Control Flow Analysis and Loop Optimization

Introduction to Compilers

Program Loops

- Loop = a computation repeatedly executed until a terminating condition is reached
- High-level loop constructs:

While loop: while(E) SDo-while loop: do S while(E)

- For loop: for(i=1; i<=u; i+=c) S

- · Why are loops important:
 - Most of the execution time is spent in loops
 - Typically: 90/10 rule, 10% code is a loop
- Therefore, loops are important targets of optimizations

CS 412/413 Spring 2008 Introduction to Compilers

Detecting Loops

- Need to identify loops in the program
 - Easy to detect loops in high-level constructs
 - Harder to detect loops in low-level code or in general control-flow graphs
- Examples where loop detection is difficult:
 - Languages with unstructured "goto" constructs: structure of high-level loop constructs may be destroyed
 - Optimizing Java bytecodes (without high-level source program): only low-level code is available

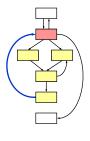
CS 412/413 Spring 2008

Introduction to Compilers

3

Control-Flow Analysis

- · Goal: identify loops in the control flow graph
- · A loop in the CFG:
 - Is a set of CFG nodes (basic blocks)
 - Has a loop header such that control to all nodes in the loop always goes through the header
 - Has a back edge from one of its nodes to the header

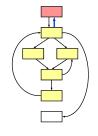


CS 412/413 Spring 2008

Introduction to Compilers

Control-Flow Analysis

- · Goal: identify loops in the control flow graph
- A loop in the CFG:
 - Is a set of CFG nodes (basic blocks)
 - Has a loop header such that control to all nodes in the loop always goes through the header
 - Has a back edge from one of its nodes to the header



CS 412/413 Spring 2008

Introduction to Compilers

Dominators

- Use concept of dominators in CFG to identify loops
- Node d dominates node n if all paths from the entry node to n go through d

Every node dominates itself

- 1 dominates 1, 2, 3, 4
- 2 doesn't dominate 4 3 doesn't dominate 4
- Intuition:
 - Header of a loop dominates all nodes in loop body
 - Back edges = edges whose heads dominate their tails
 - Loop identification = back edge identification

CS 412/413 Spring 2008

Introduction to Compilers

Immediate Dominators

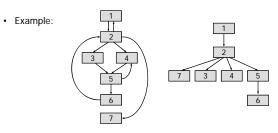
- Properties:
 - 1. CFG entry node n₀ dominates all CFG nodes
 - 2. If d1 and d2 dominate n, then either
 - d1 dominates d2, or
 - d2 dominates d1
- d strictly dominates n if d dominates n and d≠n
- The immediate dominator idom(n) of a node n is the unique last strict dominator on any path from \boldsymbol{n}_0 to n

CS 412/413 Spring 2008

Introduction to Compilers

Dominator Tree

- Build a dominator tree as follows:
 - Root is CFG entry node n₀
 - m is child of node n iff n=idom(m)



CS 412/413 Spring 2008

Introduction to Compilers

Computing Dominators

- · Formulate problem as a system of constraints:
 - Define dom(n) = set of nodes that dominate n
 - $dom(n_0) = \{n_0\}$
 - $dom(n) = n\{ dom(m) \mid m \in pred(n) \} \cup \{n\}$
 - i.e, the dominators of n are the dominators of all of n's predecessors

CS 412/413 Spring 2008

Introduction to Compilers

Dominators as a Dataflow Problem

- Let N = set of all basic blocks
- Lattice: (2^N, ⊆); has finite height
- Meet is set intersection, top element is N
- Is a forward dataflow analysis
- · Dataflow equations:

```
out[B] = F_B(in[B]), for all B
in[B] = \bigcap \{out[B'] \mid B' \in pred(B)\}, \text{ for all } B
in[B_s] = \{\}
```

- Transfer functions: F_B(X) = X ∪ {B}
 - are monotonic and distributive
- · Iterative solving of dataflow equation:
 - terminates
 - computes MOP solution

CS 412/413 Spring 2008

Introduction to Compilers

10

Natural Loops

- Back edge: edge n→h such that h dominates n
- Natural loop of a back edge n→h:
 - h is loop header
 - Set of loop nodes is set of all nodes that can reach n without going through h
- Algorithm to identify natural loops in CFG:
 - Compute dominator relation
 - Identify back edges
 - Compute the loop for each back edge

for each node h in dominator tree for each node n for which there exists a back edge n→h define the loop with

header h

back edge n→h
body consisting of all nodes reachable from n by a
depth first search backwards from n that stops at h

