
1

CS 377P:
Programming for Performance

Administration

• Instructor:
– Keshav Pingali (Professor, CS department & ICES)

• 4.126 Peter O’Donnell Building (POB)
• Email: pingali@cs.utexas.edu

• TA:
– Tongliang Liao (Grad student, CS department)

• Email: xkszltl@gmail.com

Prerequisites

• Basic computer architecture course
– (e.g.) PC, ALU, cache, memory, instruction-level

parallelism (ILP)

• Basic calculus and linear algebra
– differential equations and matrix operations

• Software maturity
– assignments will be in C/C++ on Linux computers

– ability to write medium-sized programs (~1000 lines)

• Self-motivation
– willingness to experiment with systems

Coursework

• 6 programming projects
– These will be more or less evenly spaced

through the semester

– Some assignments will also have short
questions

• One mid-semester exam
– March 21st, 2017

• Final exam

2

Text-book for course

No official book for course

This book is a useful reference.
"Parallel programming in C with MPI and

OpenMP", Michael Quinn, McGraw-Hill
Publishers. ISBN 0-07-282256-2

Lots of material on the web

What this course is not about

• This is not a tools/libraries course
– We will use a small number of tools and micro-

benchmarks to understand performance, but this is not a
course on how to use tools and libraries

• This is not a clever hacks course
– We are interested in general scientific principles for

performance programming, not in squeezing out every
last cycle for somebody’s favorite program

What this course IS about

• Architects invent many hardware features for
boosting program performance

• Usually, software can benefit from these features
only if it is carefully written to exploit them

• Our agenda in CS 377P:
– Understand key performance-critical architectural

features in modern computers
– Develop general principles and techniques that can

guide us in writing programs to exploit these features

• Two major concerns:
– Exploiting multicore/manycore processors: parallelism
– Exploiting the memory hierarchy: locality

Parallelism

• Fundamental ongoing change in computer industry
• Moore’s law(s): two versions

1. Number of transistors on chip double every 1.5 years
• Transistors used to build complex, superscalar

processors, deep pipelines, etc. to exploit instruction-
level parallelism (ILP)

2. Processor frequency doubles every 1.5 years
• Speed goes up by factor of 10 roughly every 5 years
• Moore did not say this in his paper

Many programs ran faster if you just waited a while.
• Fundamental change

– Micro-architectural innovations for exploiting ILP
are reaching limits

– Clock speeds are not increasing any more because of
power problems

 Programs will not run any faster if you wait.
• Let us understand why.

Gordon Moore

3

(1) Micro-architectural approaches
to improving processor performance

• Add functional units
– Superscalar is known territory
– Diminishing returns for adding

more functional blocks
– Alternatives like VLIW are

successful only in embedded
space

• Wider data paths
– Increasing bandwidth between

functional units in a
core makes a difference
• Such as comprehensive 64-bit

design, but then what?

i4004

i80286

i80386

i8080

i8086

R3000
R2000

R10000

Pentium

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1970 1975 1980 1985 1990 1995 2000 2005

Year

T
ra

n
si

st
o

rs

(1) Micro-architectural approaches
(contd.)

• Deeper pipeline
– Deeper pipeline buys frequency at expense of increased

branch mis-prediction penalty and cache miss penalty

– Deeper pipelines => higher clock frequency => more power

– Industry converging on middle ground…9 to 11 stages
• Successful RISC CPUs are in the same range

• More cache
– More cache buys performance until working set of program

fits in cache

– Exploiting caches requires help from programmer/compiler
as we will see

(2) Processor clock speeds

• Old picture:
– Processor clock

frequency doubled every
1.5 years

• New picture:
– Power problems limit

further increases in clock
frequency (see next
couple of slides)

0.1

1

10

100

1000

1970 1980 1990 2000

Year

C
lo

ck
 R

at
e

(M
H

z)

Increase in clock rate

(2) Processor clock speeds (contd.)

Frequency

S
ta

ti
c

C
u

rr
en

t

Embedded
Parts

Very High Leakage
and Power Fast, High

Power

Fast, Low
Power

1.0 1.5

15

0

Static current rises non-linearly as processors approach max frequency

4

(2) Processor clock speeds (contd.)

4004
8008

8080
8085

8086

286
386

486
Pentium®

P6

1

10

100

1000

10000

1970 1980 1990 2000 2010

Year

P
o

w
e

r
D

e
n

s
it

y
(W

/c
m

2
)

Hot Plate

Nuclear
Reactor

Rocket
Nozzle

Sun’s
Surface

Source: Patrick
Gelsinger, Intel

Recap

• Old picture:
– Moore’s law(s):

1. Number of transistors doubled every 1.5 years
– Use these to implement micro-architectural innovations for ILP

2. Processor clock frequency doubled every 1.5 years
Many programs ran faster if you just waited a while.

• New picture:
– Moore’s law

1. Number of transistors still double every 1.5 years
– But micro-architectural innovations for ILP are flat-lining

– Processor clock frequencies are not increasing very much
 Programs will not run faster if you wait a while.

• Questions:
– Hardware: What do we do with all those extra transistors?
– Software: How do we keep speeding up program execution?

