
1

Control Flow Analysis
d O

Introduction to Compilers 1

and Loop Optimization

Program Loops
• Loop = a computation repeatedly executed until a

terminating condition is reached

• High-level loop constructs:
– While loop: while(E) S
– Do-while loop: do S while(E)

CS 412/413 Spring 2008 Introduction to Compilers 2

– For loop: for(i=1; i<=u; i+=c) S

• Why are loops important:
– Most of the execution time is spent in loops
– Typically: 90/10 rule, 10% code is a loop

• Therefore, loops are important targets of optimizations

Detecting Loops

• Need to identify loops in the program
– Easy to detect loops in high-level constructs
– Harder to detect loops in low-level code or in general

control-flow graphs

CS 412/413 Spring 2008 Introduction to Compilers 3

• Examples where loop detection is difficult:
– Languages with unstructured “goto” constructs:

structure of high-level loop constructs may be
destroyed

– Optimizing Java bytecodes (without high-level source
program): only low-level code is available

• Goal: identify loops in the control flow graph

• A loop in the CFG:
– Is a set of CFG nodes (basic blocks)
– Has a loop header such that

control to all nodes in the loop

Control-Flow Analysis

CS 412/413 Spring 2008 Introduction to Compilers 4

control to all nodes in the loop
always goes through the header

– Has a back edge from one of its
nodes to the header

2

• Goal: identify loops in the control flow graph

• A loop in the CFG:
– Is a set of CFG nodes (basic blocks)
– Has a loop header such that

control to all nodes in the loop

Control-Flow Analysis

CS 412/413 Spring 2008 Introduction to Compilers 5

control to all nodes in the loop
always goes through the header

– Has a back edge from one of its
nodes to the header

Dominators
• Use concept of dominators in CFG to identify loops
• Node d dominates node n if all paths from the entry

node to n go through d
1

2 3
Every node dominates itself
1 dominates 1 2 3 4

CS 412/413 Spring 2008 Introduction to Compilers 6

• Intuition:
– Header of a loop dominates all nodes in loop body
– Back edges = edges whose heads dominate their tails
– Loop identification = back edge identification

2 3

4

1 dominates 1, 2, 3, 4
2 doesn’t dominate 4
3 doesn’t dominate 4

Immediate Dominators
• Properties:

1. CFG entry node n0 dominates all CFG nodes
2. If d1 and d2 dominate n, then either
– d1 dominates d2, or
– d2 dominates d1

• d strictly dominates n if d dominates n and d≠n

CS 412/413 Spring 2008 Introduction to Compilers 7

• d strictly dominates n if d dominates n and d≠n
• The immediate dominator idom(n) of a node n is the

unique last strict dominator on any path from n0 to n

Dominator Tree
• Build a dominator tree as follows:

– Root is CFG entry node n0

– m is child of node n iff n=idom(m)

• Example: 1

2
1

CS 412/413 Spring 2008 Introduction to Compilers 8

2

3 4

5

6

7

2

7 3 4 5

6

3

Computing Dominators
• Formulate problem as a system of constraints:

– Define dom(n) = set of nodes that dominate n
– dom(n0)= {n0}

– dom(n) = ∩{ dom(m) | m ∈ pred(n) } ∪ {n}
i.e, the dominators of n are the dominators of all of n’s predecessors

and n itself

CS 412/413 Spring 2008 Introduction to Compilers 9

Dominators as a Dataflow Problem
• Let N = set of all basic blocks
• Lattice: (2N, ⊆); has finite height
• Meet is set intersection, top element is N
• Is a forward dataflow analysis
• Dataflow equations:

out[B] = FB(in[B]), for all B
in[B] = ∩{out[B’] | B’∈pred(B)}, for all B

{a} {b} {c}

{a,b} {a,c} {b,c}

{a,b,c}

∅

CS 412/413 Spring 2008 Introduction to Compilers 10

in[B] ∩{out[B] | B∈pred(B)}, for all B
in[Bs] = {}

• Transfer functions: FB(X) = X ⋃ {B}
- are monotonic and distributive

• Iterative solving of dataflow equation:
- terminates
- computes MOP solution

∅

Natural Loops
• Back edge: edge n→h such that h dominates n
• Natural loop of a back edge n→h:

– h is loop header
– Set of loop nodes is set of all nodes that can reach n without

going through h
• Algorithm to identify natural loops in CFG:

