Memory Consistency Model

Swarnendu Biswas
UT Austin




Data races

Memory consistency models

Sequential Consistency

Hardware memory models
* TSO, PSO, Relaxed consistency

Language memory models
e C++, Java

Outline




JAVA

Multithreading

Today’s Trends




Data Race: Primary Source of Concurrency
Errors

Object X = null;
boolean done= false;

Thread T1 Thread T2

X = new Object(); while (!done) {}
done = true; X.compute();



Object X = null;
boolean done= false;

Thread T1 Thread T2

X = new Object(); _ . — = |while (!done) {}
one = true; 4_-—'——_ X.compute();

Data race Conflicting accesses — two threads access the same shared
variable where at least one access is a write

Concurrent accesses — accesses are not ordered by
synchronization operations



Thread T1 Thread T2

4 N 4

X = new Object();
temp = done; Infinite loop

while (!temp) {}

done = true;
g J g

Thread T1 Thread T2

done = true;

while (!done) {}
X.compute();

X = new Object();

- J -




Data Races are Bad

r N
Therac-25 accident & Northeast US Blackout &

NASDAQ Facebook glitch
\_ Y

research mghhghts

. . mmg With
Technical Perspective How to miscomPile PFEE
Data Races are Evil Hans B e
with No Exceptions
By Santa Adve

EXPLOITING PARALLELISM HAS become the
primary means to higher performance.

racy code. Java's safety requiremer
preclude the use of “undefined” beh:




Memory Consistency Model: What Value Can a Read Return?

TABLE 3.1: Should r2 Always be Set to NEW?

Core C1 Core C2 Comments
S1: Store data = NEW; /* Initially, data = 0 & flag = SET */
S2: Store flag = SET: L1: Load rl = flag; /* L1 & Bl may repeat many times */

Bl:if (rl = SET) goto L1;
L2: Load r2 = data;




* Store-store
* Load-load
* Store-load
* Load-store

How a Core Might

Reorder Accesses?




» Specifies the allowed behaviors of
multithreaded programs executing with shared
memory

* Both at the hardware-level and at the programming-
language-level

e “What values can a load return?”
Memory Consistency - Return the “last” write

Model * Uniprocessor: program order
* Multiprocessor: ?

* There can be multiple correct behaviors




* Visibility:
* “When does a value update become visible to
others?”

e Ordering:

 When can operations of any given thread appear out
of order to another thread?

Memory Consistency

Model




Dekker’s Algorithm

TABLE 3.3: Can Both r1 and r2 be Set to 0?

Core C1 Core C2 Comments
S1:x =NEW: S2: v =NEW; /* Initially, x =0 & y = 0%/
Ll:rl =y;: L2: 12 =x;




* Uniprocessor - operations executed in
order specified by the program

* Multiprocessor - all operations executed in
order, and the operations of each
individual core appear in program order

Sequential

Consistency (SC)




Earlier Example Under SC

program order (<p) of Core C1 memory order (<m) program order (<p) of Core C2
L1:rl =flag; /*0*/
-l — — = — —— — — —— e E—— -
S1: data = NEW: /* NEW #/
—————————————— hal L1:rl = flag; /+ 0 ¥/
- ——_—_— — — = — — = — — — =
L1:rl =flag; /* 0 #/
- — - — — — — = — — - — -
S2: flag = SET; /* SET *#/
______________ - L1: rl = flag; /* SET #/
- - — — — — — - — - — — -
L.2: r2 = data; /* NEW #*/
- — — — — — — — = — — — — -




ca=boral=b
e if L(a) <p L(b) = L(a) <m L(b)
* If L(a) <p S(b) = L(a) <m S(b)
* If S(a) <p S(b) = S(a) <m S(b)
 If S(a) <p L(b) = S(a) <m L(b)

SC Rules  Every load gets its value from the last store
before it (in global memory order) to the same
address




SC Provides Write Atomicity

Initially A=B =10

Pl P2 P3
A=1
if (A =1)
B:
if (B==1)

registerl = A



Write Atomicity

* Relaxing write atomicity
violates SC

Initially X=Y=0

T2 T3

Y=1 ri=X
fence
r2=Y

T4
ra=Y
fence
rd=x

, r2=0, r3=1, r4=0 violates write atomicity



* Simple memory model that can be
implemented both in hardware and in
languages

* Performance

* Naive hardware

* Maintain program order - expensive for a write
* E.g., write buffer can break Dekker’s algorithm