CS 412/413 Spring 2008

Introduction to Compilers

11

Disjoint and Nested Loops

- Property: for any two natural loops in the flow graph, one of the following is true:
 - 1. They are disjoint
 - 2. They are nested
 - 3. They have the same header
- Eliminate alternative 3: if two loops have the same header and none is nested in the other, combine all nodes into a single loop

Two loops: {1,2} and {1,3} Combine into one loop: {1,2,3}

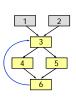
12

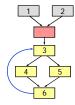
CS 412/413 Spring 2008

Introduction to Compilers

Loop Preheader

- · Several optimizations add code before header
- Insert a new basic block (called preheader) in the CFG to hold this code





CS 412/413 Spring 2008

Introduction to Compilers

13

15

Loop optimizations

- Now we know the loops
- · Next: optimize these loops
 - Loop invariant code motion
 - Strength reduction of induction variables
 - Induction variable elimination

CS 412/413 Spring 2008

Introduction to Compilers

Loop Invariant Code Motion

- Idea: if a computation produces same result in all loop iterations, move it out of the loop
- Example: for (i=0; i<10; i++)buf[i] = 10*i + x*x;
- Expression x*x produces the same result in each iteration; move it out of the loop:

```
t = x^*x;
for (i=0; i<10; i++)
buf[i] = 10*i + t;
```

CS 412/413 Spring 2008

Introduction to Compilers

Loop Invariant Computation

- An instruction a = b OP c is loop-invariant if each operand is:
 - Constant, or
 - Has all definitions outside the loop, or
 - Has exactly one definition, and that is a loop-invariant computation
- Reaching definitions analysis computes all the definitions of x and y that may reach t = x OP y

CS 412/413 Spring 2008

Introduction to Compilers

16

Algorithm

```
INV = Ø
repeat
    for each instruction I in loop such that I ∉ INV
        if operands are constants, or operands
            have definitions outside the loop, or
            operands have exactly one definition d ∈ INV
        then INV = INV U {I}
until no changes in INV
```

CS 412/413 Spring 2008 Introduction to Compilers 17

Code Motion

- · Next: move loop-invariant code out of the loop
- Suppose a = b OP c is loop-invariant
- · We want to hoist it out of the loop

CS 412/413 Spring 2008

Introduction to Compilers

18

Valid Code Motion

- Code motion of a definition d: a = b OP c to pre-header is valid if:
- 1. Definition $\ensuremath{\text{d}}$ dominates all loop exits where $\ensuremath{\text{a}}$ is live
 - Use dominator tree to check whether each loop exit is dominated by d
- 2. There is no other definition of ${\color{red} a}$ in loop
 - Scan all body for any other definitions of a
- 3. All uses of a in loop can only be reached from definition d
 - Consult reaching definitions at each use of a for any definitions of a other than d

CS 412/413 Spring 2008

Introduction to Compilers

19

Valid Code Motion

```
Invalid example 1: a = x*x; does not dominate break to use of a a = 0; for (i=0; i<10; i++) if (f(i)) a = x*x; else break; b = a;</li>
Invalid example 2: there is another definition of a in loop for (i=0; i<10; i++) if (f(i)) a = x*x; else a = 0;</li>
Invalid example 3: use of a in loop can be reached from a=0; a = 0; for (i=0; i<10; i++) if (f(i)) a = x*x; else buf[i] = a;</li>
CS 412/413 Spring 2008 Introduction to Compilers 20
```

Other Issues

 Preserve dependencies between loop-invariant instructions when hoisting code out of the loop

```
for (i=0; i<N; i++) { x = y+z; t = x^*x; a[i] = 10^*i + x^*x; a[i] = 10^*i + t; a[i] = 10^*i + t;
```

Nested loops: apply loop-invariant code motion algorithm multiple times

```
 \begin{array}{lll} \text{for } (i=0;\ i<N;\ i++) & \text{for } (i=0;\ i<N;\ i++) \ \{ \\ \text{for } (j=0;\ j<M;\ j++) & \text{t2} = t1+\ 10^*i; \\ a[i][j] = x^*x + 10^*i + 100^*j; & \text{for } (j=0;\ j<M;\ j++) \\ & a[i][j] = t2 + 100^*j; \ \} \end{array}
```