– Compute dominator relation
Identify back edges

CS 412/413 Spring 2008 Introduction to Compilers 11

– Identify back edges
– Compute the loop for each back edge

for each node h in dominator tree
for each node n for which there exists a back edge n→h

define the loop with
header h
back edge n→h
body consisting of all nodes reachable from n by a
depth first search backwards from n that stops at h

Disjoint and Nested Loops
• Property: for any two natural loops in the flow graph,

one of the following is true:
1. They are disjoint
2. They are nested
3. They have the same header

CS 412/413 Spring 2008 Introduction to Compilers 12

• Eliminate alternative 3: if two loops have the same
header and none is nested in the other, combine all
nodes into a single loop

1

2 3

Two loops: {1,2} and {1,3}
Combine into one loop: {1,2,3}

4

Loop Preheader
• Several optimizations add code before header
• Insert a new basic block (called preheader) in

the CFG to hold this code

1 2
1 2

CS 412/413 Spring 2008 Introduction to Compilers 13

3

4 5

6

3

4 5

6

Loop optimizations

• Now we know the loops

• Next: optimize these loops
– Loop invariant code motion

CS 412/413 Spring 2008 Introduction to Compilers 14

Loop invariant code motion
– Strength reduction of induction variables
– Induction variable elimination

Loop Invariant Code Motion
• Idea: if a computation produces same result in all loop

iterations, move it out of the loop

• Example: for (i=0; i<10; i++)
buf[i] = 10*i + x*x;

CS 412/413 Spring 2008 Introduction to Compilers 15

• Expression x*x produces the same result in each
iteration; move it out of the loop:

t = x*x;
for (i=0; i<10; i++)

buf[i] = 10*i + t;

Loop Invariant Computation

• An instruction a = b OP c is loop-invariant if each
operand is:
– Constant, or
– Has all definitions outside the loop, or
– Has exactly one definition, and that is a loop-invariant

CS 412/413 Spring 2008 Introduction to Compilers 16

computation

• Reaching definitions analysis computes all the
definitions of x and y that may reach t = x OP y

5

Algorithm

INV = ∅
repeat

for each instruction I in loop such that I ∉ INV
if operands are constants, or operands

CS 412/413 Spring 2008 Introduction to Compilers 17

have definitions outside the loop, or

operands have exactly one definition d ∈ INV
then INV = INV U {I}

until no changes in INV

Code Motion

• Next: move loop-invariant code out of the loop
• Suppose a = b OP c is loop-invariant
• We want to hoist it out of the loop

CS 412/413 Spring 2008 Introduction to Compilers 18

Valid Code Motion
• Code motion of a definition d: a = b OP c to pre-header

is valid if:
1. Definition d dominates all loop exits where a is live

– Use dominator tree to check whether each loop exit is
dominated by d

2. There is no other definition of a in loop
– Scan all body for any other definitions of a

3. All uses of a in loop can only be reached from
definition d
– Consult reaching definitions at each use of a for any definitions

of a other than d

CS 412/413 Spring 2008 Introduction to Compilers 19

Valid Code Motion
• Invalid example 1: a = x*x; does not dominate break to use of a

a = 0;
for (i=0; i<10; i++)

if (f(i)) a = x*x; else break;
b = a;

• Invalid example 2: there is another definition of a in loop
f (i 0 i<10 i++)for (i=0; i<10; i++)

if (f(i)) a = x*x;
else a = 0;

• Invalid example 3: use of a in loop can be reached from a=0;
a = 0;
for (i=0; i<10; i++)

if (f(i)) a = x*x;
else buf[i] = a;

CS 412/413 Spring 2008 Introduction to Compilers 20

6

Other Issues
• Preserve dependencies between loop-invariant instructions

when hoisting code out of the loop
for (i=0; i<N; i++) { x = y+z;

x = y+z; t = x*x;
a[i] = 10*i + x*x; for(i=0; i<N; i++)

} a[i] = 10*i + t;

CS 412/413 Spring 2008 Introduction to Compilers 21

• Nested loops: apply loop-invariant code motion algorithm
multiple times

for (i=0; i<N; i++)
for (j=0; j<M; j++)
a[i][j] = x*x + 10*i + 100*j;

t1 = x*x;
for (i=0; i<N; i++) {

t2 = t1+ 10*i;
for (j=0; j<M; j++)

a[i][j] = t2 + 100*j; }

Induction Variables
• An induction variable is a variable in a loop,

whose value is a function of the loop iteration
number v = f(i)

• In compilers, this a linear function:
f(i) c*i + d

CS 412/413 Spring 2008 Introduction to Compilers 22

f(i) = c*i + d

• Observation: linear combinations of linear
functions are linear functions
– Consequence: linear combinations of induction

variables are induction variables

Induction Variables
• An induction variable is a variable in a loop,

whose value is a function of the loop iteration
number v = f(i)