One hardware solution: go multicore

• Use semi-conductor tech
improvements to build
multiple cores without
increasing clock frequency

– does not require micro-
architectural
breakthroughs

– non-linear scaling of
power density with
frequency will not be a
problem

• Predictions:

– from now on. number of
cores will double every
1.5 years (from Saman Amarasinghe, MIT)

New problem: multi-core software

• More aggregate performance for:
– Multi-threaded apps (our focus)
– Transactions: many instances of same app
– Multi-tasking

• Problem
– Most apps are not multithreaded
– Writing multithreaded code increases

software costs dramatically
• factor of 3 for Unreal game engine (Tim

Sweeney, EPIC games)

• The great multicore software quest: Can
we write programs so that performance
doubles when the number of cores
doubles?

• Very hard problem for many reasons (see
later)
– Amdahl’s law
– Overheads of parallel execution
– Load balancing
– ………

“We are the cusp of a transition to multicore,
multithreaded architectures, and we still
have not demonstrated the ease of
programming the move will require… I
have talked with a few people at Microsoft
Research who say this is also at or near the
top of their list [of critical CS research
problems].” Justin Rattner, Senior Fellow,
Intel

5

Amdahl’s Law

• Simple observation that shows that unless most of
the program can be executed in parallel, the
benefits of parallel execution are limited
– serial portions f program become bottleneck

• Analogy: suppose I go from Austin to Houston at
60 mph, and return infinitely fast. What is my
average speed?
– Answer: 120 mph, not infinity

Amdahl’s Law (details)

• In general, program will have both parallel and serial
portions
– Suppose program has N operations

• r*N operations in parallel portion
• (1-r)*N operations in serial portion

• Assume
– Serial execution requires one time unit per operation
– Parallel portion can be executed infinitely fast by multicore

processor, so it takes zero time to execute.

• Speed-up:
(execution time on single core) = N = 1
(execution time on multicore) (1-r)*N (1-r)

• Even if r = 0.9, speed-up is only 10.

Our focus

• Multi-threaded programming
– also known as shared-memory programming
– application program is decomposed into a number of “threads”

each of which runs on one core and performs some of the work of
the application: “many hands make light work”

– threads communicate by reading and writing memory locations
(that’s why it is called shared-memory programming)

– we will use a popular system called OpenMP

• Key issues:
– how do we assign work to different threads?
– how do we ensure that work is more or less equitably distributed

among the threads?
– how do we make sure threads do not step on each other

(synchronization)?
– ….

Distributed-memory programming

• Some application areas such as computational science need more
power than will be available in the near future on a multi-core
processor

• Solution: connect a bunch of multicore processors together
– (e.g.) Ranger machine at Texas Advanced Computing Center (TACC):

15,744 processors, each of which has 4 cores
• Must use a different model of parallel programming called

– message-passing (or)
– distributed-memory programming

• Distributed-memory programming
– units of parallel execution are called processes
– processes communicate by sending and receiving messages since they

have no memory locations in common
– most-commonly-used communication library: MPI

• We will study distributed-memory programming as well and you will
get to run programs on Stampede

6

Software problem (II):
memory hierarchy

• Complication for parallel software
– unless software also exploit caches, overall

performance is usually poor

– writing software that can exploit caches also
complicates software development

Memory Hierarchy of SGI Octane

• R10 K processor:
– 4-way superscalar, 2 fpo/cycle, 195MHz

• Peak performance: 390 Mflops
• Experience: sustained performance is less than 10% of peak

– Processor often stalls waiting for memory system to load data

size

access time (cycles)
2 10 70

64

32KB (I)
32KB (D)

1MB

128MB

Regs

L1 cache
L2 cache

Memory

Memory Hierarchy of Power 7

• Eight cores on same socket/chip, 3.6 GHz

• L1 cache: 32KB data, 32KB instruction

• L2 cache: 256 KB, latency is “a few cycles”

• L3 cache: 4*8 MB/chip, 50 cycles

Software problem (II)

• Caches are useful only if programs have
locality of reference
– temporal locality: program references to given memory

address are clustered together in time
– spatial locality: program references clustered in address

space are clustered in time

• Problem:
– Programs obtained by expressing most algorithms in

the straight-forward way do not have much locality of
reference

– How do we code applications so that they can exploit
caches?.

7

Software problem (II):
memory hierarchy

“…The CPU chip industry has now reached the
point that instructions can be executed more
quickly than the chips can be fed with code and
data. Future chip design is memory design. Future
software design is also memory design. .…
Controlling memory access patterns will drive
hardware and software designs for the foreseeable
future.”

Richard Sites

Abstract questions

• Do applications have parallelism?

• If so, what patterns of parallelism are there in
common applications?

• Do applications have locality?

• If so, what patterns of locality are there in
common applications?

• We will study sequential and parallel algorithms
and data structures to answer these questions

Course content

• Analysis of applications that need high end-to-end
performance: study parallelism and locality
– Computational science applications
– Big-data processing

• Understanding parallel performance: DAG model of
computation, Moore’s law, Amdahl's law

• Measurement and the design of computer experiments
• Micro-benchmarks for abstracting performance-critical

aspects of computer systems
• Memory hierarchy:

– caches, virtual memory
– optimizing programs for memory hierarchies
– cache-oblivious programming

• ……..

Course content (contd.)

• …..
• Multi-core processors and shared-memory programming

– pThreads and OpenMP

• GPUs and GPU programming
• Distributed-memory machines and message-passing

programming
– MPI

• Advanced topics:
– Optimistic parallelism
– Self-optimizing software

• ATLAS,FFTW