End-to-end SC  Write atomicity

* Program semantics
» SC does not guarantee data race freedom
* Not a strong memory model

a++; buffer[index]++;




* Single writer multiple readers

* Memory updates are passed correctly,
cached copies always contain the most
recent data

* Virtually a synonym for SC

Cache Coherence e Alternate definition based on relaxed
ordering

* A write is eventually made visible to all
processors

e Writes to the same location appear to be
seen in the same order by all processors
(serialization)

e SC- *all*




Maintaining the Illusion of Write Atomicity

Initially A=B=C =0

1 P2 P3 P4
1 A=2; while (B 1=1 ) {:} while (B 1= 1 ){
1: C=1; while (C 1=1) {;} while (C 1=1) {;}

tmp1 = A; XX~ tmp2 = A: )(

)

P
A
B



 Cache Coherence does not define
shared memory behavior

* Goalis to make caches invisible

Memory Consistency

* Memory consistency can use cache

vs Cache Coherence coherence as a “black box”




* Relax program order
* Store - Load, Store — Store, etc.

* Applicable to pairs of operations with different
addresses

e Relax write atomicity

Characterizing Hardware > ieed @ Wil SRl
* Read other’s write early

* Applicable to only cache-based systems

Memory Models




Read Other’s Write Early Can Violate Write Atomicity

Initially A=B =0

P P2 P3
A =1 while (A 1=1) ;while (B 1= 1) ;
B=1: mp = A
=¥ P2 P3
Write, A, 1
Read, A, 1
Write, B, 1
Read, B, 1

Read, A, p-



Possible Interleavings Under SC

TABLE 3.3: Can Both rl and r2 be Set to 0?

Core C1 Core C2 Comments
S1:x = NEW,; 52: y=NEW; /* Initially, x =0 & y = 0%/
Ll:rl =v; L2:r2=x;




* Allows reordering stores to loads

e Can read own write early, not
other’s writes

Total Store Order

(TSO)

* Conjecture: widely-used x86
memory model is equivalent to TSO




cea==boral=b
 If L(a) <p L(b) = L(a) <m L(b)
 If L(a) <p S(b) = L(a) <m S(b)
 If S(a) <p S(b) = S(a) <m S(b)

s« S{ay<p-Lb}=>S{a}<m-L{b} /* Enables
FIFO Write Buffer */

TSO Rules * Every load gets its value from the last store
before it to the same address

* Needs a notion of a FENCE




TSO Rules (...contd)

If L(a) <p FENCE = L(a) <m FENCE
If S(a) <p FENCE = S(a) <m FENCE
If FENCE <p FENCE = FENCE <m FENCE
If FENCE <p L(a) = FENCE <m L(a)
If FENCE <p S(a) = FENCE <m S(a)

If S(a) <p FENCE = S(a) <m FENCE
If FENCE <p L(a) = FENCE <m L(a)



* Load of a RMW cannot be performed until
earlier stores are performed (i.e., exited the
write buffer)

* Load requires read—write coherence
permissions, not just read permissions

RMW in TSO

* To guarantee atomicity, the cache controller
may not relinquish coherence permission to
the block between the load and the store




* Allows reordering of store to loads and
stores to stores

* Writes to different locations from the same
processor can be pipelined or overlapped
and are allowed to reach memory or other
cached copies out of program order

Partial Store Order

(PSO)

e Can read own write early, not other’s writes




Opportunities to Reorder Memory Operations

TABLE 5.1: What Order Ensures r2 & r3 Always Get NEW?

Core C1

Core C2 Comments

S1: datal = NEW;
S2: data2 = NEW:
S3: flag = SET;

/* Initially, datal & data2 = 0 & flag = SET */

L1:rl = flag; /*spin loop: L1 & B1 may repeat many times */
Bl:1if (rl = SET) goto L1;
L2: r2 = datal;
L3: r3 = data2;




Reorder Operations Within a Synchronization Block

TABLE 5.2: What Order Ensures Correct Handoff from Critical Section 1 to 27

Core C1

Core C2

Comments

Al: acquire(lock)
/* Begin Critical Section 1 */

Some loads L11 interleaved
with some stores S1j

/* End Critical Section 1 */

R.1: release(lock)

A2: acquire(lock)

/* Begin Critical Section 2 */

Some loads L21 interleaved
with some stores S2]

/* End Critical Section 2 #/

R2: release(lock)