• In compilers, this a linear function:
f(i) c*i + d

CS 412/413 Spring 2008 Introduction to Compilers 23

f(i) = c*i + d

• Observation: linear combinations of linear
functions are linear functions
– Consequence: linear combinations of induction

variables are induction variables

Families of Induction Variables
• Basic induction variable: a variable whose only definition in the

loop body is of the form
i = i + c

where c is a loop-invariant value

• Derived induction variables: Each basic induction variable i defines
a family of induction variables Family(i)

CS 412/413 Spring 2008 Introduction to Compilers 24

– i ∈ Family(i)
– k ∈ Family(i) if there is only one definition of k in the loop body , and it

has the form k = c*j or k=j+c, where
(a) j ∈ Family(i)
(b) c is loop invariant
(c) The only definition of j that reaches the definition of k is in the loop
(d) There is no definition of i between the definitions of j and k

7

Representation
• Representation of induction variables in family i by triples:

– Denote basic induction variable i by <i, 1, 0>
– Denote induction variable k=i*a+b by triple <i, a, b>

CS 412/413 Spring 2008 Introduction to Compilers 25

Finding Induction Variables
Scan loop body to find all basic induction variables

do
Scan loop to find all variables k with one assignment of form k =

j*b, where j is an induction variable <i,c,d>, and make k an
induction variable with triple <i,c*b,d>

S l t fi d ll i bl k ith i t f f kScan loop to find all variables k with one assignment of form k =
j±b where j is an induction variable with triple <i,c,d>, and
make k an induction variable with triple <i,c,b±d>

until no more induction variables found

CS 412/413 Spring 2008 Introduction to Compilers 26

Strength Reduction
• Basic idea: replace expensive operations (multiplications) with

cheaper ones (additions) in definitions of induction variables

while (i<10) {
j = …; // <i,3,1>
a[j] = a[j] –2;

s = 3*i+1;
while (i<10) {

j = s;
a[j] = a[j] –2;

CS 412/413 Spring 2008 Introduction to Compilers 27

i = i+2;
}

• Benefit: cheaper to compute s = s+6 than j = 3*i
– s = s+6 requires an addition
– j = 3*i requires a multiplication

i = i+2;
s= s+6;

}

General Algorithm
• Algorithm:

For each induction variable j with triple <i,a,b>
whose definition involves multiplication:

1. create a new variable s
2. replace definition of j with j=s

CS 412/413 Spring 2008 Introduction to Compilers 28

p j j
3. immediately after i=i+c, insert s = s+a*c

(here a*c is constant)
4. insert s = a*i+b into preheader

• Correctness: transformation maintains invariant s = a*i+b

8

Strength Reduction
• Gives opportunities for copy propagation, dead code

elimination

s = 3*i+1;
while (i<10) {

s = 3*i+1;
while (i<10) {

j = s;

CS 412/413 Spring 2008 Introduction to Compilers 29

a[s] = a[s] –2;
i = i+2;
s= s+6;

}

j
a[j] = a[j] –2;
i = i+2;
s= s+6;

}

Induction Variable Elimination
• Idea: eliminate each basic induction variable whose only uses

are in loop test conditions and in their own definitions i = i+c
- rewrite loop test to eliminate induction variable

s = 3*i+1;
while (i<10) {

a[s] = a[s] –2;
i = i+2;

CS 412/413 Spring 2008 Introduction to Compilers 30

• When are induction variables used only in loop tests?
– Usually, after strength reduction
– Use algorithm from strength reduction even if definitions

of induction variables don’t involve multiplications

i = i+2;
s= s+6;

}

Induction Variable Elimination
• Rewrite test condition using derived induction variables
• Remove definition of basic induction variables (if not used

after the loop)

s = 3*i+1;
while (i<10) {

s = 3*i+1;
while (s<31) {

CS 412/413 Spring 2008 Introduction to Compilers 31

while (i<10) {
a[s] = a[s] –2;
i = i+2;
s= s+6;

}

while (s<31) {
a[s] = a[s] –2;
s= s+6;

}

Induction Variable Elimination
For each basic induction variable i whose only uses are

– The test condition i < u
– The definition of i: i = i + c

• Take a derived induction variable k in family i, with
triple <i,c,d>

CS 412/413 Spring 2008 Introduction to Compilers 32

• Replace test condition i < u with k < c*u+d
• Remove definition i = i+c if i is not live on loop exit