CS 412/413 Spring 2008

Introduction to Compilers

Induction Variables

- An induction variable is a variable in a loop, whose value is a function of the loop iteration number v = f(i)
- In compilers, this a linear function:

$$f(i) = c*i + d$$

- Observation: linear combinations of linear functions are linear functions
 - Consequence: linear combinations of induction variables are induction variables

CS 412/413 Spring 2008

Introduction to Compilers

Induction Variables

- An induction variable is a variable in a loop, whose value is a function of the loop iteration number v = f(i)
- · In compilers, this a linear function:

$$f(i) = c^*i + d$$

- Observation: linear combinations of linear functions are linear functions
 - Consequence: linear combinations of induction variables are induction variables

CS 412/413 Spring 2008

Introduction to Compilers

23

21

Families of Induction Variables

 Basic induction variable: a variable whose only definition in the loop body is of the form

i = i + c

where c is a loop-invariant value

- Derived induction variables: Each basic induction variable i defines a family of induction variables Family(i)
 - i ∈ Family(i)
 - $k\in \mathsf{Family(i)}$ if there is only one definition of k in the loop body , and it has the form $k=c^\star j$ or $k\!=\!j\!+\!c,$ where
 - (a) $j \in Family(i)$
 - (b) c is loop invariant
 - (c) The only definition of j that reaches the definition of k is in the loop
 - (d) There is no definition of i between the definitions of j and k

CS 412/413 Spring 2008

Introduction to Compilers

24

Representation

- · Representation of induction variables in family i by triples:
 - Denote basic induction variable i by <i, 1, 0>
 - Denote induction variable k=i*a+b by triple <i, a, b>

CS 412/413 Spring 2008

Introduction to Compilers

25

27

Finding Induction Variables

Scan loop body to find all basic induction variables

Scan loop to find all variables k with one assignment of form k = j*b, where j is an induction variable <i,c,d>, and make k an induction variable with triple <i,c*b,d>

Scan loop to find all variables k with one assignment of form k = j±b where j is an induction variable with triple <i,c,d>, and make k an induction variable with triple <i,c,b±d>

until no more induction variables found

CS 412/413 Spring 2008

Introduction to Compilers

Strength Reduction

Basic idea: replace expensive operations (multiplications) with cheaper ones (additions) in definitions of induction variables

```
while (i<10) {
                               while (i<10) {
 j = ...; // <i,3,1>
                                j = s;
  a[j] = a[j] -2;
                                 a[j] = a[j] -2;
 i = i+2;
                                i = i+2;
                                 s = s + 6;
```

- Benefit: cheaper to compute s = s+6 than j = 3*i
 - -s = s+6 requires an addition
 - j = 3*i requires a multiplication

CS 412/413 Spring 2008

Introduction to Compilers

General Algorithm

• Algorithm:

For each induction variable j with triple <i,a,b> whose definition involves multiplication:

- 1. create a new variable s
- 2. replace definition of j with j=s
- 3. immediately after i=i+c, insert s=s+a*c(here a*c is constant)
- 4. insert s = a*i+b into preheader
- Correctness: transformation maintains invariant $s = a^*i + b$

CS 412/413 Spring 2008

Introduction to Compilers

28

Strength Reduction

Gives opportunities for copy propagation, dead code elimination

CS 412/413 Spring 2008

Introduction to Compilers

29

31

Induction Variable Elimination

- Idea: eliminate each basic induction variable whose only uses are in loop test conditions and in their own definitions i = i+c
 - rewrite loop test to eliminate induction variable

```
s = 3*i+1;
while (i<10) {
 a[s] = a[s] -2;
 i = i+2;
 s = s+6;
}
```

- · When are induction variables used only in loop tests?
 - Usually, after strength reduction
 - Use algorithm from strength reduction even if definitions of induction variables don't involve multiplications

CS 412/413 Spring 2008

Introduction to Compilers

Induction Variable Elimination

- · Rewrite test condition using derived induction variables
- Remove definition of basic induction variables (if not used after the loop)

CS 412/413 Spring 2008

Introduction to Compilers

Induction Variable Elimination

For each basic induction variable i whose only uses are

- The test condition i < u
- The definition of i: i = i + c

 - Replace test condition i < u with $k < c^*u + d$
 - Remove definition i = i+c if i is not live on loop exit

CS 412/413 Spring 2008

Introduction to Compilers

32