Stack Output: Integer
Operand: None

Since: 1.0

Description:

Compares the two input values. If the second input value alsmthan the first input
value, a 1 is placed on the stack. Otherwise, a 0 is placedeostétk.

CHAPTER 3. SAM INSTRUCTION SET ARCHITECTURE MANUAL 43
3.13.5 EQUAL

Stack Input: Value, Value
Stack Output: Integer
Operand: None

Since: 1.0

Description:

Compares the two input values. If the second input value islettpan the first input
value, a 1 is placed on the stack. Otherwise, a 0 is placedeostétk.

3.13.6 [ISNIL

Stack Input: Value
Stack Output: Integer
Operand: None
Since: 1.0
Description:

If the input value is 0, a 1 is placed on the stack. Otherwisésaplace on the stack.
This is equivalent to the NOT instruction.

3.13.7 ISPOS

Stack Input: Integer
Stack Output: Integer
Operand: None
Since: 1.0
Description:

If the input value is greater than 0, a 1 is placed on the st@tierwise a 0 is place on
the stack.

CHAPTER 3. SAM INSTRUCTION SET ARCHITECTURE MANUAL 44
3.13.8 ISNEG

Stack Input: Integer
Stack Output: Integer
Operand: None
Since: 1.0
Description

If the input value is less than 0, a 1 is placed on the stacke@iise a O is placed on
the stack.

3.14 Jumps

Jumps are special instructions used for transferring obmdr other pieces of code.
They are useful for such things as loops and, especiallgtiiums. Jumps can use labels
or integer addresses for their operands. Labels are ttadsia the correct address at
assemby and/or linking time.

3141 JUMP

Stack Input: None

Stack Output: None
Operand: Label or Integer
Since: 1.0

Description:

Sets the PC to the instruction specified by the label and mwoes execution starting
with that instruction.

3.14.2 JUMPC

Stack Input: Integer

Stack Output: None

CHAPTER 3. SAM INSTRUCTION SET ARCHITECTURE MANUAL 45

Operand: Label or Integer
Since: 1.0
Description:

If the input value is non-zero, the PC is set to the instrucpecified by the label
and execution is continued starting with that instructi@therwise, the execution is
continued as normal with the instruction following the JUGIP

3.143 JUMPIND

Stack Input: Program Address
Stack Output: None

Operand: None

Since: 1.0

Description:

Sets the PC to the input value and continues execution wéhitistruction. This if
often used to undo a JSR.

3144 RST

Stack Input: Program Address
Stack Output: None

Operand: None

Since: 2.4

Description:

Sets the PC to the input value and continues execution withitistruction. This if
often used to undo a JSR and is currently equivalent to JUNDPIN

3.145 JSR

Stack Input: None

CHAPTER 3. SAM INSTRUCTION SET ARCHITECTURE MANUAL 46

Stack Output: Program Address
Operand: Label or Integer
Since: 1.0

Description:

Sets the PC to the instruction found at the label, pushesutrert PC + 1 onto the
stack, and continues execution at the next instructions iBhiisually used with LINK
for subroutines.

3.14.6 JSRIND

Stack Input: Program Address
Stack Output: Program Address
Operand: None

Since: 1.0

Description:

Sets the PC to the input value, pushes the current PC + 1 amgidbk, and continues
execution at the next instruction. This is usually used WwitkK for subroutines.

3.14.7 SKIP

Stack Input: Integer
Stack Output: None
Operand: None
Since: 2.3
Description:

Sets the PC to the input value + current PC + 1. The effect tdftttee popped value is
0, execution continues as normal. If the popped value ise P stays the same, and
-2 and below will move the PC back by that value minus one.

CHAPTER 3. SAM INSTRUCTION SET ARCHITECTURE MANUAL 47

3.15 Stack Frames

Stack frames are used for relative addressing and are yslefihed for every subrou-
tine.

3151 LINK

Stack Input: None

Stack Output: Memory Address
Operand: None

Since: 1.0

Description:

Pushes the FBR register on the stack and sets the FBR remister SP register - 1.
This should be undone with UNLINK.

3.15.2 UNLINK

Stack Input: Memory Address
Stack Output: None
Operand: None

Since: 2.4

Description:

Sets the FBR register to the value at the top of the stack. iShoften used to undo
LINK and is currently the same as POPFBR.

3.16 Input/Output

The I/O instructions are a special set of instructions tlatathe SaM Program to
interact with the outside world. These are not guarantedaetimplemented in all
implementations, as they require a Video interface to beifipd for the particular
system being used. The implementations of these instnectidll differ depending on
the simulator used. If no Video interface is available, thprapriate zero value for the
data type is placed onto the stack.