/* Arbitrary interleaving of L11’s & S1j’s */

/* Handoff from critical section 1%/

/* To crnitical section 2%/

/% Arbitrary interleaving of L21’s & 52°s #/




* Non-FIFO coalescing write buffer

e Support non-blocking reads
* Hide latency of reads

* Use lockup-free caches and speculative
execution

Optimization

Opportunities

e Simpler support for speculation

* Need not compare addresses of loads to
coherence requests

* For SC, need support to check whether the
speculation is correct




Relaxed Consistency

Rules

If L(a) <p FENCE = L(a) <m FENCE
If S(a) <p FENCE = S(a) <m FENCE
If FENCE <p FENCE = FENCE <m FENCE
If FENCE <p L(a) = FENCE <m L(a)
If FENCE <p S(a) = FENCE <m S(a)

Maintain TSO rules for ordering two accesses to
the same address only

 If L(a) <p U'(a) = L(a) <m L'(a)
 If L(a) <p S(a) = L(a) <m S(a)
 If S(a) <p S’'(a) = S(a) <m S’(a)

e Every load gets its value from the last store
before it to the same address



Correct Implementation Under Relaxed Consistency

TABLE 5.3: Adding FENCEs for XC to Table 5.1's Program.

Core C1 Core C2 Comments

S1: datal = NEW; /* Imitially, datal & data2 =0 & flag # SET */
S2: data2 = NEW;

Fl: FENCE

S3: flag = SET; L1:rl = flag; /* L1 & Bl may repeat many times */

Bl:if (r1 = SET) goto L1;
F2: FENCE
L.2: r2 = datal;

[.3: r3 = data2:




Correct Implementation Under Relaxed Consistency

TABLE 5.4: Adding FENCE:s for XC to Table 5.2's Critical Section Program.

Core C1

Core C2

Comments

F11: FENCE

All: acquire(lock)

F12: FENCE

Some loads L1i interleaved
with some stores 51

F13: FENCE
R11: release(lock)
Fl14: FENCE

F21: FENCE

A21: acquire(lock)

F221: FENCE

Some loads L2i interleaved
with some stores 52

F23: FENCE
R22: release(lock)
F24: FENCE

/* Arbitrary interleaving of L1i’s & S1j's ¥/

/* Handoft from critical section 1%/

/* To critical section 2*/

/* Arbitrary interleaving of L2i’s & 82j’s */




* Weak ordering

 Distinguishes between data and
synchronization operations

* A synchronization operation is not issued
until all previous operations are complete

* No operations are issued until the
previous synchronization operation
completes

Relaxed Consistency

Memory Models * Release consistency

 Distinguishes between acquire and
release synchronization operations

e RCsc - maintains SC between
synchronization operations

e Acquire — all, all - release, and sync -
sync




 Why should we use them?
* Performance

* Why should we not use them?
 Complexity

Relaxed Consistency

Memory Models




Hardware Memory Models: One Slide Summary

Relaxation W—R | W— W | R— RW || Read Others” | Read Own Safety net
Order Order Order Write Early | Write Early
SC [16] v/
IBM 370 [14] V' serialization instructions
TSO [20] Vi Vi RMW
PC [13. 12] v/ Vi Vi RMW
PSO [20] v/ Vi v/ RMW, STBAR
WO [5] v V' V' v synchronization
RCsc [13. 12] v V' V' Vv release, acquire, nsync,
RMW
RCpc[13.12] v v v v Vv release. acquire. nsync.
EMW
Alpha [19] v v v Vv MB. WMB
RMO [21] v V' V' Vv various MEMBAR s
PowerPC [17. 4] H”; av.f": av.f": avf': H*’:: SYNC




DRFO Model

* Conceptually similar to WO
* Assumes no data races

* Allows many optimizations in the compiler and hardware



* Developed much later

* Most are based on the data-race-free-0
(DRFO) model

Why do we need one?

* Isn’t the hardware memory model enough?

Language Memory

Models




* Adaptation of the DRFO memory model
e SC for data race free programs

e C/C++ simply ignore data races
* No safety guarantees in the language

C++ Memory Model * Memory operation

e Synchronization: lock, unlock,
atomic load, atomic store, atomic
RMW

e Data: Load, Store




 Compiler reordering allowed for
memory operations M1 and M2 when:

* M1 is a data operation and M2 is a
read synchronization operation

M1 is write synchronization and M2
is data

e M1 and M2 are both data with no
synchronization between them

e M1 is data and M2 is the write of a
lock operation

* M1 is unlock and M2 is either a read
or write of a lock

C++ Memory Model




Write Correct C++ Code

* Mutually exclusive execution of critical code blocks

std: :mutex mtx;

{
mtx.lock () ;

// access shared data here
mtx.unlock () ;

* Mutex provides inter-thread synchronization
* Unlock() synchronizes with calls to lock() on the same mutex object



Synchronize Using Locks

std: :mutex mtx;
bool dataReady = false;

{ {

mtx.lock () ; mtx.lock () ;
prepareData () ; if (dataReady) {
dataReady = true; consumeData () ;
mtx.unlock () ; }

) mtx.unlock () ;

}



Synchronize Using Locks

std: :mutex mtx;
bool dataReady = false;

prepareData () ; bool b;
{

{ mtx.lock();
mtx.lock () ; b = dataReady;
dataReady = true; mtx.unlock () ;
mtx.unlock () ; }

} 1t (b) A

consumeData () ;



» “Data race free” variable by definition: std: :atomic<int>
* A store synchronizes with operations that load the stored value
 SimilartovolatileinJava

e C++volatile isdifferent!
* Does not establish inter-thread synchronization, not atomic (can be part of a data race)

std: :mutex mtx;
std::atomic<bool> dataReady (false);

prepareData () ; 1f (dataReady.load()) {
dataReady.store (true) ; consumeData () ;



Memory Order of Atomics

Specifies how regular, non-
atomic memory accesses are
to be ordered around an
atomic operation

* Default is sequential enum memory order {
consistency memory order relaxed,
memory order consume,
memory order acquire,
memory order release,
memory order acq rel,
memory order seq cst

atomic.h



* Visibility: When are the effects of one
thread visible to another?

* Ordering: When can operations of any
given thread appear out of order to
another thread?

Visibility and

Ordering




Relaxed Ordering

// Thread 1: // Thread 2:
rl =y.load(memory_order_relaxed); r2 = x.load(memory_order_relaxed); // C
x.store(rl, memory_order_relaxed); y.store(42, memory_order_relaxed); // D

Isrl==r2==42

possible?




Relaxed Ordering

// Thread 1: // Thread 2:
rl = x.load(memory_order_relaxed); r2 = y.load(memory_order_relaxed);
If (r1 ==42) { If (r2 ==42) {

y.store(rl, memory_order_relaxed); x.store(42, memory_order_relaxed);
} }

Isrl==r2==42

possible?




* Writer thread releases a lock
* Flushes all writes from the thread’s working
memory
* Reader thread acquires a lock
* Forces a (re)load of the values of the
affected variables
* Atomic (C++)/ volatile (Java)

Ensuring Visibility * Values written are made visible immediately
before any further memory operations

e Readers reload the value upon each access

* Thread join

e Parent thread is guaranteed to see the
effects made by the child thread




Java Memory Model (JMM)

* First high-level language to
incorporate a memory model

* Provides memory- and type- Initially x = y = 0
safety, so has to define some Thread |- Thread 2-
semantics for data races

y = 1; ¥ = 1;
rl = x; r2 =y,

assert r11=0 || r21=0



Initially x = y = 0

Thread 1: Thread 2:
rl = x; r2 =v;
y =1; x = 1;

assert rl == 0|/ r2==0



Happens-before Memory Model (HBMM)

Initially x = 0
Thread 1: Thread 2:

X =7; if (x 1= 0)
r2 =rl / x;



Initially x =y =0

Thread 1: Thread 2:

rl = x; rZ = v,

if {r'l —— 1] if [:rE —= 1)
y = 1; x = 1,

assert rl == 0 && r2 == 0



JMM is Stronger than DRFO and HBMM

Initially x =y =0

Thread 1: Thread 2:
rl = x; r2 = vy;
y = rl; X = r2;

assert rl = 42



JVMs Do Not Comply with the JMM

Initially x = y = 0

Thread 1: Thread 2:
I rl = x; Ird =vy;
2y =rl; 4 if (r2 ==1){
5 r3 =vy;
6 X =r3;
7 } else x =1,

assert r2 == 0



* Programmability
* Performance

* Portability

* Precision

What Constitutes a

Good Memory Model?




e SC for DRF is the minimal baseline

* Make sure the program is free of
data races

* System guarantees SC execution

e Specifying semantics for racy programs
is hard

Lessons Learnt * Simple optimizations may introduce
unintended consequences




Memory Consistency Model

Swarnendu Biswas
UT Austin