CHAPTER 3. SAM INSTRUCTION SET ARCHITECTURE MANUAL 48
3.16.1 READ

Stack Input: None
Stack Output: Integer
Operand: None
Since: 2.0
Description:

Asks the Video interface for an integer and pushes it ontstaek. If there is no Video
defined, pushes 0 onto the stack.

3.16.2 READF

Stack Input: None
Stack Output: Float
Operand: None
Since: 2.0
Description:

Asks the Video interface for n float and pushes it onto thekstéfcthere is no Video
defined, pushes 0.0 onto the stack.

3.16.3 READCH

Stack Input: None
Stack Output: Character
Operand: None

Since: 2.2

Description:

Asks the Video interface for a character and pushes it orgcsthck. If there is no
Video defined, pushes "0’ onto the stack.

CHAPTER 3. SAM INSTRUCTION SET ARCHITECTURE MANUAL 49

3.16.4 READSTR

Stack Input: None

Stack Output: Memory Address
Operand: None

Since: 2.0

Description:

Asks the Video interface for a string and allocates spacth®string on the heap. The
string is stored as a sequence of characters starting vetfirt character at the lowest
available heap location. The memory address of the strifyshed onto the stack.
The string is null-terminated. If there is no video card, thstruction performs the
operation above on an empty string.

3165 WRITE

Stack Input: Integer
Stack Output: None
Operand: None
Since: 2.0
Description:

Writes the integer to the Video interface. If there is no wdeterface, there is no
change in the result except that the integer will not be seahy Video interface.

3.16.6 WRITEF

Stack Input: Float
Stack Output: None
Operand: None
Since: 2.0
Description:

Writes the float to the Video interface. If there is no Videteifiace, there is no change
in the result except that the float will not be sent to any Vitgerface.

CHAPTER 3. SAM INSTRUCTION SET ARCHITECTURE MANUAL 50

3.16.7 WRITECH

Stack Input: Character
Stack Output: None
Operand: None

Since: 2.2

Description:

Writes the character to the Video interface. If there is ndéd interface, there is no
change in the result except that the character will not bétsesmy Video interface.

3.16.8 WRITESTR

Stack Input: Memory Address
Stack Output: None
Operand: None

Since: 2.0

Description

Writes the string at the memory address provided to the Videmface. If there is no
Video interface, there is no change in the result excepttieastring will not be sent to
any Video interface. Note that the string is not automaliydaéed by this instruction,
but its address is removed from the stack.

3.17 Program Control

3171 STOP

Stack Input: None
Stack Output: None
Operand: None
Since: 1.0
Description

Sets the HALT register to 1, effectively stopping prograre@xtion.

	Introduction
	What is SaM?
	What is SaM 2?
	What are the major SaM Components?
	Program Execution

	Components
	Hardware Components
	The Processor
	Memory
	The Heap Allocator
	Video Card
	System Chipset

	Internal Simulator Classes
	SaM Instructions
	SaM Symbol Table
	SaM Reference Table
	SaM Program
	SaM I/O

	SaM Front Ends
	SaM Assembler
	SaM Graphical User Interfaces
	SamGUI - Graphical UI
	SamCapture - Capture Viewer
	SamTester - Test Script Execution
	Usage

	SaM Text User Interface
	SamText - Text UI

	SaM Instruction Set Architecture Manual
	Type Converters
	FTOI
	FTOIR
	ITOF

	Stack Insertions
	PUSHIMM
	PUSHIMMF
	PUSHIMMCH
	PUSHIMMMA
	PUSHIMMPA
	PUSHIMMSTR

	Register Manipulation
	PUSHSP
	PUSHFBR
	POPSP
	POPFBR

	Stack Manipulation
	DUP
	SWAP

	Stack/Heap Allocation
	ADDSP
	MALLOC
	FREE

	Absolute Store/Retrieve
	PUSHIND
	STOREIND
	PUSHABS
	STOREABS

	Relative Store/Retrieve
	PUSHOFF
	STOREOFF

	Integer Algebra
	ADD
	SUB
	TIMES
	DIV
	MOD

	Floating Point Algebra
	ADDF
	SUBF
	TIMESF
	DIVF

	Shifts
	LSHIFT
	LSHIFTIND
	RSHIFT
	RSHIFTIND

	Logic
	AND
	OR
	NOR
	NAND
	XOR
	NOT

	Bitwise Logic
	BITAND
	BITOR
	BITNOR
	BITNAND
	BITXOR
	BITNOT

	Comparison
	CMP
	CMPF
	GREATER
	LESS
	EQUAL
	ISNIL
	ISPOS
	ISNEG

	Jumps
	JUMP
	JUMPC
	JUMPIND
	RST
	JSR
	JSRIND
	SKIP

	Stack Frames
	LINK
	UNLINK

	Input/Output
	READ
	READF
	READCH
	READSTR
	WRITE
	WRITEF
	WRITECH
	WRITESTR

	Program Control
	STOP

